Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91614
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱忠瀚zh_TW
dc.contributor.advisorJohn Chuen
dc.contributor.author顏嫚君zh_TW
dc.contributor.authorMan-Jun Yanen
dc.date.accessioned2024-02-20T16:12:48Z-
dc.date.available2024-02-21-
dc.date.copyright2024-02-20-
dc.date.issued2024-
dc.date.submitted2024-01-29-
dc.identifier.citationNicholson, K. M.; Anderson, N. G., The protein kinase B/Akt signalling pathway in human malignancy. Cell. Signal. 2002, 14, 381-395.
Szymonowicz, K.; Oeck, S.; Malewicz, N. M.; Jendrossek, V., New insights into protein kinase B/Akt signaling: role of localized Akt activation and compartment-specific target proteins for the cellular radiation response. Cancers (Basel) 2018, 10, 78-109.
Fayard, E.; Tintignac, L. A.; Baudry, A.; Hemmings, B. A., Protein kinase B/Akt at a glance. J. Cell Sci. 2005, 118, 5675-5678.
Manning, B. D.; Toker, A., AKT/PKB Signaling: Navigating the Network. Cell 2017, 169, 381-405.
Jo, H.; Mondal, S.; Tan, D.; Nagata, E.; Takizawa, S.; Sharma, A. K.; Hou, Q.; Shanmugasundaram, K.; Prasad, A.; Tung, J. K.; Tejeda, A. O.; Man, H.; Rigby, A. C.; Luo, H. R., Small molecule-induced cytosolic activation of protein kinase Akt rescues ischemia-elicited neuronal death. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 10581-10586.
Han, E. K.; Leverson, J. D.; McGonigal, T.; Shah, O. J.; Woods, K. W.; Hunter, T.; Giranda, V. L.; Luo, Y., Akt inhibitor A-443654 induces rapid Akt Ser-473 phosphorylation independent of mTORC1 inhibition. Oncogene 2007, 26, 5655-5661.
Levy, D. S.; Kahana, J. A.; Kumar, R., AKT inhibitor, GSK690693, induces growth inhibition and apoptosis in acute lymphoblastic leukemia cell lines. Blood 2009, 113, 1723-1729.
Zhu, J. L.; Wu, Y. Y.; Wu, D.; Luo, W. F.; Zhang, Z. Q.; Liu, C. F., SC79, a novel Akt activator, protects dopaminergic neuronal cells from MPP(+) and rotenone. Mol. Cell. Biochem. 2019, 461, 81-89.
Wen, L.; Wang, K.; Zhang, F.; Tan, Y.; Shang, X.; Zhu, Y.; Zhou, X.; Yuan, H.; Hu, F., AKT activation by SC79 to transiently re-open pathological blood brain barrier for improved functionalized nanoparticles therapy of glioblastoma. Biomaterials 2020, 237, 119793.
Kulkarni, M. A.; Pandit, K. S.; Desai, U. V.; Lad, U. P.; Wadgaonkar, P. P., Diethylamine: A smart organocatalyst in eco-safe and diastereoselective synthesis of medicinally privileged 2-amino-4H-chromenes at ambient temperature. C. R. Chim. 2013, 16, 689-695.
Kulkarni, M. A.; Pandurangi, V. R.; Desai, U. V.; Wadgaonkar, P. P., A practical and highly efficient protocol for multicomponent synthesis of β-phosphonomalononitriles and 2-amino-4H-chromen-4-yl phosphonates using diethylamine as a novel organocatalyst. C. R. Chim. 2012, 15, 745-752.
Musso, L.; Cincinelli, R.; Giannini, G.; Manetti, F.; Dallavalle, S., Synthesis of 5,6-dihydro-4H-benzo[d]isoxazol-7-one and 5,6-dihydro-4H-isoxazolo[5,4-c]pyridin-7-one derivatives as potential Hsp90 inhibitors. Chem. Biol. Drug Des 2015, 86, 1030-1035.
Liu, L.; Yao, Z.; Wang, S.; Xie, T.; Wu, G.; Zhang, H.; Zhang, P.; Wu, Y.; Yuan, H.; Sun, H., Syntheses, Biological Evaluations, and Mechanistic Studies of Benzo[c][1,2,5]oxadiazole Derivatives as Potent PD-L1 Inhibitors with In Vivo Antitumor Activity. J. Med. Chem. 2021, 64, 8391-8409.
Lenz, C. A.; Rychlik, M., Efficient synthesis of (R)-ochratoxin alpha, the key precursor to the mycotoxin ochratoxin A. Tetrahedron Lett. 2013, 54, 883-886.
Huang, W.; Gou, S.; Hu, D.; Meng, Q., An Improved oxidation approach for preparing 4-substituted-2, 6-diformylphenol by manganese (IV) dioxide. Synth. Commun. 2000, 30, 1555-1561.
Arnison, P. G.; Bibb, M. J.; Bierbaum, G.; Bowers, A. A.; Bugni, T. S.; Bulaj, G.; Camarero, J. A.; Campopiano, D. J.; Challis, G. L.; Clardy, J.; Cotter, P. D.; Craik, D. J.; Dawson, M.; Dittmann, E.; Donadio, S.; Dorrestein, P. C.; Entian, K. D.; Fischbach, M. A.; Garavelli, J. S.; Goransson, U.; Gruber, C. W.; Haft, D. H.; Hemscheidt, T. K.; Hertweck, C.; Hill, C.; Horswill, A. R.; Jaspars, M.; Kelly, W. L.; Klinman, J. P.; Kuipers, O. P.; Link, A. J.; Liu, W.; Marahiel, M. A.; Mitchell, D. A.; Moll, G. N.; Moore, B. S.; Muller, R.; Nair, S. K.; Nes, I. F.; Norris, G. E.; Olivera, B. M.; Onaka, H.; Patchett, M. L.; Piel, J.; Reaney, M. J.; Rebuffat, S.; Ross, R. P.; Sahl, H. G.; Schmidt, E. W.; Selsted, M. E.; Severinov, K.; Shen, B.; Sivonen, K.; Smith, L.; Stein, T.; Sussmuth, R. D.; Tagg, J. R.; Tang, G. L.; Truman, A. W.; Vederas, J. C.; Walsh, C. T.; Walton, J. D.; Wenzel, S. C.; Willey, J. M.; van der Donk, W. A., Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 2013, 30, 108-160.
Cao, L.; Do, T.; Link, A. J., Mechanisms of action of ribosomally synthesized and posttranslationally modified peptides (RiPPs). J. Ind. Microbiol. Biotechnol. 2021, 48.
Scheidler, C. M.; Kick, L. M.; Schneider, S., Ribosomal Peptides and Small Proteins on the Rise. ChemBioChem 2019, 20, 1479-1486.
Do, T.; Link, A. J., Protein Engineering in Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs). Biochemistry 2023, 62, 201-209.
Grant-Mackie, E. S.; Williams, E. T.; Harris, P. W. R.; Brimble, M. A., Aminovinyl Cysteine Containing Peptides: A Unique Motif That Imparts Key Biological Activity. JACS Au 2021, 1, 1527-1540.
De Leon Rodriguez, L. M.; Williams, E. T.; Brimble, M. A., Chemical Synthesis of Bioactive Naturally Derived Cyclic Peptides Containing Ene-Like Rigidifying Motifs. Chemistry 2018, 24, 17869-17880.
Ongey, E. L.; Yassi, H.; Pflugmacher, S.; Neubauer, P., Pharmacological and pharmacokinetic properties of lanthipeptides undergoing clinical studies. Biotechnol. Lett. 2017, 39, 473-482.
Komiyama, K.; Otoguro, K.; Segawa, T.; Shiomi, K.; Yang, H.; Takahashi, Y.; Hayashi, M.; OXANI, T.; Omura, S., A New Antibiotic, Cypemycin Taxonomy, Fermentation, Isolation and Biological Characteristics. J. Antibiot 1993, 46, 1666-1671.
Ortiz-Lopez, F. J.; Carretero-Molina, D.; Sanchez-Hidalgo, M.; Martin, J.; Gonzalez, I.; Roman-Hurtado, F.; de la Cruz, M.; Garcia-Fernandez, S.; Reyes, F.; Deisinger, J. P.; Muller, A.; Schneider, T.; Genilloud, O., Cacaoidin, First Member of the New Lanthidin RiPP Family. Angew. Chem. Int. Ed. 2020, 59, 12654-12658.
Deisinger, J. P.; Arts, M.; Kotsogianni, I.; Puls, J. S.; Grein, F.; Ortiz-Lopez, F. J.; Martin, N. I.; Muller, A.; Genilloud, O.; Schneider, T., Dual targeting of the class V lanthipeptide antibiotic cacaoidin. iScience 2023, 26, 106394.
Hayakawa, Y.; Sasaki, K.; Adachi, H.; Furihata, K.; Nagai, K.; Shin-Ya, K., Thioviridamide, a novel apoptosis inducer in transformed cells from Streptomyces olivoviridis. J. Antibiot 2006, 59, 1-5.
Gotz, F.; Perconti, S.; Popella, P.; Werner, R.; Schlag, M., Epidermin and gallidermin: Staphylococcal lantibiotics. Int. J. Med. Microbiol. 2014, 304, 63-71.
Chu, L.; Cheng, J.; Zhou, C.; Mo, T.; Ji, X.; Zhu, T.; Chen, J.; Ma, S.; Gao, J.; Zhang, Q., Hijacking a Linaridin Biosynthetic Intermediate for Lanthipeptide Production. ACS Chem. Biol. 2022, 17, 3198-3206.
Wiebach, V.; Mainz, A.; Siegert, M. J.; Jungmann, N. A.; Lesquame, G.; Tirat, S.; Dreux-Zigha, A.; Aszodi, J.; Le Beller, D.; Sussmuth, R. D., The anti-staphylococcal lipolanthines are ribosomally synthesized lipopeptides. Nat. Chem. Biol. 2018, 14, 652-654.
Sit, C. S.; Yoganathan, S.; Vederas, J. C., Biosynthesis of aminovinyl-cysteine-containing peptides and its application in the production of potential drug candidates. Acc. Chem. Res. 2011, 44, 261-268.
De Leon Rodriguez, L. M.; Williams, E. T.; Brimble, M. A., Chemical Synthesis of Bioactive Naturally Derived Cyclic Peptides Containing Ene‐Like Rigidifying Motifs. Chem. - Eur. J. 2018, 24, 17869-17880.
Chatterjee, C.; Paul, M.; Xie, L.; Van Der Donk, W. A., Biosynthesis and mode of action of lantibiotics. Chem. Rev. 2005, 105, 633-684.
Claesen, J.; Bibb, M., Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of posttranslationally modified peptides. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 16297-16302.
Banerjee, B.; Litvinov, D. N.; Kang, J.; Bettale, J. D.; Castle, S. L., Stereoselective additions of thiyl radicals to terminal ynamides. Org. Lett. 2010, 12, 2650-2652.
Carrillo, A. K.; VanNieuwenhze, M. S., Synthesis of the AviMeCys-containing D-ring of mersacidin. Org. Lett. 2012, 14, 1034-1037.
García-Reynaga, P.; Carrillo, A. K.; VanNieuwenhze, M. S., Decarbonylative approach to the synthesis of enamides from amino acids: stereoselective synthesis of the (Z)-aminovinyl-d-cysteine unit of mersacidin. Org. Lett. 2012, 14, 1030-1033.
Lutz, J. A.; Subasinghege Don, V.; Kumar, R.; Taylor, C. M., Influence of Sulfur on Acid-Mediated Enamide Formation. Org. Lett. 2017, 19, 5146-5149.
Lutz, J. A.; Taylor, C. M., Synthesis of the Aminovinylcysteine-Containing C-Terminal Macrocycle of the Linaridins. Org. Lett. 2020, 22, 1874-1877.
Claesen, J.; Bibb, M. J., Biosynthesis and regulation of grisemycin, a new member of the linaridin family of ribosomally synthesized peptides produced by Streptomyces griseus IFO 13350. J. Bacteriol 2011, 193, 2510-2516.
Knerr, P. J.; van der Donk, W. A., Chemical synthesis of the lantibiotic lacticin 481 reveals the importance of lanthionine stereochemistry. J. Am. Chem. Soc. 2013, 135, 7094-7097.
Li, Y.; Muck-Lichtenfeld, C.; Studer, A., Sulfonium Ylides by (3+2) Cycloaddition of Arynes with Vinyl Sulfides: Stereoselective Synthesis of Highly Substituted Alkenes. Angew. Chem. Int. Ed. 2016, 55, 14435-14438.
Petracca, R.; Bowen, K. A.; McSweeney, L.; O''Flaherty, S.; Genna, V.; Twamley, B.; Devocelle, M.; Scanlan, E. M., Chemoselective Synthesis of N-Terminal Cysteinyl Thioesters via beta,gamma-C,S Thiol-Michael Addition. Org. Lett. 2019, 21, 3281-3285.
Meyer, S. D.; Schreiber, S. L., Acceleration of the Dess-Martin oxidation by water. J. Org. Chem. 1994, 59, 7549-7552.
Hawkins, P. M. E.; Tran, W.; Nagalingam, G.; Cheung, C. Y.; Giltrap, A. M.; Cook, G. M.; Britton, W. J.; Payne, R. J., Total Synthesis and Antimycobacterial Activity of Ohmyungsamycin A, Deoxyecumicin, and Ecumicin. Chemistry 2020, 26, 15200-15205.
Knerr, P. J.; van der Donk, W. A., Chemical synthesis and biological activity of analogues of the lantibiotic epilancin 15X. J. Am. Chem. Soc. 2012, 134, 7648-7651.
Chiotellis, A.; Muller Herde, A.; Rossler, S. L.; Brekalo, A.; Gedeonova, E.; Mu, L.; Keller, C.; Schibli, R.; Kramer, S. D.; Ametamey, S. M., Synthesis, Radiolabeling, and Biological Evaluation of 5-Hydroxy-2-[(18)F]fluoroalkyl-tryptophan Analogues as Potential PET Radiotracers for Tumor Imaging. J. Med. Chem. 2016, 59, 5324-5340.
Pattabiraman, V. R.; McKinnie, S. M.; Vederas, J. C., Solid-supported synthesis and biological evaluation of the lantibiotic peptide bis(desmethyl) lacticin 3147 A2. Angew. Chem. Int. Ed. 2008, 47, 9472-9475.
Liu, H.; Zhang, Y.; Wei, R.; Andolina, G.; Li, X., Total Synthesis of Pseudomonas aeruginosa 1244 Pilin Glycan via de Novo Synthesis of Pseudaminic Acid. J. Am. Chem. Soc. 2017, 139, 13420-13428.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91614-
dc.description.abstract第一部分: SC79衍生物的合成
蛋白激酶B的激活劑SC79被發現在蛋白激酶信號通路能增強磷酸化作用但抑制膜轉位。迄今為止,關於SC79作用機制的發現尚未有所報導. 在本研究中,我們想要透過在SC79的未結合位進行修飾並結合螢光基團,在未來能用於探討其反應機制。
第二部分: 合成含有氨基乙烯基(甲基)半胱胺酸和羊毛硫氨酸的常見大環核醣體合成和轉譯後修飾肽次結構
現今,已經發現了許多含有氨基乙烯基(甲基)半胱氨酸(Avi(Me)Cys)和羊毛硫氨酸(Lan)的天然肽。Avi(Me)Cys和羊毛硫氨酸似乎在抗菌活性中扮演重要的角色,有助於形成更剛性的結構,並將胜肽鎖在活性構型使目標結合並抑制蛋白酶降解。在本研究中,我們回顧了Avi(Me)Cys的化學合成並嘗試透過硫醇-炔反應和柯提斯重排反應合成Avi(Me)Cys。此外,我們試圖完成grisemycin的全合成和cacaoidin中的羊毛硫氨酸環,並且兩者皆使用了固相肽合成法去建立肽的骨架。在grisemycin的大環中,Z-AviCys基團的合成涉及到路易斯酸催化的縮合反應和硫與氧原子間的立體電子效應。預期得到的大環將與線性肽前體進行反應,以達到griemycin的全合成。至於cacaoidin中的羊毛硫氨酸環,我們針對結果進行討論,以了解羊毛硫氨酸環中的脫氫丙氨酸(Dha)未能形成的原因。
zh_TW
dc.description.abstractPart 1. Synthesis of SC79 Derivatives
An Akt activator, SC79, was reported to enhance phosphorylation but inhibit membrane translocation in the Akt signaling pathway. To date, the mechanism of SC79 action is not fully understood. In this study, we explored the possibility of modifying SC79 on its unbinding sites to conjugate it with fluorophore to explore its mechanism in the future.
Part 2. Synthesis of Common Macrocyclic RiPPs Sub-structures Containing Avi(Me)Cys and Lanthionine
Nowadays, many Avi(Me)Cys- and Lan-containing natural peptides have been found. Both the Avi(Me)Cys moiety and lanthionine appear to play important roles in antimicrobial activities, ensuring a more rigid structure and locking the peptide in the active conformation for target binding while inhibiting proteolytic degradation.
In this study, we reviewed the chemical synthesis of Avi(Me)Cys moiety and attempted to synthesize the AviCys residue through a thiol-yne reaction and subsequent Curtius rearrangement. Additionally, we attempted to achieved the total synthesis of grisemycin and the Lan ring in cacaoidin. Both of them were incorporated using solid-phase peptide synthesis. The solid-supported chemical synthesis technique was utilized to construct the peptide backbone. The formation of the Z-AviCys building block in the macrocycle of grisemycin involved a Lewis-acid prompted condensation and stereo-electronic effects between sulfur and oxygen atom. The resultant macrocycle is expected to react with linear peptide precursor to achieve synthesis of grisemycin in the future. As for the Lan ring in cacaoidin, we discussed some observations to understand why Dha formation didn’t proceed in the Lan ring.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-20T16:12:48Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-20T16:12:48Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
謝誌 ii
中文摘要 iii
Abstract iv
Table of contents vi
List of Schemes ix
List of Figures xi
List of Tables xiv
Abbreviations xv
Chapter 1. Synthesis of SC79 Derivatives 1
1.1 Introduction 1
1.1.1 Protein kinase B (PKB/Akt) 1
1.1.2 PI3K-Akt signaling pathway 1
1.1.3 The small molecule Akt activator SC79 2
1.1.4 Aim of this study 4
1.2 Results and Discussion 6
1.2.1 Synthesis of SC79 6
1.2.2 Synthesis of SC79 derivatives modified at the 7-position 7
1.2.3 Synthesis of SC79 derivative modified at the 8-position 13
1.2.4 Test for SC79 tolerance 14
1.3 Conclusion 16
Chapter 2. Synthesis of Common Macrocyclic RiPPs Sub-structures Containing Avi(Me)Cys and Lanthionine 17
2.1 Introduction 17
2.1.1 Ribosomally synthesized and post-translationally modified peptides (RiPPs) 17
2.1.2 Avi(Me)Cys and Lan-containing natural peptides 18
2.1.3 Biosynthesis of Avi(Me)Cys moiety 19
2.1.4 Avi(Me)Cys moiety formation in organic synthesis 21
2.1.5 Grisemycin 27
2.1.6 Retrosynthesis analysis of Grisemycin 27
2.1.7 Cacaoidin 30
2.1.8 Retrosynthesis analysis of the Lan-containing macrocycle in cacaoidin 31
2.2 Results and Discussion 32
2.2.1 Synthesis of AviCys moiety through the thiol-yne and Curtius reaction 32
2.2.2 Synthesis of AviCys building block (37) 35
2.2.3 Synthesis of AviCys-containing ring (39) 37
2.2.4 Solid-phase synthesis of the linear peptide precursor (43) 40
2.2.5 Synthesis of the Lan building block (51) 43
2.2.6 Solid-phase synthesis of the Lan-containing macrocycle (56a and 56b) 44
2.2.7 Synthesis of the Lan ring 46
2.3. Conclusion 49
Chapter 3. Experimental section 50
3.1 General information 50
3.2 Organic synthesis for small molecules 52
3.3 TLC assay 80
3.4 General procedure for solid-phase synthesis 82
Part 1. The linear peptide precursor (43) 82
Part 2. The Lan ring (56a and 56b) 86
References 89
Appendix 98
-
dc.language.isoen-
dc.subject蛋白激酶信號通路zh_TW
dc.subjectAvi(Me)Cyszh_TW
dc.subject羊毛硫氨酸zh_TW
dc.subject蛋白激酶Bzh_TW
dc.subjectSC79zh_TW
dc.subjectProtein kinase Ben
dc.subjectSC79en
dc.subjectAvi(Me)Cysen
dc.subjectAkt signaling pathwayen
dc.subjectlanthionineen
dc.title第一部分: SC79衍生物的合成 第二部分:合成含有氨基乙烯基(甲基)半胱胺酸和羊毛硫氨酸的常見大環核醣體合成和轉譯後修飾肽次結構zh_TW
dc.titlePart 1. Synthesis of SC79 Derivatives Part 2. Synthesis of Common Macrocyclic RiPPs Sub-structures Containing Avi(Me)Cys and Lanthionineen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee謝俊結;許銘華zh_TW
dc.contributor.oralexamcommitteeJiun-Jie Shie;Ming-Hua Hsuen
dc.subject.keyword蛋白激酶B,蛋白激酶信號通路,SC79,Avi(Me)Cys,羊毛硫氨酸,zh_TW
dc.subject.keywordProtein kinase B,Akt signaling pathway,SC79,Avi(Me)Cys,lanthionine,en
dc.relation.page127-
dc.identifier.doi10.6342/NTU202400316-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-01-31-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf11.85 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved