請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91623完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林啟萬 | zh_TW |
| dc.contributor.advisor | Chii-Wann Lin | en |
| dc.contributor.author | 黃文怡 | zh_TW |
| dc.contributor.author | Wen-Yi Huang | en |
| dc.date.accessioned | 2024-02-20T16:15:32Z | - |
| dc.date.available | 2024-02-21 | - |
| dc.date.copyright | 2024-02-20 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-01-30 | - |
| dc.identifier.citation | [1] World Health Organization, WHO Coronavirus (COVID-19) Dashboard, https://covid19.who.int/?mapFilter=cases, 2023 2023).
[2] 衛生福利部疾病管制署, COVID-19 Global Dashboard by Taiwan, https://covid-19.nchc.org.tw/dt_005-covidTable_taiwan.php, 2023. [3] Y. Orooji, H. Sohrabi, N. Hemmat, F. Oroojalian, B. Baradaran, A. Mokhtarzadeh, M. Mohaghegh, H. Karimi-Maleh, An overview on SARS-CoV-2 (COVID-19) and other human coronaviruses and their detection capability via amplification assay, chemical sensing, biosensing, immunosensing, and clinical assays, Nano-micro letters 13 (2021) 1-30. [4] 行政院衛生福利部疾病管制署, COVID-19疾病介紹, https://www.cdc.gov.tw/Category/Page/vleOMKqwuEbIMgqaTeXG8A, 2020. [5] D.W. Denning, A. Kilcoyne, C. Ucer, Non-infectious status indicated by detectable IgG antibody to SARS-CoV-2, British Dental Journal 229 (2020) 521-524. 10.1038/s41415-020-2228-9. [6] A. Benda, L. Zerajic, A. Ankita, E. Cleary, Y. Park, S. Pandey, COVID-19 testing and diagnostics: a review of commercialized technologies for cost, convenience and quality of tests, Sensors 21 (2021) 6581. [7] The World Bank, GDP growth (annual %), World Bank national accounts data, and OECD National Accounts data files., https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG. [8] Michelle Roberts, BA.4 and BA.5 Omicron: How worried should we be?, https://www.bbc.com/news/health-55659820, 2022. [9] U.S. Food & Drug administration, Historical Information about Device Emergency Use Authorizations, https://www.fda.gov/medical-devices/emergency-use-authorizations-medical-devices/historical-information-about-device-emergency-use-authorizations#ivd, 2023. [10] Z. Qin, R. Peng, I.K. Baravik, X. Liu, Fighting COVID-19: integrated micro-and nanosystems for viral infection diagnostics, Matter 3 (2020) 628-651. [11] Centers for Disease Control and Prevention, Overview of Testing for SARS-CoV-2, the virus that causes COVID-19, https://www.cdc.gov/coronavirus/2019-ncov/hcp/testing-overview.html, September 25, 2023. [12] I.P.P. Secretariat, 100 Days Mission, https://ippsecretariat.org/. [13] anonymous, 3D medical animation corona virus, Wikimedia commons, 27 January 2020. [14] D. Bestle, M.R. Heindl, H. Limburg, O. Pilgram, H. Moulton, D.A. Stein, K. Hardes, M. Eickmann, O. Dolnik, C. Rohde, TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells, Life science alliance 3 (2020). [15] M. Yuan, N.C. Wu, X. Zhu, C.-C.D. Lee, R.T. So, H. Lv, C.K. Mok, I.A. Wilson, A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV, Science 368 (2020) 630-633. [16] Y. Huang, C. Yang, X.-f. Xu, W. Xu, S.-w. Liu, Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19, Acta Pharmacologica Sinica 41 (2020) 1141-1149. [17] J.L. Daly, B. Simonetti, K. Klein, K.-E. Chen, M.K. Williamson, C. Antón-Plágaro, D.K. Shoemark, L. Simón-Gracia, M. Bauer, R. Hollandi, Neuropilin-1 is a host factor for SARS-CoV-2 infection, Science 370 (2020) 861-865. [18] L. Cantuti-Castelvetri, R. Ojha, L.D. Pedro, M. Djannatian, J. Franz, S. Kuivanen, K. Kallio, T. Kaya, M. Anastasina, T. Smura, Neuropilin-1 facilitates SARS-CoV-2 cell entry and provides a possible pathway into the central nervous system, BioRxiv 10 (2020) 07.137802. [19] K. Wang, W. Chen, Y.-S. Zhou, J.-Q. Lian, Z. Zhang, P. Du, L. Gong, Y. Zhang, H.-Y. Cui, J.-J. Geng, SARS-CoV-2 invades host cells via a novel route: CD147-spike protein, biorxiv (2020). [20] Anonymous, SARS-CoV-2 variants of concern as of 15 December 2023, https://www.ecdc.europa.eu/en/covid-19/variants-concern, 2023. [21] 行政院衛生福利部疾病管制署, 新型冠狀病毒(SARS-CoV-2)感染臨床處置指引, https://www.cdc.gov.tw/Uploads/27a10af0-4315-4a35-abf1-f2317e5ea91d.pdf, 2022. [22] T. Ai, Z. Yang, H. Hou, C. Zhan, C. Chen, W. Lv, Q. Tao, Z. Sun, L. Xia, Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases, Radiology (2020). [23] 行政院衛生福利部疾病管制署, COVID-19 治療用藥領用方案, https://www.cdc.gov.tw/Category/List/RseL-eiUxo_EaUnzCz11gQ. [24] Y. Zhao, F. Chen, Q. Li, L. Wang, C. Fan, Isothermal amplification of nucleic acids, Chemical reviews 115 (2015) 12491-12545. [25] L. Yan, J. Zhou, Y. Zheng, A.S. Gamson, B.T. Roembke, S. Nakayama, H.O. Sintim, Isothermal amplified detection of DNA and RNA, Molecular BioSystems 10 (2014) 970-1003. [26] Steven M. Carr, The Polymerase Chain Reaction (PCR), https://www.mun.ca/biology/scarr/PCR_simplified.html, 2014. [27] T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, T. Hase, Loop-mediated isothermal amplification of DNA, Nucleic acids research 28 (2000) e63-e63. [28] K. Nagamine, T. Hase, T. Notomi, Accelerated reaction by loop-mediated isothermal amplification using loop primers, Molecular and cellular probes 16 (2002) 223-229. [29] University of Oxford, Rapid COVID-19 test, Oxsed RaViD Direct, now in use at Heathrow and trials at Hong Kong International Airport, https://www.ox.ac.uk/news/2020-11-04-rapid-covid-19-test-oxsed-ravid-direct-now-use-heathrow-and-trials-hong-kong, November 4, 2020. [30] Taiwan Centers for Disease Control, COVID-19 FAQs, https://www.cdc.gov.tw/En/Category/QAPage/SbkmnM5v0OwdDMjJ2tI_xw. [31] H. Brandler, Which Covid-19 tests allow you to travel?, https://www.businesstraveller.com/features/which-tests-allow-you-to-travel/, April 5,2022. [32] anonymous, 西班牙入境規範, https://www.spth.gob.es/faq?tab=2. [33] Government of Canada, COVID-19: Travel, testing and borders, https://travel.gc.ca/travel-covid/travel-restrictions/flying-canada-checklist/covid-19-testing-travellers-coming-into-canada. [34] K. Green, A. Winter, R. Dickinson, S. Graziadio, R. Wolff, S. Mallett, A.J. Allen, E. Park, What tests could potentially be used for the screening, diagnosis and monitoring of COVID-19 and what are their advantages and disadvantages, CEBM2020 13 (2020) 1-13. [35] J.H.C.f.H. Security, COVID-19 Testing Toolkit - Molecular tests testing basics, https://www.centerforhealthsecurity.org/covid-19TestingToolkit/testing-basics/types-of-COVID-19-tests/diagnostic-tests/molecular-tests.html. [36] B. Technologies, Primers design suggestions, https://www.lucigen.com/docs/slide-decks/Loop-Mediated-Isothermal-Amplification-Design-Primers-Webinar-March-2018.pdf. [37] L. Becherer, N. Borst, M. Bakheit, S. Frischmann, R. Zengerle, F. von Stetten, Loop-mediated isothermal amplification (LAMP)–review and classification of methods for sequence-specific detection, Analytical Methods 12 (2020) 717-746. [38] U.S. Food & Drug administration, In Vitro Diagnostics EUAs - Molecular Diagnostic Tests for SARS-CoV-2, https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/in-vitro-diagnostics-euas-molecular-diagnostic-tests-sars-cov-2. [39] Anonymous, SPR-Pages, https://www.sprpages.nl/. [40] J. Homola, Electromagnetic theory of surface plasmons, Surface plasmon resonance based sensors (2006) 3-44. [41] L. Oliveira, C. Moreira, H. Neff, A. Lima, Optical properties and instrumental performance of thin noble metal (Cu, Au, Ag) films near the surface plasmon resonance, Procedia Engineering 168 (2016) 834-837. [42] X. Lu, L. Wang, S.K. Sakthivel, B. Whitaker, J. Murray, S. Kamili, B. Lynch, L. Malapati, S.A. Burke, J. Harcourt, US CDC real-time reverse transcription PCR panel for detection of severe acute respiratory syndrome coronavirus 2, Emerging infectious diseases 26 (2020) 1654. [43] H. Wang, S. Jean, S.A. Wilson, J.M. Lucyshyn, S. McGrath, R.K. Wilson, V. Magrini, A.L. Leber, A deletion in the N gene of SARS-CoV-2 may reduce test sensitivity for detection of SARS-CoV-2, Diagnostic microbiology and infectious disease 102 (2022) 115631. [44] S. Alexandersen, A. Chamings, T.R. Bhatta, SARS-CoV-2 genomic and subgenomic RNAs in diagnostic samples are not an indicator of active replication, Nature communications 11 (2020) 1-13. [45] D.o.V.D. Centers for Disease Control and Prevention, CDC 2019-Novel Coronavirus (2019-nCoV), Real-Time RT-PCR Diagnostic Panel, https://www.fda.gov/media/134922/download, 2023. [46] U.S.C.f.D.C.a. Prevention, Research Use Only 2019=Novel Coronavirus(2019-nCoV)Real-time PCR Primers and Probes, https://www.cdc.gov/coronavirus/2019-ncov/lab/rt-pcr-panel-primer-probes.html, 2020. [47] N.L.o. Medicine, National Center for Biotechnology Information, https://www.ncbi.nlm.nih.gov/. [48] T. Notomi, Y. Mori, N. Tomita, H. Kanda, Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects, Journal of microbiology 53 (2015) 1-5. [49] L. Eiken chemical Co., LAMP primer designing software-PrimerExplorer, https://primerexplorer.jp/e/. [50] S.-Y. Lee, J.-G. Huang, T.-L. Chuang, J.-C. Sheu, Y.-K. Chuang, M. Holl, D.R. Meldrum, C.-N. Lee, C.-W. Lin, Compact optical diagnostic device for isothermal nucleic acids amplification, Sensors and Actuators B: Chemical 133 (2008) 493-501. [51] 許晉懷, 基於影像表面電漿子共振生物感測器的連續監測腫瘤細胞系外泌體研究, (2022). [52] P.K. Gothe, D. Gaur, V.G. Achanta, MPTMS self-assembled monolayer deposition for ultra-thin gold films for plasmonics, Journal of Physics Communications 2 (2018) 035005. [53] J.P. Broughton, X. Deng, G. Yu, C.L. Fasching, J. Singh, J. Streithorst, A. Granados, A. Sotomayor-Gonzalez, K. Zorn, A. Gopez, Rapid detection of 2019 novel coronavirus SARS-CoV-2 using a CRISPR-based DETECTR lateral flow assay, MedRxiv (2020). [54] 行政院衛生福利部疾病管制署, COVID-19 防疫關鍵決策時間軸, https://covid19.mohw.gov.tw/ch/sp-timeline0-205.html. [55] FIND, SARS-COV-2 TEST TRACKER, https://www.finddx.org/tools-and-resources/dxconnect/test-directories/covid-19-test-tracker/. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91623 | - |
| dc.description.abstract | 2019年末於中國武漢發生SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2)病毒大規模感染事件,該病毒傳播力極強,全球人民的生活型態因而大幅改變,除了造成醫療單位人滿為患,經濟交流、物資流通及觀光產業等的停滯也造成全球的經濟重創。
面臨一個大規模傳染疾病,有效防堵疾病的方法主要為檢測診斷、治療,以及疫苗三者環環相扣,互相配合。本研究著重於診斷測試作為研究與探討主軸,以期能透過適當的檢測方法與防治措施,更有效的減少疾病傳播的風險。COVID-19的主要檢測診斷方法如核酸篩檢、病毒基因定序、抗原快篩與抗體篩檢技術等。現有的篩檢黃金準則為聚合酶連鎖反應(PCR),以核酸擴增方式檢測與推算病患體內病毒載量,但所需數小時的擴增時間、昂貴熱循環儀器、需要至特定場所由專業訓練人員進行操作等,導致篩檢量不足以應對大量流行時的需求、許多偏遠地區無法使用此技術等缺點。因此,可以藉由一些快速且靈敏度高的新興檢測方法作為輔助PCR診斷的工具。 本研究先使用統計學方法對於SARS-CoV-2通過美國食品藥物管理局(U.S. Food and Drug Administration, FDA)之緊急使用授權(Emergency use authorization, EUA)相關檢測產品進行分析與分類,找出已上市產品所使用的技術與可以施行的場所,進行優缺點分析,探討目前的使用情形,以及是否能有改善的空間,期能找到更有效率或更好的方法,以利及早診斷、及早匡列隔離患者以防堵疾病傳播。探討目前所常用的篩檢方式,以LAMP與PCR、抗原快篩相比,再由價格、效率、適用地點、於不同疾病盛行時期適合應用的時機進行分析與比較,以及該情境下使用該檢測方式之應用優缺點,評斷出適用於不同情境下最適合的篩檢技術以及配套措施。其中通過國際認證並可於居家進行篩檢的恆溫核酸擴增技術:環形核酸擴增法(Loop-Mediated Isothermal Amplification, LAMP)有快速、高準確度的優點而具有極大的潛力。 本研究進而設計了一組LAMP的引物與目標序列,進行凝膠電泳(Gel electrophoresis)以及表面電漿子共振光學系統(Surface plasmon resonance,SPR),驗證LAMP方法的可行性與檢測時間優勢。實驗中分別進行20分鐘、40分鐘與60分鐘的LAMP反應。實驗結果顯示,LAMP反應可以在20分鐘就在電泳以及SPR顯示出陽性樣本於反應前後的明顯差異。於線性範圍中,擴增時間越久,反應擴增產物越多、訊號量越大。由於SPR的極高靈敏度,將反應產物稀釋3倍後亦可以量測出結果,未來在進行LAMP檢測上的應用可以縮減更多體積,以減少廣泛檢測的成本消耗。此外,由於LAMP單一反應的產物體積較小,難以以折射率計量測出其單位標準量,本研究使用不同鹽度的NaCl在SPR上建立角度與折射率的線性回歸校正曲線,可以對應出反應產物近似的折射率值。 本研究也以時間軸回顧自2019疫情爆發後主要影響台灣疾病盛行率大幅變動的因素,評估不同盛行率時適用的篩檢方法防堵疫情傳播。利用LAMP可以在各種環境下進行快速(20分鐘)核酸檢測,使潛在確診患者都能在家便利的進行最準確、排除假陰性的檢測的優勢,作為一個可行的篩檢補足方案,使診斷流程分流與更加順利。期許得以藉由此研究所統整的LAMP序列選用、引子設計流程、驗證方法與使用建議,為下一次的疾病做好充足準備。當未來再度面臨大規模傳染疾病時,利用LAMP的優勢,快速的以篩檢隔離的防堵對策進行因應。 | zh_TW |
| dc.description.abstract | At the end of 2019, a large-scale infection with the SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) virus occurred in Wuhan, China. The virus is extremely transmissible, leading to significant global impacts on people''s lifestyles, overwhelming healthcare systems, and causing economic disruptions worldwide.
Effectively combating a large-scale infectious disease, the main methods are detection, diagnosis, treatment, and vaccines. This study focuses on diagnostic testing, with the aim of reducing the risk of disease transmission through appropriate detection methods in different prevalence rate. The most commonly used diagnosis methods for COVID-19 include nucleic acid screening, viral gene sequencing, antigen rapid screening and antibody screening technology, etc. The current gold standard for screening is polymerase chain reaction (PCR), which uses nucleic acid amplification to detect and estimate the viral load in patients. However, it demands prolonged amplification time, costly equipment, specific location and specialized personnel. These limitations have led to an inadequate screening capacity to meet demands of a large epidemic, and the inability to use this technology in many remote areas. Therefore, novel and highly sensitive diagnostic methods can be used as tools to assist PCR diagnosis shortage. This study employs statistical methods to analyze and classify SARS-CoV-2 related testing products authorized by the U.S. Food and Drug Administration (FDA) under Emergency Use Authorization (EUA). To determine the most suitable screening technology and supporting measures for different situations from the methods and applicable settings of the launched products, this study analyzes the advantages and disadvantages in terms of price, efficiency, applicable locations, suitable timing for application in different disease epidemic periods, explores the current usage situation, and whether there are areas for enhancement, hoping to find more efficient or better methods to facilitate for preventing the spread of the disease by early diagnosis and early isolation of patients. Among these currently commonly used screening methods such as PCR and antigen rapid test, Loop-Mediated Isothermal Amplification (LAMP), a nucleic acid testing method which is with high accuracy and applicable for home testing, exhibits substantial potential. This study outlines the process of selecting target sequences, designing LAMP primers, and validating the feasibility of the LAMP method using gel electrophoresis and Surface Plasmon Resonance (SPR) systems. The experiment involved LAMP reactions conducted for 20, 40, and 60 minutes, with results indicating that LAMP reactions at 20 minutes exhibit noticeable differences in positive samples before and after the reaction, as observed through electrophoresis and SPR. Within the linear range, the longer amplification time, the more reaction products and the greater signal quantities. Due to the high sensitivity of SPR, diluted reaction products can also be measured, reducing testing costs. Calibration curves for angle and refractive index are established on SPR using different concentrations of NaCl, allowing for the approximate refractive index values of reaction products. This study also evaluates factors influenced Taiwan''s disease prevalence significantly since the 2019 pandemic outbreak, and evaluates the screening methods applicable at different prevalence rates to prevent the spread of the epidemic. LAMP, with its ability to conduct rapid nucleic acid testing (20 minutes) in various environments, provides potentially confirmed patients to conveniently conduct the most accurate test at home, eliminating false negatives. This serves as a feasible supplementary solution, streamlining the diagnosis process and improving overall efficiency. The integrated LAMP sequence selection, primer design process, verification methods, and usage recommendations from this study aim to prepare for the next disease outbreak. Leveraging the advantages of LAMP allows for timely screening and isolation strategies, effectively combating the spread of disease in the event of future pandemics. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-20T16:15:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-02-20T16:15:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝……………………………………………………………………………….…...i
中文摘要………………………………………………………………………….…..ii 英文摘要………………………………………………………………………….….iv 目錄…………………………………………………………………………………..vi 圖目錄………………………………………………………………………………..ix 表目錄………………………………………………………………………...….......xi 第一章 緒論 1 1.1 研究背景 1 1.1.1 COVID-19帶來的影響 2 1.1.2 現有的篩檢方法 3 1.2 研究動機與目的 4 1.3 章節架構 5 第二章 文獻探討 6 2.1 SARS-CoV-2專論 6 2.1.2 SARS-CoV-2病毒造成的影響 6 2.1.3 冠狀病毒與新型冠狀病毒介紹 7 2.1.4 感染途徑與致病機轉 8 2.1.5 病毒變異 9 2.1.6 臨床症狀 10 2.1.7 臨床診斷技術與判別標準 11 2.1.8 預防 12 2.1.9 治療 12 2.2 核酸擴增反應 13 2.2.1聚合酶連鎖反應(PCR) 14 2.2.2 恆溫核酸擴增 15 2.2.3 環形恆溫核酸擴增法 15 2.2.4 LAMP與PCR之比較 17 2.3 通過FDA緊急授權`之SARS-CoV-2檢測方式的分類 18 2.3.1 EUA資料分類與統計 18 2.4 表面電漿子共振感測技術 21 2.4.1 表面電漿子共振原理 21 2.4.2 表面電漿子共振的應用 22 第三章 反應機制之設計、材料與方法 24 3.1 SARS-CoV-2 LAMP反應之建立 24 3.1.1 反應選用之標準序列 24 3.1.2 使用標準序列進行引子的設計 26 3.1.3 LAMP擴增反應使用儀器與材料 27 3.1.4 LAMP核酸擴增反應設計 28 3.2 LAMP反應的檢測方式 29 3.2.1 反應副產物焦磷酸鎂沉澱之可視化結果 29 3.2.2 使用膠體電泳進行驗證 30 3.2.3 表面電漿子共振感測系統 30 3.2.3.1 相位調變表面電漿子共振感測系統架構 31 3.2.3.2 感測軟體操作介面 31 3.2.3.3 感測晶片製備 33 3.2.3.4 表面電漿子共振訊號量測 34 第四章 研究結果 37 4.1 序列選用與引子設計 37 4.2 LAMP反應結果印證—快速、高準確性的核酸檢測方法 38 4.2.1 定性分析反應目標序列 38 4.2.2 引子數量對於擴增時間的影響 39 4.2.3 LAMP反應檢測限 39 4.2.3 SPR反應的驗證 40 4.2.3.1 使用LAMP標準試劑盒於SPR進行終端檢測 40 4.2.3.2 針對目標序列進行擴增時間的驗證與選擇 41 4.3 評斷不同盛行率時期適合的檢測方式與適用性 43 4.3.1 LAMP、抗原快篩與PCR於不同盛行率的診斷價值 43 4.3.2 以台灣時間軸劃分疾病盛行率 44 4.3.3 三年來臺灣於此三時期的檢測診斷應對 46 4.3.4 LAMP、PCR與抗原快篩相輔相成之檢測診斷流程建議 48 第五章 結論、討論及展望 52 第六章 參考資料 55 附錄 59 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 抗原快速篩檢 | zh_TW |
| dc.subject | 聚合酶連鎖反應 | zh_TW |
| dc.subject | 環形恆溫核酸擴增法 | zh_TW |
| dc.subject | 新型冠狀病毒 | zh_TW |
| dc.subject | 體外診斷 | zh_TW |
| dc.subject | 盛行率 | zh_TW |
| dc.subject | COVID-19 | zh_TW |
| dc.subject | 診斷策略 | zh_TW |
| dc.subject | SARS-CoV-2 | en |
| dc.subject | Diagnostic Strategies | en |
| dc.subject | In Vitro Diagnostics | en |
| dc.subject | Antigen Rapid Screening | en |
| dc.subject | Polymerase Chain Reaction | en |
| dc.subject | Loop-Mediated Isothermal Amplification | en |
| dc.subject | Prevalence Rate | en |
| dc.subject | COVID-19 | en |
| dc.title | 環形恆溫核酸擴增法在SARS-CoV-2檢測中的設計與應用於未來新興傳染病的策略 | zh_TW |
| dc.title | Design and Application of Loop-Mediated Isothermal Amplification in SARS-CoV-2 Detection and Its Strategic Implementation for Future Emerging Infectious Diseases | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 邱南福;趙福杉 | zh_TW |
| dc.contributor.oralexamcommittee | Nan-Fu Chiu;Fu-Shan Jaw | en |
| dc.subject.keyword | COVID-19,新型冠狀病毒,環形恆溫核酸擴增法,聚合酶連鎖反應,抗原快速篩檢,體外診斷,盛行率,診斷策略, | zh_TW |
| dc.subject.keyword | COVID-19,SARS-CoV-2,Loop-Mediated Isothermal Amplification,Polymerase Chain Reaction,Antigen Rapid Screening,In Vitro Diagnostics,Prevalence Rate,Diagnostic Strategies, | en |
| dc.relation.page | 60 | - |
| dc.identifier.doi | 10.6342/NTU202400287 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-02-01 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 5.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
