請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91584完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 薛承輝 | zh_TW |
| dc.contributor.advisor | Chun-Hway Hsueh | en |
| dc.contributor.author | 吳亦羚 | zh_TW |
| dc.contributor.author | Yi-Ling Wu | en |
| dc.date.accessioned | 2024-02-01T16:12:58Z | - |
| dc.date.available | 2024-02-02 | - |
| dc.date.copyright | 2024-02-01 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-01-23 | - |
| dc.identifier.citation | [1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6 (2004) 299–303.
[2] P. Sathiyamoorthi, H.S. Kim, High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties, Prog. Mater. Sci., 123 (2022) 100709. [3] E.P. George, W.A. Curtin, C.C. Tasan, High entropy alloys: A focused review of mechanical properties and deformation mechanisms, Acta Mater., 188 (2020) 435–474. [4] Z. Li, S. Zhao, R.O. Ritchie, M.A. Meyers, Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys, Prog. Mater. Sci., 102 (2019) 296–345. [5] B. Gludovatz, A. Hohenwarter, K.V. Thurston, H. Bei, Z. Wu, E.P. George, R.O. Ritchie, Exceptional damage-tolerance of a medium entropy alloy CrCoNi at cryogenic temperatures, Nat. Commun., 7 (2016) 10602. [6] Y. Zhang, High entropy materials microstructures and properties, IntechOpen, London, 2023. [7] J.W. Yeh, Recent progress in high-entropy alloys, Ann. Chim. -Sci. Mat., 31 (2006) 633–648. [8] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Mater., 61 (2013) 4887–4897. [9] H. Song, F. Tian, Q.-M. Hu, L. Vitos, Y. Wang, J. Shen, N. Chen, Local lattice distortion in high-entropy alloys, Phys. Rev. Mater., 1 (2017) 023404. [10] S. Ranganathan, Alloyed pleasures: Multimetallic cocktails, Curr. Mater. Sci., 85 (2003) 1404–1406. [11] J.W. Yeh, Physical metallurgy of high-entropy alloys, JOM, 67 (2015) 2254–2261. [12] M.H. Tsai, J.W. Yeh, High-entropy alloys: A critical review, Mater. Res. Lett., 2 (2014) 107–123. [13] J. He, S.K. Makineni, W. Lu, Y. Shang, Z. Lu, Z. Li, B. Gault, On the formation of hierarchical microstructure in a Mo-doped NiCoCr medium-entropy alloy with enhanced strength-ductility synergy, Scr. Mater., 175 (2020) 1–6. [14] J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Mater., 102 (2016) 187–196. [15] M. Hu, Q.P. Cao, X.D. Wang, D.X. Zhang, J.Z. Jiang, Tuning nanostructure and mechanical property of Fe–Co–Ni–Cr–Mn high-entropy alloy thin films by substrate temperature, Mater. Today Nano, 15 (2021) 100130. [16] Y. Lin, C.L. Li, C.H. Hsueh, Effects of cerium addition on microstructures and mechanical properties of CoCrNi medium entropy alloy films, Surf. Coat. Technol., 424 (2021) 127645. [17] Y.S. Lin, Y.C. Lu, C.H. Hsueh, Strengthening of CoCrNi medium entropy alloy with gadolinium additions, Vacuum, 211 (2023) 111969. [18] L. Wang, F. Zhang, S. Yan, G. Yu, J. Chen, J. He, F. Yin, Microstructure evolution and mechanical properties of atmosphere plasma sprayed AlCoCrFeNi high-entropy alloy coatings under postannealing, J. Alloy Compd., 872 (2021) 159607. [19] S.N. Chan, C.H. Hsueh, Effects of la addition on the microstructure and mechanical properties of CoCrNi medium entropy alloy, J. Alloy Compd., 894 (2022) 162401. [20] J. Zhang, H. Zhu, Z. Xie, Effects of Y and Al additions on the microstructure and tensile properties of CoCr3Fe5Ni high entropy alloys, Mater. Lett., 299 (2021) 130110. [21] J.W. Bae, J. Moon, M.J. Jang, D. Yim, D. Kim, S. Lee, H.S. Kim, Trade-off between tensile property and formability by partial recrystallization of CrMnFeCoNi high-entropy alloy, Mat. Sci. Eng. A, 703 (2017) 324–330. [22] P. Sathiyamoorthi, J.W. Bae, P. Asghari-Rad, J.M. Park, J.G. Kim, H.S. Kim, Effect of annealing on microstructure and tensile behavior of CoCrNi medium entropy alloy processed by high-pressure torsion, Entropy, 20 (2018) 849. [23] Z. Zheng, H. Zhao, L. Sun, M.M. Bilek, Z. Liu, The microstructural evolution of dual phase high entropy alloy thin films by annealing, J. Alloy Compd., 953 (2023) 170102. [24] X.T. Han, Y.J. Ma, H. Ma, J.H. Chen, P.Y. Li, Z.Y. Zhang, Y.W. Zhang, G.J. Li, J.B. Hu, Z.H. Cao, Phase transformation and strengthening effect induced by Al doping and annealing in nanostructural medium entropy alloy films, Vacuum, 215 (2023) 112306. [25] S. Bajpai, B.E. MacDonald, T.J. Rupert, H. Hahn, E.J. Lavernia, D. Apelian, Recent progress in the CoCrNi alloy system, Mater, 24 (2022) 101476. [26] M.P. Agustianingrum, S. Yoshida, N. Tsuji, N. Park, Effect of aluminum addition on solid solution strengthening in CoCrNi medium-entropy alloy, J. Alloy Compd., 781 (2019) 866–872. [27] P. Sathiyamoorthi, J.M. Park, J. Moon, J.W. Bae, P. Asghari-Rad, A. Zargaran, H. Seop Kim, Achieving high strength and high ductility in Al0.3CoCrNi medium-entropy alloy through multi-phase hierarchical microstructure, Mater, 8 (2019) 100442. [28] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mat. Sci. Eng. A, 375-377 (2004) 213–218. [29] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater., 122 (2017) 448–511. [30] Y. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Appl. Phys. Lett., 90 (2007) 181904. [31] J.W. Yeh, Alloy design strategies and future trends in high-entropy alloys, JOM, 65 (2013) 1759–1771. [32] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys., 132 (2012) 233–238. [33] S. Guo, Q. Hu, C. Ng, C.T. Liu, More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase, Intermetallics, 41 (2013) 96–103. [34] R.A. Swalin, Thermodynamics of solids, Wiley, Minneapolis, Minnesota, 1972. [35] Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys, J. Alloy Compd., 488 (2009) 57–64. [36] Z. Fan, H. Wang, Y. Wu, X. Liu, Z. Lu, Thermoelectric performance of PbSnTeSe high-entropy alloys, Mater. Res. Lett., 5 (2017) 187–194. [37] P.K. Huang, J.W. Yeh, T. Shun, S.K. Chen, Multi‐principal‐element alloys with improved oxidation and wear resistance for thermal spray coating, Adv. Eng. Mater., 6 (2004) 74–78. [38] W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, Intermetallics, 26 (2012) 44–51. [39] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater., 61 (2013) 5743–5755. [40] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345 (2014) 1153–1158. [41] Y.Y. Chen, T. Duval, U.D. Hung, J.W. Yeh, H.C. Shih, Microstructure and electrochemical properties of high entropy alloys–a comparison with type-304 stainless steel, Corros. Sci., 47 (2005) 2257–2279. [42] M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Mater., 59 (2011) 6308–6317. [43] A. Munitz, M.J. Kaufman, M. Nahmany, N. Derimow, R. Abbaschian, Microstructure and mechanical properties of heat treated Al1.25CoCrCuFeNi high entropy alloys, Mat. Sci. Eng. A, 714 (2018) 146–159. [44] S.K. Padamata, A. Yasinskiy, V. Yanov, G. Saevarsdottir, Magnetron sputtering high-entropy alloy coatings: A mini-review, Metals (Basel), 12 (2022). [45] W. Li, P. Liu, P.K. Liaw, Microstructures and properties of high-entropy alloy films and coatings: A review, Mater. Res. Lett., 6 (2018) 199–229. [46] J. Li, Y. Huang, X. Meng, Y. Xie, A review on high entropy alloys coatings: Fabrication processes and property assessment, Adv. Eng. Mater., 21 (2019). [47] Y. Chen, D. Chen, X. An, Y. Zhang, Z. Zhou, S. Lu, P. Munroe, S. Zhang, X. Liao, T. Zhu, Z. Xie, Unraveling dual phase transformations in a CrCoNi medium-entropy alloy, Acta Mater., 215 (2021). [48] Y.S. Kim, H.J. Park, K.S. Lim, S.H. Hong, K.B. Kim, Structural and mechanical properties of AlCoCrNi high entropy nitride films: Influence of process pressure, Coatings, 10 (2019). [49] D. Lee, M.P. Agustianingrum, N. Park, N. Tsuji, Synergistic effect by Al addition in improving mechanical performance of CoCrNi medium-entropy alloy, J. Alloy Compd., 800 (2019) 372–378. [50] W. Lu, X. Luo, Y. Yang, J. Zhang, B. Huang, Effects of Al addition on structural evolution and mechanical properties of the CrCoNi medium-entropy alloy, Mater. Chem. Phys., 238 (2019) 121841. [51] Q. Liu, X. Liu, X. Fan, R. Li, X. Tong, P. Yu, G. Li, Designing novel AlCoCrNi eutectic high entropy alloys, J. Alloy Compd., 904 (2022) 163775. [52] X.B. Feng, W. Fu, J.Y. Zhang, J.T. Zhao, J. Li, K. Wu, G. Liu, J. Sun, Effects of nanotwins on the mechanical properties of AlxCoCrFeNi high entropy alloy thin films, Scr. Mater., 139 (2017) 71–76. [53] S. Nam, S.J. Kim, M.J. Kim, M. Quevedo Lopez, J.Y. Hwang, E.S. Park, H. Choi, Synthesis of high-entropy alloy thin films via grain boundary diffusion–assisted solid-state alloying, Scr. Mater., 207 (2022) 114302. [54] Y. Shon, S.S. Joshi, S. Katakam, R. Shanker Rajamure, N.B. Dahotre, Laser additive synthesis of high entropy alloy coating on aluminum: Corrosion behavior, Mater. Lett., 142 (2015) 122–125. [55] P.C. Lin, C.Y. Cheng, J.W. Yeh, T.S. Chin, Soft magnetic properties of high-entropy Fe-Co-Ni-Cr-Al-si thin films, Entropy, 18 (2016) 308. [56] Y.C. Hsu, C.L. Li, C.H. Hsueh, Effects of Al addition on microstructures and mechanical properties of CoCrFeMnNiAlx high entropy alloy films, Entropy, 22 (2020) 2. [57] X. Xing, Z. Han, H. Wang, P. Lu, Electrochemical corrosion resistance of CeO2-Cr/Ti coatings on 304 stainless steel via pack cementation, J. Rare Earths, 33 (2015) 1122–1128. [58] Z. Sun, C.S. Zhang, M.F. Yan, Microstructure and mechanical properties of M50NiL steel plasma nitrocarburized with and without rare earths addition, Mater. Des., 55 (2014) 128–136. [59] M.F. Yan, C.S. Zhang, Z. Sun, Study on depth-related microstructure and wear property of rare earth nitrocarburized layer of M50NiL steel, Appl. Surf. Sci., 289 (2014) 370–377. [60] L.N. Tang, M.F. Yan, Effects of rare earths addition on the microstructure, wear and corrosion resistances of plasma nitrided 30CrMnSiA steel, Surf. Coat. Technol., 206 (2012) 2363–2370. [61] C.J. Liu, Y.H. Huang, M.F. Jiang, Effects and mechanisms of RE on impact toughness and fracture toughness of clean heavy rail steel, J. Iron Steel Res. Int., 18 (2011) 52–58. [62] J.H. Ahn, H.D. Jung, J.H. Im, K.H. Jung, B.M. Moon, Influence of the addition of gadolinium on the microstructure and mechanical properties of duplex stainless steel, Mat. Sci. Eng. A, 658 (2016) 255–262. [63] S. Song, H. Sun, M. Wang, Effect of rare earth cerium on brittleness of simulated welding heat-affected zones in a reactor pressure vessel steel, J. Rare Earths, 33 (2015) 1204–1211. [64] L.J. Zhang, M.D. Zhang, Z. Zhou, J.T. Fan, P. Cui, P.F. Yu, Q. Jing, M.Z. Ma, P.K. Liaw, G. Li, R.P. Liu, Effects of rare-earth element, Y, additions on the microstructure and mechanical properties of CoCrFeNi high entropy alloy, Mat. Sci. Eng. A, 725 (2018) 437-446. [65] C. Wang, T.H. Li, Y.C. Liao, C.L. Li, J.S.C. Jang, C.H. Hsueh, Hardness and strength enhancements of CoCrFeMnNi high-entropy alloy with Nd doping, Mat. Sci. Eng. A, 764 (2019). [66] X. Huang, N. Kamikawa, N. Hansen, Strengthening mechanisms and optimization of structure and properties in a nanostructured if steel, J. Mater. Sci., 45 (2010) 4761–4769. [67] X. Huang, Calculation and evaluation of neutron-induced reactions on 60Ni below 150MeV, Nucl. Instrum. Methods Phys. Res., 252 (2006) 249–256. [68] N. Kamikawa, X. Huang, N. Tsuji, N. Hansen, Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed, Acta Mater., 57 (2009) 4198–4208. [69] Y.M. Wang, S. Cheng, Q.M. Wei, E. Ma, T.G. Nieh, A. Hamza, Effects of annealing and impurities on tensile properties of electrodeposited nanocrystalline Ni, Scr. Mater., 51 (2004) 1023–1028. [70] J. Gubicza, P.H.R. Pereira, G. Kapoor, Y. Huang, S.S. Vadlamani, T.G. Langdon, Annealing-induced hardening in ultrafine-grained Ni–Mo alloys, Adv. Eng. Mater., 20 (2018) 1800184. [71] S. Yoshida, T. Bhattacharjee, Y. Bai, N. Tsuji, Friction stress and Hall-Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing, Scr. Mater., 134 (2017) 33–36. [72] S. Praveen, J.W. Bae, P. Asghari-Rad, J.M. Park, H.S. Kim, Annealing-induced hardening in high-pressure torsion processed CoCrNi medium entropy alloy, Mat. Sci. Eng. A, 734 (2018) 338–340. [73] Q. Shen, Y. Li, J. Zhao, D. Liu, Y. Yang, Effects of annealing on the microstructure and wear resistance of laser cladding CrFeMoNbTiW high-entropy alloy coating, Crystals, 11 (2021) 1096. [74] H. Zhang, Y. Pan, Y.Z. He, Grain refinement and boundary misorientation transition by annealing in the laser rapid solidified 6fenicocraltisi multicomponent ferrous alloy coating, Surf. Coat. Technol., 205 (2011) 4068–4072. [75] X. Feng, J. Utama Surjadi, Y. Lu, Annealing-induced abnormal hardening in nanocrystalline NbMoTaW high-entropy alloy thin films, Mater. Lett., 275 (2020) 128097. [76] Y. Zhang, Y. Zhou, J. Lin, G. Chen, P. Liaw, Solid‐solution phase formation rules for multi‐component alloys, Adv. Eng. Mater., 10 (2008) 534–538. [77] L.Q. Xing, J. Eckert, L. Schultz, Deformation mechanism of amorphous and partially crystallized alloys, Nanostruct. Mater., 12 (1999) 503–506. [78] T.H. Huang, C.H. Hsueh, Microstructures and mechanical properties of (CoCrFeMnNi)100-xMox high entropy alloy films, Intermetallics, 135 (2021) 107236. [79] S.H. Lee, K. Hyun Yoon, D.S. Cheong, J.K. Lee, Relationship between residual stress and structural properties of AlN films deposited by r.f. reactive sputtering, Thin Solid Films, 435 (2003) 193–198. [80] Y. Li, C. Wang, D. Ma, X. Zeng, M. Liu, X. Jiang, Y.X. Leng, Nano dual-phase CuNiTiNbCr high entropy alloy films produced by high-power pulsed magnetron sputtering, Surf. Coat. Technol., 420 (2021) 127325. [81] N.A. Khan, B. Akhavan, H. Zhou, L. Chang, Y. Wang, L. Sun, M.M. Bilek, Z. Liu, High entropy alloy thin films of AlCoCrCu0.5FeNi with controlled microstructure, Appl. Surf. Sci., 495 (2019) 143560. [82] S. Guo, C.T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, Prog. Nat. Sci.: Mater. Int., 21 (2011) 433–446. [83] N. Saowadee, K. Agersted, J.R. Bowen, Lattice constant measurement from electron backscatter diffraction patterns, J. Microsc., 266 (2017) 200–210. [84] F.T. Muniz, M.A. Miranda, C. Morilla Dos Santos, J.M. Sasaki, The scherrer equation and the dynamical theory of X-ray diffraction, Acta Crystallogr. A Found. Adv., 72 (2016) 385–390. [85] R. Chang, W. Fang, X. Bai, C. Xia, X. Zhang, H. Yu, B. Liu, F. Yin, Effects of tungsten additions on the microstructure and mechanical properties of CoCrNi medium entropy alloys, J. Alloy Compd., 790 (2019) 732–743. [86] E. Pickering, N. Jones, High-entropy alloys: A critical assessment of their founding principles and future prospects, Int. Mater. Rev., 61 (2016) 183–202. [87] Y. Yue, X. Yan, Y. Zhang, Nano-fiber-structured cantor alloy films prepared by sputtering, J. Mater. Res. Technol., 21 (2022) 1120–1127. [88] T.W. Lu, C.S. Feng, Z. Wang, K.W. Liao, Z.Y. Liu, Y.Z. Xie, J.G. Hu, W.B. Liao, Microstructures and mechanical properties of CoCrFeNiAl0.3 high-entropy alloy thin films by pulsed laser deposition, Appl. Surf. Sci., 494 (2019) 72–79. [89] Y. Zhao, X. Zhang, H. Quan, Y. Chen, S. Wang, S. Zhang, Effect of Mo addition on structures and properties of FeCoNiCrMn high entropy alloy film by direct current magnetron sputtering, J. Alloy Compd., 895 (2022) 162709. [90] C.S. Pande, K.P. Cooper, Nanomechanics of Hall–Petch relationship in nanocrystalline materials, Prog. Mater. Sci., 54 (2009) 689–706. [91] J. Schiøtz, F.D. Di Tolla, K.W. Jacobsen, Softening of nanocrystalline metals at very small grain sizes, Nature, 391 (1998) 561–563. [92] Z.C. Cordero, B.E. Knight, C.A. Schuh, Six decades of the Hall–Petch effect–a survey of grain-size strengthening studies on pure metals, Int. Mater. Rev., 61 (2016) 495–512. [93] L.J. Zhang, J.T. Fan, D.J. Liu, M.D. Zhang, P.F. Yu, Q. Jing, M.Z. Ma, P.K. Liaw, G. Li, R.P. Liu, The microstructural evolution and hardness of the equiatomic CoCrCuFeNi high-entropy alloy in the semi-solid state, J. Alloy Compd., 745 (2018) 75–83. [94] R.L. Zong, S.P. Wen, F. Zeng, Y. Gao, F. Pan, Nanoindentation studies of Cu–W alloy films prepared by magnetron sputtering, J. Alloy Compd., 464 (2008) 544–549. [95] T. Yang, Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys, Science, 362 (2018) 933–937. [96] N.A. Khan, B. Akhavan, C. Zhou, H. Zhou, L. Chang, Y. Wang, Y. Liu, L. Fu, M.M. Bilek, Z. Liu, Rf magnetron sputtered AlCoCrCu0.5FeNi high entropy alloy (HEA) thin films with tuned microstructure and chemical composition, J. Alloy Compd., 836 (2020) 155348. [97] Z. Wang, C. Wang, Y.L. Zhao, Y.C. Hsu, C.L. Li, J.J. Kai, C.T. Liu, C.H. Hsueh, High hardness and fatigue resistance of CoCrFeMnNi high entropy alloy films with ultrahigh-density nanotwins, Int. J. Plast., 131 (2020) 102726. [98] X.Y. Yang, Y.K. Zhu, H. Miura, T. Sakai, Static recrystallization behavior of hot-deformed magnesium alloy AZ31 during isothermal annealing, Trans. Nonferrous Met. Soc. China, 20 (2010) 1269–1274. [99] A. Takeuchi, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans., 46 (2005) 2817–2829. [100] W. Luo, B. Li, Z. Zhao, T. Harumoto, Y. Nakamura, J. Shi, Study on magnetic properties and microstructure of Fe0.18Co0.36Ni0.21Al0.10Cr0.15 high entropy alloy thin films, J. Alloy Compd., 938 (2023) 168533. [101] B. Gwalani, V. Soni, D. Choudhuri, M. Lee, J.Y. Hwang, S.J. Nam, H. Ryu, S.H. Hong, R. Banerjee, Stability of ordered L12 and B2 precipitates in face centered cubic based high entropy alloys - Al0.3CoFeCrNi and Al0.3CuFeCrNi2, Scr. Mater., 123 (2016) 130–134. [102] T.T. Shun, Y.C. Du, Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy, J. Alloy Compd., 479 (2009) 157–160. [103] X. Wang, W. Zhou, P. Liu, S. Song, K.M. Reddy, Atomic scale structural characterization of B2 phase precipitated along FCC twin boundary in a CoCrFeNiAl0.3 high entropy alloy, Scr. Mater., 162 (2019) 161–165. [104] D. Lin, L. Xu, H. Jing, Y. Han, L. Zhao, F. Minami, Effects of annealing on the structure and mechanical properties of FeCoCrNi high-entropy alloy fabricated via selective laser melting, Addit. Manuf., 32 (2020). [105] A. Hasnaoui, On non-equilibrium grain boundaries and their effect on thermal and mechanical behaviour: A molecular dynamics computer simulation, Acta Mater., 50 (2002) 3927–3939. [106] Z. Zheng, H. Zhao, B. Akhavan, L. Sun, H. Liu, K. Tsoutas, Y. Liu, M.M. Bilek, Z. Liu, Enhanced strength of AlCoCrCu0.5FeNi high entropy alloy thin films reinforced by multi-phase hardening and nanotwins, Mat. Sci. Eng. A, (2023) 145252. [107] J. Gu, M. Song, S. Ni, S. Guo, Y. He, Effects of annealing on the hardness and elastic modulus of a Cu36Zr48Al8Ag8 bulk metallic glass, Mater. Des., 47 (2013) 706–710. [108] J. Kong, T.J.H. Li, M.J.R. Haché, J. Tam, J.L. McCrea, J.Y. Howe, U. Erb, In situ annealing studies on the microstructural evolution of a macro defect free electroformed nanocrystalline Ni-Co sheet metal and its relation to tensile properties, Acta Mater., 246 (2023) 118711. [109] X. Huang, N. Hansen, N. Tsuji, Hardening by annealing and softening by deformation in nanostructured metals, Science, 312 (2006) 249–251. [110] W.D. Callister, D.G. Rethwisch, Materials science and engineering: An introduction, 9th edition ed., Wiley Hoboken, NJ, Hoboken, NJ, 2014. [111] T.W. Wu, F. Spaepen, The relation between enbrittlement and structural relaxation of an amorphous metal, Philos. Mag. B, 61 (2006) 739–750. [112] R. Gerling, F.P. Schimansky, R. Wagner, Radiation-induced changes of the ductility of amorphous Fe40Ni40B20, Scr. Metall. Mater., 17 (1983) 203–208. [113] P. Lamparter, S. Steeb, Small angle X-ray and neutron scattering for the investigation of the medium-range structure of metallic glasses, J. Non-Cryst. Solids, 106 (1988) 137–146. [114] Y.C. Hsu, C.L. Li, C.H. Hsueh, Modifications of microstructures and mechanical properties of CoCrFeMnNi high entropy alloy films by adding Ti element, Surf. Coat. Technol., 399 (2020) 126149. [115] S. Fang, C. Wang, C.L. Li, J.H. Luan, Z.B. Jiao, C.T. Liu, C.H. Hsueh, Microstructures and mechanical properties of CoCrFeMnNiVx high entropy alloy films, J. Alloy Compd., 820 (2020) 153388. [116] P. Zhang, S.X. Li, Z.F. Zhang, General relationship between strength and hardness, Mat. Sci. Eng. A, 529 (2011) 62–73. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91584 | - |
| dc.description.abstract | 本實驗使用磁控濺鍍系統以三靶 (CoCrNi靶、Al靶和Nd靶)共濺鍍方式製備了一系列 (CoCrNi)93−xAl7Ndx (x = 0, 0.22, 0.56, 1.05, 1.73, 2.55, 3.53) 中熵合金薄膜進行分析,旨在研究引入不同含量的稀土元素釹 (Nd) 對 (CoCrNi)93Al7中熵合金薄膜系統造成的微結構及機械性質的影響。XRD的結果表明,隨著釹元素添加量增加,晶粒變得細小,且晶體結構漸漸由FCC固溶相轉變為非晶相。由TEM分析進一步顯示了柱狀結構的細化現象,並觀察到少量的NdNi5析出物在非晶相結構中形成。透過納米壓痕和微柱壓縮測試評估薄膜的機械性能,結果表明,在釹元素的含量添加至x=0.56時,薄膜表現出最佳的硬度(10.16 GPa)和簡化模數(223.83 GPa),這歸因於固溶強化和晶粒細化機制的作用。然而,隨著釹元素含量進一步增加,由於inverse Hall-Petch effect和非晶相的形成,硬度和簡化模數急劇下降,分別至8.23 GPa 和166.18 GPa。微柱壓縮測試結果顯示,降伏強度和極限強度與硬度呈相同的趨勢。
研究發現,退火處理可使原子擴散和遷移,促進晶格重排和大量析出物的形成。為了進一步產生HCP及BCC相的析出物來改善 (CoCrNi)93−xAl7Ndx的機械性質,本實驗將第一部分之薄膜進行550°C 10分鐘的後退火處理。XRD和TEM 的分析結果發現在x=0時並無任何相轉變及析出產生,但隨著釹元素含量上升,不同晶體結構之析出物隨之出現,如NiAl、Ni3Al和NdNi5和富Cr相偏析。此外,經由機械性質量測,我們還發現退火後 (CoCrNi)93−xAl7Ndx中熵合金薄膜硬度、降伏強度和極限強度比起未退火前之薄膜均有明顯的提升,這類型的強化歸功於晶界鬆弛、析出強化及介面強化,使得硬度方面達到最大值11.45 GPa。 | zh_TW |
| dc.description.abstract | In this work, a series of (CoCrNi)93−xAl7Ndx (x = 0, 0.22, 0.56, 1.05, 1.73, 2.55, 3.53) medium entropy alloy films (MEAFs) was fabricated, aiming to study the influence on doping different contents of rare earth element neodymium (Nd) on the microstructure and mechanical properties of the (CoCrNi)93Al7 MEAFs system. The results of XRD showed that the grain size became finer and the crystal structure gradually changed from FCC solid solution to an amorphous phase with the increasing Nd content. The refinement of the columnar structure was further revealed by TEM analysis, and a small amount of NdNi5 precipitates were observed to form in the amorphous phase structure. The mechanical properties of the film were evaluated by nanoindentation and micropillar compression tests, and the results showed that the film exhibited the highest hardness (10.16 GPa) and reduced modulus (223.83 GPa) when 0.56 at.% of Nd was added. The reasons could be attributed to solid solution strengthening and grain refinement mechanisms. However, as the Nd content further increased, the hardness and reduced modulus decreased sharply to 8.23 GPa and 166.18 GPa, respectively, due to the inverse Hall-Petch effect and the presence of amorphous phase. The micropillar compression test results showed that the yield strength and ultimate strength versus Nd content had the same trend as hardness. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-01T16:12:58Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-02-01T16:12:58Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xiv Chapter 1 Introduction 1 Chapter 2 Literature Review 5 2.1 High Entropy Alloys and Medium Entropy Alloys 5 2.1.1 Definition 5 2.1.2 Four Core Effects 6 2.2 Medium Entropy Alloy Films 10 2.2.1 Film Deposition 10 2.2.2 CoCrNi MEAFs 12 2.3 Effects of Al Addition 14 2.3.1 Al Addition in Bulk CoCrNi System 14 2.3.2 Al Addition in HEAFs/MEAFs 18 2.4 Effects of Rare Earth Elements Addition 21 2.5 Effects of Heat Treatment 26 Chapter 3 Experimental Procedure 30 3.1 Experimental Flow 30 3.2 Sample Preparations and Deposition Process 31 3.2.1 Preparation of As-deposited (CoCrNi)93−xAl7Ndx MEAFs 31 3.2.2 Preparation of Annealed (CoCrNi)93−xAl7Ndx MEAFs 32 3.3 Analytical Techniques 32 3.3.1 Electron Probe Microanalyzer (EPMA) 32 3.3.2 X-ray Diffraction (XRD) 33 3.3.3 Scanning Electron Microscope (SEM) 33 3.3.4 Transmission Electron Microscope (TEM) 33 3.3.5 Nanoindentation 34 3.3.6 Micropillar Compression Test 34 Chapter 4 Results and Discussion 35 4.1 As-deposited (CoCrNi)93−xAl7Ndx MEAFs 35 4.1.1 Chemical Compositions 36 4.1.2 SEM Observation and Films Thickness 38 4.1.3 XRD Results 41 4.1.4 TEM Analysis 45 4.1.4 Nanoindentation 51 4.1.5 Micropillar Compression Test 54 4.2 Annealed (CoCrNi)93−xAl7Ndx MEAFs 58 4.2.1 SEM Observation 59 4.2.2 XRD Results 60 4.2.3 TEM Analysis 65 4.2.4 Nanoindentation 72 4.2.5 Micropillar Compression Test 75 Chapter 5 Conclusions 80 5.1 As-deposited (CoCrNi)93−xAl7Ndx MEAFs 80 5.2 Annealed (CoCrNi)93−xAl7Ndx MEAFs 81 5.3 Comparison 82 REFERENCES 83 APPENDIX 96 | - |
| dc.language.iso | en | - |
| dc.subject | 中熵合金薄膜 | zh_TW |
| dc.subject | 釹(Nd)添加 | zh_TW |
| dc.subject | 微結構 | zh_TW |
| dc.subject | 機械性質 | zh_TW |
| dc.subject | 後退火處理 | zh_TW |
| dc.subject | Post-annealing | en |
| dc.subject | Nd addition | en |
| dc.subject | Microstructure | en |
| dc.subject | Mechanical properties | en |
| dc.subject | Medium entropy alloy films | en |
| dc.title | 釹元素添加和後退火處理對於 (CoCrNi)93Al7中熵合金薄膜顯微結構與機械性質的影響 | zh_TW |
| dc.title | Effects of Neodymium Addition and Post-Annealing Treatment on Microstructures and Mechanical Properties of (CoCrNi)93Al7 Medium Entropy Alloy Films | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李志偉;蔡劭璞;姚栢文 | zh_TW |
| dc.contributor.oralexamcommittee | Jyh-Wei Lee;Shao-Pu Tsai;Pakman Yiu | en |
| dc.subject.keyword | 中熵合金薄膜,釹(Nd)添加,微結構,機械性質,後退火處理, | zh_TW |
| dc.subject.keyword | Medium entropy alloy films,Nd addition,Microstructure,Mechanical properties,Post-annealing, | en |
| dc.relation.page | 96 | - |
| dc.identifier.doi | 10.6342/NTU202400154 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-01-24 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 4.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
