Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91602
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柳玗珍zh_TW
dc.contributor.advisorWoo-Jin Yooen
dc.contributor.author王暄博zh_TW
dc.contributor.authorShiuan-Po Wangen
dc.date.accessioned2024-02-01T16:18:10Z-
dc.date.available2024-04-12-
dc.date.copyright2024-02-01-
dc.date.issued2023-
dc.date.submitted2024-01-22-
dc.identifier.citation1. Bach, T.; Hehn, J. P. Photochemical reactions as key steps in natural product synthesis. Angew Chem Int Ed Engl 2011, 50, 1000-1045.
2. Zhang, Z.; Chen, S.; Tang, F.; Guo, K.; Liang, X. T.; Huang, J.; Yang, Z. Total Synthesis of (+)-Cyclobutastellettolide B. J Am Chem Soc 2021, 143, 18287-18293.
3. Huang, J.; Cao, T.; Zhang, Z.; Yang, Z. Semisynthesis of (-)-Bufospirostenin A Enabled by Photosantonin Rearrangement Reaction. J Am Chem Soc 2022, 144, 2479-2483.
4. Scott, K. A.; Cox, P. B.; Njardarson, J. T. Phenols in Pharmaceuticals: Analysis of a Recurring Motif. J Med Chem 2022, 65, 7044-7072.
5. Mortier, J. Arene Chemistry Reaction Mechanisms and Methods for Aromatic Compounds. John Wiley & Sons Hoboken, NJ, 2016.
6. Wang, P.; Farmer, M. E.; Huo, X.; Jain, P.; Shen, P. X.; Ishoey, M.; Bradner, J. E.; Wisniewski, S. R.; Eastgate, M. D.; Yu, J. Q. Ligand-Promoted Meta-C-H Arylation of Anilines, Phenols, and Heterocycles. J Am Chem Soc 2016, 138, 9269-9276.
7. Maraswami, M.; Hirao, H.; Loh, T.-P. Copper-Catalyzed Meta-Selective Arylation of Phenol Derivatives: An Easy Access to m-Aryl Phenols. ACS Catalysis 2021, 11, 2302-2309.
8. Luo, J.; Preciado, S.; Larrosa, I. Overriding ortho-para selectivity via a traceless directing group relay strategy: the meta-selective arylation of phenols. J Am Chem Soc 2014, 136 , 4109-4112.
9. Weaver, M. G.; Bai, W. J.; Jackson, S. K.; Pettus, T. R. Diels-Alder construction of regiodifferentiated meta-amino phenols and derivatives. Org Lett 2014, 16, 1294-1297.
10. Feierfeil, J.; Grossmann, A.; Magauer, T. Ring Opening of Bicyclo[3.1.0]hexan-2-ones: A Versatile Synthetic Platform for the Construction of Substituted Benzoates. Angew Chem Int Ed Engl 2015, 54, 11835-11838.
11. Staudt, M.; Solling, T.; Bunch, L. Synthesis of Polysubstituted Meta-Halophenols by Anion-Accelerated 2pi-Electrocyclic Ring Opening. Chemistry 2021, 27, 10941-10947.
12. James W. Wheeler, Jr., and Richard H. Eastman The Photolysis and Pyrolysis of Umbellulone. J. Am. Chem. Soc. 1959, 81, 236–237.
13. Gómez, I.; Olivella, S.; Reguero, M.; Riera, A.; Solé, A. J. Am. Chem. Soc. 2002, 124, 15375–15384.
14. Schultz, A. G.; Lavieri, F. P.; Macielag, M.; Plummer, M. J. Am. Chem. Soc. 1987, 109, 3991–4000.
15. Marx, J. N.; Argyle, J. C.; Norman, L. R. J. Am. Chem. Soc. 1974, 96, 2121–2129.
16. Meanwell NA. The Influence of Bioisosteres in Drug Design: Tactical Applications to Address Developability Problems. Tactics in Contemporary Drug Design. 2014 9,283–381.
17. Gomes, M. N.; Muratov, E. N.; Pereira, M.; Peixoto, J. C.; Rosseto, L. P.; Cravo, P. V. L.; Andrade, C. H.; Neves, B. J. Chalcone Derivatives: Promising Starting Points for Drug Design. Molecules 2017, 22, 1210.
18. Taylor, R. D.; MacCoss, M.; Lawson, A. D. Rings in drugs. J Med Chem 2014, 57, 5845-5859.
19. Meyer, E. A.; Castellano, R. K.; Diederich, F. Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed Engl 2003, 42, 1210-1250.
20. Ishikawa, M.; Hashimoto, Y. Improvement in aqueous solubility in small molecule drug discovery programs by disruption of molecular planarity and symmetry. J Med Chem 2011, 54, 1539-1554.
21. Walker, M. A. Novel tactics for designing water-soluble molecules in drug discovery. Expert Opin Drug Discov 2014, 9, 1421-1433.
22. Ritchie, T. J.; Macdonald, S. J. F. Heterocyclic replacements for benzene: Maximising ADME benefits by considering individual ring isomers. Eur J Med Chem 2016, 124, 1057-1068.
23. Mykhailiuk, P. K. Saturated bioisosteres of benzene: where to go next? Org Biomol Chem 2019, 17, 2839-2849.
24. Subbaiah, M. A. M.; Meanwell, N. A. Bioisosteres of the Phenyl Ring: Recent Strategic Applications in Lead Optimization and Drug Design. J Med Chem 2021, 64, 14046-14128.
25. Roberto Pellicciari, Mariarosa Raimondo, Maura Marinozzi, Benedetto Natalini, Gabriele Costantino, and Christian Thomsen. (S)-(+)-2-(3-Carboxybicyclo[1.1.1]pentyl)-glycine, a Structurally New Group I Metabotropic Glutamate Receptor Antagonist. J Med Chem 1996, 39, 2874–2876.
26. Stepan, A. F.; Subramanyam, C.; Efremov, I. V.; Dutra, J. K.; O''Sullivan, T. J.; DiRico, K. J.; McDonald, W. S.; Won, A.; Dorff, P. H.; Nolan, C. E.; et al. Application of the bicyclo[1.1.1]pentane motif as a nonclassical phenyl ring bioisostere in the design of a potent and orally active gamma-secretase inhibitor. J Med Chem 2012, 55, 3414-3424.
27. Denisenko, A.; Garbuz, P.; Voloshchuk, N. M.; Holota, Y.; Al-Maali, G.; Borysko, P.; Mykhailiuk, P. K. 2-Oxabicyclo[2.1.1]hexanes as saturated bioisosteres of the ortho-substituted phenyl ring. Nat Chem 2023, 15, 1155-1163.
28. Frank, N.; Nugent, J.; Shire, B. R.; Pickford, H. D.; Rabe, P.; Sterling, A. J.; Zarganes-Tzitzikas, T.; Grimes, T.; Thompson, A. L.; Smith, R. C.; et al. Synthesis of meta-substituted arene bioisosteres from [3.1.1]propellane. Nature 2022, 611, 721-726.
29. Epplin, R. C.; Paul, S.; Herter, L.; Salome, C.; Hancock, E. N.; Larrow, J. F.; Baum, E. W.; Dunstan, D. R.; Ginsburg-Moraff, C.; Fessard, T. C.; et al. [2]-Ladderanes as isosteres for meta-substituted aromatic rings and rigidified cyclohexanes. Nat Commun 2022, 13, 6056.
30. Zimmerman H.E., Armesto D. Synthetic Aspects of the Di-pi-methane Rearrangement. Chem Rev. 1996,96(8), 3065-3112.
31. Zimmerman H.E., Grunewald G.L. The Chemistry of Barrelene. III. A Unique Photoisomerization to Semibullvalene. J Am Chem Soc.1966, 88, 183–184.
32. McClure C.K., Kiessling A.J., Link J.S. Oxa-di-pi-methane photochemical rearrangement of quinuclidinones. Synthesis of pyrrolizidinones. Org Lett. 2003, 5, 811-813.
33. Yadav, S.; Banerjee, S.; Maji, D.; Lahiri, S. Synthesis of bicyclo[3.2.1]octanones via ketyl radical promoted rearrangements under reductive PET conditions. Tetrahedron 2007, 63, 10979-10990.
34. M.S. Yang; S.S. Lu; C.P. Rao; Y.F. Tsai; C.C. Liao Photochemistry of Bicyclo[2.2.2]oct-7-ene-2,5-diones and the Corresponding 5-Hydroxyimino and 5-Methylene Derivatives J. Org. Chem. 2003, 68, 6543–6553.
35. Zhang, F.; Moher, E. D.; Zhang, T. Y. TMG catalyzed cyclopropanation of cyclopentenone. Illustration by a simple synthesis of bicyclo[3.1.0]hexane-2-one derivatives. Tetrahedron Letters 2007, 48, 3277-3279.
36. Dominguez C.; Prieto L.; Valli M.J.; Massey S.M.; Bures M.; Wright R.A.; Johnson B.G.; Andis S.L.; Kingston A.; Schoepp D.D.; Monn J.A. Methyl substitution of 2-aminobicyclo[3.1.0]hexane 2,6-dicarboxylate (LY354740) determines functional activity at metabotropic glutamate receptors: identification of a subtype selective mGlu2 receptor agonist. J Med Chem. 2005, 48, 3605-3612.
37. de Miguel, I.; Herradón, B.; Mann, E. Intramolecular Azide‐Alkene 1,3‐Dipolar Cycloaddition/Enamine Addition(s) Cascade Reaction: Synthesis of Nitrogen‐Containing Heterocycles. Advanced Synthesis & Catalysis 2012, 354, 1731-1736.
38. D.H. Burns; J.D. Miller; H.K. Chan; M.O. Delaney Scope and Utility of a New Soluble Copper Catalyst [CuBr−LiSPh−LiBr−THF]:  A Comparison with Other Copper Catalysts in Their Ability to Couple One Equivalent of a Grignard Reagent with an Alkyl Sulfonate J. Am. Chem. Soc. 1997, 119, 2125–2133.
39. Jung, J. C.; Kim, Y. H.; Lee, K. Practical β-masked formylation and acetylation of electron-deficient olefins utilizing tetra(n-butyl)ammonium peroxydisulfate. Tetrahedron Letters 2011, 52, 4662-4664.
40. Dudziński K; Pakulska AM; Kwiatkowski P. An efficient organocatalytic method for highly enantioselective Michael addition of malonates to enones catalyzed by readily accessible primary amine-thiourea. Org Lett. 2012, 14, 4222-4225.
41. Yamashita, Y.; Maki, D.; Sakurai, S.; Fuse, T.; Matsumoto, S.; Akazome, M. Preparation of chiral 3-oxocycloalkanecarbonitrile and its derivatives by crystallization-induced diastereomer transformation of ketals with chiral 1,2-diphenylethane-1,2-diol. RSC Adv 2018, 8, 32601-32609.
42. Krafft, M.; Cran, J. A Convenient Protocol for the α-Iodination of α,β-Unsaturated Carbonyl Compounds with I2 in an Aqueous Medium. Synlett 2005, 2005, 1263-1266.
43. Hamon, N.; Kaci, M.; Uttaro, J. P.; Perigaud, C.; Mathe, C. Synthesis of 3''-halo-5''-norcarbocyclic nucleoside phosphonates as potent anti-HIV agents. Eur J Med Chem 2018, 150, 642-654.
44. Tanyeli, C.; Özdemirhan, D. Mn(III) acetate-mediated regioselective benzylation of various α,β-unsaturated and β-alkoxy-α,β-unsaturated ketones. Tetrahedron Letters 2003, 44, 7311-7313.
45. Tanyeli, C.; Özdemirhan, D. Mn(III)-mediated radical C-C bond formation: regioselective α'' -allylation of α,β-unsaturated ketones. Tetrahedron Letters 2002, 43, 3977-3980.
46. Tuttle J.B.; Ouellet S.G.; MacMillan D.W. Organocatalytic transfer hydrogenation of cyclic enones. J Am Chem Soc. 2006, 128, 12662-12663.
47. A. Escribano; C. Pedregal; R. González; A. Fernández; K. Burton; G.A. Stephenson Diastereoselective cyclopropanation of cyclic enones with methyl dichloroacetate anion Tetrahedron Letters 2001, 57, 9423-9427.
48. K. C. Nicolaou; Y.-L. Zhong; P. S. Baran A New Method for the One-Step Synthesis of α,β-Unsaturated Carbonyl Systems from SaturatedAlcohols and Carbonyl Compounds J. Am. Chem. Soc. 2000, 122, 7596-7597.
49. Sakagami K; Kumagai T, Taguchi T; Nakazato A. Scalable synthesis of (+)-2-amino-3-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid as a potent and selective group II metabotropic glutamate receptor agonist. Chem Pharm Bull (Tokyo) 2007, 55, 37-43.
50. Tanino, K.; Kishi, J.-i.; Ikeuchi, K.; Suzuki, T. Synthetic Studies of Daphniphyllum Alkaloids: A New Method for the Construction of [7-5-5] All-Carbon Tricyclic Skeleton. Synlett 2021, 33, 196-200.
51. Funel, J.-A.; Schmidt, G.; Abele, S. Design and Scale-Up of Diels–Alder Reactions for the Practical Synthesis of 5-Phenylbicyclo[2.2.2]oct-5-en-2-one. Organic Process Research & Development 2011, 15, 1420-1427.
52. Akiyoshi Kuramochi; Hiroyuki Usuda; Kenzo Yamatsugu; Motomu Kanai; Masakatsu Shibasaki Total Synthesis of (±)-Garsubellin A J. Am. Chem. Soc. 2005, 127, 14200–14201
53. Barluenga, J.; Tomas-Gamasa, M.; Aznar, F.; Valdes, C. Metal-free carbon-carbon bond-forming reductive coupling between boronic acids and tosylhydrazones. Nat Chem 2009, 1, 494-499.
54. O. H. Oldenziel, D. Van Leusen, A. M. Van Leusen A general one-step synthesis of nitriles from ketones using tosylmethyl isocyanide. Introduction of a one-carbon unit J. Org. Chem. 1977, 42, 3114-3118.
55. van Leusen, D.; van Leusen, A. M. Synthetic uses of tosylmethyl isocyanide (TosMIC). Org. React. 2001, 57, 417– 666
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91602-
dc.description.abstract光重排反應是一種獨特的有機化學反應,其中涉及利用光照來建構複雜的有機化合物分子結構。這些反應通常需要暴露在紫外線或可見光下,這會使分子中的電子從基態激發到激發態能階。此能階的變化導致共價鍵的斷裂和形成,最終形成與起始物截然不同的新分子。在這篇論文中,將描述兩種不同類型的光重排。在第一項研究中,雙環[3.1.0]己烷成功在室溫下透過光照而進行了重排,產生了難以通過傳統親電性芳香族取代反應獲得的對位取代酚。在第二項研究中,一種三環酮[3.3.0.02,3]藉由氧-雙π-甲烷重排反應被成功製備出來,可以作為合成間位取代苯的生物電子等排體的關鍵中間體,同時我們將描述對三環中羰基官能基衍生化的嘗試。zh_TW
dc.description.abstractPhotorearrangement is a unique type of organic transformation that involves the use of light to reconfigure the molecular framework of organic compounds. These reactions typically require exposure to ultraviolet or visible light, which excites electrons in the molecules from their ground states to excited energy levels. This excitation leads to the breaking and formation of chemical bonds, resulting in a new molecule. In this thesis, two different types of photorearrangements will be described. In the first study, bicyclo[3.1.0]hex-3-en-2-ones have been successfully rearranged at room temperature through exposure to light, yielding meta-substituted phenols that are difficult to obtain through traditional synthetic methods. In the second study, a tricyclic ketone, which could serve as a key intermediate to access meta-substituted benzene bioisosteres, was prepared through an oxa-di-π-methane (ODPM) rearrangement. Our attempts to functionalize the ketone moiety will be described.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-01T16:18:10Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-01T16:18:10Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContents
誌謝 i
摘要 ii
Abstract iii
Contents iv
List of abbreviation vi
List of schemes viii
List of tables xiii
List of figures xiv
Chapter 1. Introduction 1
1.1 Photorearrangement 1
1.2 Phenols 2
1.3 meta-Phenols synthesis 4
1.3.1 Metal-catalyzed meta-selective arylation 5
1.3.2 Traceless directing group relay strategy 7
1.3.3 [4+2] cycloaddition 8
1.4 Bicyclo[3.1.0]hexan-2-ones 9
1.5 Research proposal for the synthesis of meta-substituted phenols 12
1.6 Bioisosteres and benzene bioisosteres ……14
1.7 Di-π-methane (DPM) rearrangement 18
1.8 Research proposal for the synthesis of disubstituted tricyclo[3.3.0.02,3]octanes …20
Chapter 2. Result and discussions 22
2.1 The preparation of bicyclo[3.1.0]hex-3-en-2-ones 22
2.2 Synthesis of 4- and 5-substituted bicyclic ketones 22
2.3 Derivatization of 2-substituted bicyclic ketones 29
2.4 Synthesis of α,β-unsaturated bicyclic ketones 32
2.5 Photorearrangement of α,β-unsaturated bicyclic ketones 36
2.6 Synthesis and characterization of tricyclo[3.3.0.02,3]octanes 39
2.7 Functionalization of 1-phenyl-tricyclo[3.3.0.02,3]octanes 43
Chapter 3. Conclusion 47
Chapter 4. Experimental section 48
References 71
Chapter 5. Supporting information 81
5.1 Appendix 81
5.1.1 Crystal data of 22 81
5.1.2 NMR spectra 89
-
dc.language.isozh_TW-
dc.subject雙環[3.1.0]己烷zh_TW
dc.subject光重排反應zh_TW
dc.subject間位取代酚zh_TW
dc.subject氧-雙π-甲烷重排反應zh_TW
dc.subject苯生物電子等排體zh_TW
dc.subjectODPM rearrangementen
dc.subjectBicyclo[3.1.0]hex-3-en-2-onesen
dc.subjectPhotorearrangementen
dc.subjectBenzene bioisosteresen
dc.subjectmeta-Phenolsen
dc.title光重排合成間位取代苯及其生物電子等排體zh_TW
dc.titleInvestigations into the use of Photorearrangements for the Synthesis of meta-Substituted Benzenes and its Bioisosteresen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee方頡睿;吳國暉zh_TW
dc.contributor.oralexamcommitteeJeffrey M. Farrell;Kuo-Hui Wuen
dc.subject.keyword雙環[3.1.0]己烷,光重排反應,間位取代酚,氧-雙π-甲烷重排反應,苯生物電子等排體,zh_TW
dc.subject.keywordBicyclo[3.1.0]hex-3-en-2-ones,Photorearrangement,meta-Phenols,ODPM rearrangement,Benzene bioisosteres,en
dc.relation.page134-
dc.identifier.doi10.6342/NTU202400181-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-01-23-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf6.15 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved