Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91580
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許少瑜zh_TW
dc.contributor.advisorShao-Yiu Hsuen
dc.contributor.author王永立zh_TW
dc.contributor.authorYung-Li Wangen
dc.date.accessioned2024-02-01T16:11:49Z-
dc.date.available2024-02-02-
dc.date.copyright2024-02-01-
dc.date.issued2024-
dc.date.submitted2024-01-22-
dc.identifier.citationAbraham, J. E. F., Mumford, K. G., Patch, D. J., & Weber, K. P. (2022). Retention of PFOS and PFOA Mixtures by Trapped Gas Bubbles in Porous Media. Environmental Science & Technology, 56(22), 15489–15498. https://doi.org/10.1021/acs.est.2c00882
Ambekar, A. S., Mattey, P., & Buwa, V. V. (2021). Pore-resolved two-phase flow in a pseudo-3D porous medium: Measurements and volume-of-fluid simulations. Chemical Engineering Science, 230, 116128. https://doi.org/https://doi.org/10.1016/j.ces.2020.116128
Anna, P. de, Jimenez-Martinez, J., Tabuteau, H., Turuban, R., Le Borgne, T., Derrien, M., & Méheust, Y. (2014). Mixing and Reaction Kinetics in Porous Media: An Experimental Pore Scale Quantification. Environmental Science & Technology, 48(1), 508–516. https://doi.org/10.1021/es403105b
Aziz, R., Joekar-Niasar, V., & Martinez-Ferrer, P. (2018). Pore-scale insights into transport and mixing in steady-state two-phase flow in porous media. International Journal of Multiphase Flow, 109, 51–62. https://doi.org/https://doi.org/10.1016/j.ijmultiphaseflow.2018.07.006
Baakeem, S. S., Bawazeer, S. A., & Mohamad, A. A. (2020). Comparison and evaluation of Shan–Chen model and most commonly used equations of state in multiphase lattice Boltzmann method. International Journal of Multiphase Flow, 128, 103290. https://doi.org/https://doi.org/10.1016/j.ijmultiphaseflow.2020.103290
Bandara, U. C., Tartakovsky, A. M., Oostrom, M., Palmer, B. J., Grate, J., & Zhang, C. (2013). Smoothed particle hydrodynamics pore-scale simulations of unstable immiscible flow in porous media. Advances in Water Resources, 62, 356–369. https://doi.org/https://doi.org/10.1016/j.advwatres.2013.09.014
Bandara, U. C., Tartakovsky, A. M., & Palmer, B. J. (2011). Pore-scale study of capillary trapping mechanism during CO2 injection in geological formations. International Journal of Greenhouse Gas Control, 5(6), 1566–1577. https://doi.org/https://doi.org/10.1016/j.ijggc.2011.08.014
Deshpande, S. S., Anumolu, L., & Trujillo, M. F. (2012). Evaluating the performance of the two-phase flow solver interFoam. Computational Science & Discovery, 5(1), 014016. https://doi.org/10.1088/1749-4699/5/1/014016
Ferrari, A., Jimenez-Martinez, J., Borgne, T. Le, Méheust, Y., & Lunati, I. (2015). Challenges in modeling unstable two-phase flow experiments in porous micromodels. Water Resources Research, 51(3), 1381–1400. https://doi.org/https://doi.org/10.1002/2014WR016384
Ferrari, A., & Lunati, I. (2013). Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy. Advances in Water Resources, 57, 19–31. https://doi.org/https://doi.org/10.1016/j.advwatres.2013.03.005
Gouet-Kaplan, M., Arye, G., & Berkowitz, B. (2012). Interplay between resident and infiltrating water: Estimates from transient water flow and solute transport. Journal of Hydrology, 458–459, 40–50. https://doi.org/https://doi.org/10.1016/j.jhydrol.2012.06.026
Gouet-Kaplan, M., & Berkowitz, B. (2011). Measurements of Interactions between Resident and Infiltrating Water in a Lattice Micromodel. Vadose Zone Journal, 10(2), 624–633. https://doi.org/https://doi.org/10.2136/vzj2010.0103
Gouet-Kaplan, M., Tartakovsky, A., & Berkowitz, B. (2009). Simulation of the interplay between resident and infiltrating water in partially saturated porous media. Water Resources Research, 45(5). https://doi.org/https://doi.org/10.1029/2008WR007350
Gramling, C. M., Harvey, C. F., & Meigs, L. C. (2002). Reactive Transport in Porous Media: A Comparison of Model Prediction with Laboratory Visualization. Environmental Science & Technology, 36(11), 2508–2514. https://doi.org/10.1021/es0157144
Guo, B., Zeng, J., & Brusseau, M. L. (2020). A Mathematical Model for the Release, Transport, and Retention of Per- and Polyfluoroalkyl Substances (PFAS) in the Vadose Zone. Water Resources Research, 56(2), e2019WR026667. https://doi.org/https://doi.org/10.1029/2019WR026667
He, D., Jiang, P., & Xu, R. (2019). Pore-Scale Experimental Investigation of the Effect of Supercritical CO2 Injection Rate and Surface Wettability on Salt Precipitation. Environmental Science & Technology, 53(24), 14744–14751. https://doi.org/10.1021/acs.est.9b03323
Henry, E. J., & Smith, J. E. (2002). The effect of surface-active solutes on water flow and contaminant transport in variably saturated porous media with capillary fringe effects. Journal of Contaminant Hydrology, 56(3), 247–270. https://doi.org/https://doi.org/10.1016/S0169-7722(01)00206-6
Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225. https://doi.org/10.1016/0021-9991(81)90145-5
https://openfoam.org/version/9/. Retrieved September 29, 2023, from https://openfoam.org/version/9/
https://www.epa.gov/pfas. Retrieved September 29, 2023, from https://www.epa.gov/pfas
Ji, Y., Yan, N., Brusseau, M. L., Guo, B., Zheng, X., Dai, M., Liu, H., & Li, X. (2021). Impact of a Hydrocarbon Surfactant on the Retention and Transport of Perfluorooctanoic Acid in Saturated and Unsaturated Porous Media. Environmental Science & Technology, 55(15), 10480–10490. https://doi.org/10.1021/acs.est.1c01919
Kim, K.-Y., Oh, J., Han, W. S., Park, K. G., Shinn, Y. J., & Park, E. (2018). Two-phase flow visualization under reservoir conditions for highly heterogeneous conglomerate rock: A core-scale study for geologic carbon storage. Scientific Reports, 8(1), 4869. https://doi.org/10.1038/s41598-018-23224-6
Li, P., & Berkowitz, B. (2018). Controls on interactions between resident and infiltrating waters in porous media. Advances in Water Resources, 121, 304–315. https://doi.org/https://doi.org/10.1016/j.advwatres.2018.09.002
Li, P., & Berkowitz, B. (2019). Characterization of mixing and reaction between chemical species during cycles of drainage and imbibition in porous media. Advances in Water Resources, 130, 113–128. https://doi.org/https://doi.org/10.1016/j.advwatres.2019.06.003
Li, Y., Flores, G., Xu, J., Yue, W., Wang, Y., Luan, T., & Gu, Q. (2013). Residual air saturation changes during consecutive drainage-imbibition cycles in an air-water fine sandy medium. Journal of Hydrology, 503, 77–88. https://doi.org/10.1016/j.jhydrol.2013.08.050
Meakin, P., & Tartakovsky, A. M. (2009). Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media. Reviews of Geophysics, 47(3). https://doi.org/https://doi.org/10.1029/2008RG000263
Oates, P. M., & Harvey, C. F. (2006). A colorimetric reaction to quantify fluid mixing. Experiments in Fluids, 41(5), 673–683. https://doi.org/10.1007/s00348-006-0184-z
Seyedpour, S. M., Thom, A., & Ricken, T. (2023). Simulation of Contaminant Transport through the Vadose Zone: A Continuum Mechanical Approach within the Framework of the Extended Theory of Porous Media (eTPM). Water, 15(2). https://doi.org/10.3390/w15020343
Si, L., Xi, Y., Wei, J., Wang, H., Zhang, H., Xu, G., & Liu, Y. (2022). The influence of inorganic salt on coal-water wetting angle and its mechanism on eliminating water blocking effect. Journal of Natural Gas Science and Engineering, 103, 104618. https://doi.org/https://doi.org/10.1016/j.jngse.2022.104618
Tavangarrad, A. H., Hassanizadeh, S. M., Rosati, R., Digirolamo, L., & van Genuchten, M. T. (2019). Capillary pressure–saturation curves of thin hydrophilic fibrous layers: effects of overburden pressure, number of layers, and multiple imbibition–drainage cycles. Textile Research Journal, 89(23–24), 4906–4915. https://doi.org/10.1177/0040517519844209
Wang, L., He, Y., Wang, Q., Liu, M., & Jin, X. (2020). Multiphase flow characteristics and EOR mechanism of immiscible CO2 water-alternating-gas injection after continuous CO2 injection: A micro-scale visual investigation. Fuel, 282, 118689. https://doi.org/https://doi.org/10.1016/j.fuel.2020.118689
Wang, Y., Fernàndez-Garcia, D., Sole-Mari, G., & Rodríguez-Escales, P. (2022). Enhanced NAPL Removal and Mixing With Engineered Injection and Extraction. Water Resources Research, 58(4), e2021WR031114. https://doi.org/https://doi.org/10.1029/2021WR031114
Wang, Y.-L., Huang, Q.-Z., & Hsu, S.-Y. (2023). The Displacement of the Resident Wetting Fluid by the Invading Wetting Fluid in Porous Media Using Direct Numerical Simulation. Water, 15(14). https://doi.org/10.3390/w15142636
Wang, Y., Khan, N., Huang, D., Carroll, K. C., & Brusseau, M. L. (2021). Transport of PFOS in aquifer sediment: Transport behavior and a distributed-sorption model. Science of The Total Environment, 779, 146444. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.146444
Wang, Z., Feyen, J., van Genuchten, M. Th., & Nielsen, D. R. (1998). Air entrapment effects on infiltration rate and flow instability. Water Resources Research, 34(2), 213–222. https://doi.org/https://doi.org/10.1029/97WR02804
Wei, Y., Chen, K., & Wu, J. (2020). Estimation of the Critical Infiltration Rate for Air Compression During Infiltration. Water Resources Research, 56(3), e2019WR026410. https://doi.org/https://doi.org/10.1029/2019WR026410
Ziegler, A., Bock, C., Ketten, D. R., Mair, R. W., Mueller, S., Nagelmann, N., Pracht, E. D., & Schröder, L. (2018). Digital Three-Dimensional Imaging Techniques Provide New Analytical Pathways for Malacological Research. American Malacological Bulletin, 36(2), 248 – 273. https://doi.org/10.4003/006.036.0205
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91580-
dc.description.abstract了解多孔隙介質中初始殘留濕潤相流體的排退行為,對於污染整治的策略至關重要。當污染物或營養鹽溶解在地表濕潤相流體並進入不飽和層中時,濕潤相流體可能滯留在孔隙介質中,或者很容易地被沖走,最終進入地下水中。原溶質或入侵溶質 (溶解的污染物或營養鹽) 的宿命取決於初始濕潤相流體和入侵濕潤相流體之間的互動,因為兩者相互作用的結果決定了溶質的去向。然而,透過傳統實驗室方法,觀察及量化孔隙介質中初始濕潤相流體和入侵濕潤相流體之間的互動是極具挑戰性的。本研究利用計算流體力學探討孔隙尺度新舊流體的混合,此法可真實地模擬不互溶之二相流的流動,並藉由體積分率精準地計算流體的飽和度。透過模擬多孔隙介質中初始殘留濕潤相流體的排退過程,評估了非濕潤相流體、界面張力、接觸角、注射速率及排水-汲取週期等因素的影響。模擬結果顯示,多孔隙介質中的非濕潤相流體會透過封存初始濕潤相流體或佔據主要流動路徑,進而限制了初始和入侵濕潤相流體的混合。界面張力或接觸角的改變,則會改變多孔隙介質中非濕潤相流體的分佈位置,從而產生不同的排退結果。在非常低的注射速率 (0.01 m/s) 下,初始濕潤相流體在孔隙率為49.73%的孔隙介質中,無法有效地被排退 (排退後的初始濕潤相流體飽和度為47.02%)。此外,連續的排水-汲取週期有助於初始濕潤相流體的排退,在孔隙率為49.73 %的孔隙介質中,初始濕潤相流體的飽和度從第一週期後的6.84-10.41%,下降到第二週期的1.17-1.46%。本研究成功的模擬,意味著藉由此方法,可從孔隙尺度探討雙水世界假說,以及預測自然界或工業製程中其它互不相溶流體間的流動現象。zh_TW
dc.description.abstractUnderstanding the behavior of the displacement of the initial resident wetting fluid in porous media is important for the government to develop remediation strategies. When pollutants or nutrients are dissolved in the land surface wetting fluid and enter the unsaturated zone, the wetting fluid may remain in the porous system or be easily flushed out and finally arrive in the groundwater. The fate of the original or invading solute (dissolved pollutants or nutrients) is related to the interaction between the initial wetting fluid and the invading wetting fluid because the interaction result determines where the dissolved solutes go and stay. However, visualization and quantifying the interplay between the initial wetting fluid and the invading wetting fluid in porous media through traditional laboratory experiments are challenging. In this study, computational fluid dynamics (CFD) is used to study the mixing of old and new fluids at the pore-scale level. It can faithfully simulate the immiscible two-phase flow and precisely quantify the fluid saturations by volume fractions. The effects of the non-wetting fluid, interfacial tension, contact angle, injection rate, and consecutive drainage-imbibition cycles are evaluated by simulations of the initial resident wetting fluid displacements in porous media. The simulations show that the non-wetting fluid in the porous system would hinder the displacements by either trapping the initial resident wetting fluid or occupying the main flow path of the displacement, thus limiting the mixing of the initial resident and invading wetting fluids. A change in interfacial tension or contact angle would affect the distribution of the remaining non-wetting fluid in the porous system, resulting in different displacement efficiency. At a very low injection rate (0.01 m/s), the initial resident wetting fluid could not effectively be displaced (saturation is 47.02% after displacement) in the porous system with a porosity of 49.73%. Besides, the consecutive drainage-imbibition cycles could improve the displacement. In a porous system with a porosity of 49.73%, the saturation of the initial resident wetting fluid decreases from 6.84–10.41% in the first cycle to 1.17–1.46% in the second cycle. This study's successful simulation implies that this method can be applied to investigate the two water worlds hypothesis from the pore-scale study and to predict other immiscible fluid-fluid flows in natural or industrial processes.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-01T16:11:49Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-01T16:11:49Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
謝誌 iii
摘要 v
ABSTRACT vii
CONTENTS ix
LIST OF FIGURES xii
LIST OF TABLES xiv
PREFACE xv
CHAPTER 1. INTRODUCTION 1
1.1. Background 1
1.2. Factors Affecting the Flow Patterns of Immiscible Fluids 3
1.2.1. Non-Wetting Fluid 3
1.2.2. Interfacial Tension and Wettability 4
1.2.3. Injection Rate 8
1.2.4. Drainage-Imbibition Cycles 10
1.3. Objective 12
CHAPTER 2. LITERATURE REVIEW 13
2.1. Traditional Laboratory Experiments 13
2.2. The Computational Methods 17
2.2.1. Smoothed Particle Hydrodynamics (SPH) 17
2.2.2. Lattice Boltzmann method (LBM) 19
2.2.3. Direct Numerical Simulation (DNS) 21
2.3. OpenFOAM Software 23
2.3.1. About OpenFOAM 23
2.3.2. Finite Volume Method 24
CHAPTER 3. METHODOLOGY 25
3.1. Navier-Stokes Equations 25
3.2. Volume of Fluid (VOF) Method 27
3.3. Numerical Domain, Boundary, and Initial Conditions 29
3.3.1. Numerical Domain 29
3.3.2. Computational Grid 31
3.3.3. Simulation Setup 34
3.4. Quantification of Fluid Saturations 37
CHAPTER 4. RESULTS AND DISCUSSIONS 39
4.1. Effect of the Non-Wetting Phase (nw) 39
4.1.1. With nw Versus Without nw 39
4.1.2. Remaining nw Pockets in Different Geometry 43
4.2. Effects of Interfacial Tension (σw1nw) and Contact Angle (θ) 46
4.2.1. Change of the Interfacial Tension between w1 and nw (σw1nw) 46
4.2.2. Change of the Contact Angle (θ) 48
4.3. Effect of Injection Rate 50
4.4. Effect of Drainage-Imbibition Cycles 52
4.5. Environmental Significance 56
CHAPTER 5. CONCLUSIONS 59
5.1. Summary 59
5.2. Suggestions for Future Research 60
BIBLOGRAPHY 61
ADDENDICS 67
Appendix A. The Source Code of the “interMixingFoam” Solver 67
Appendix B. The Source Code for Meshing 74
Appendix C. The Displacement Processes in Section 4.1’s Simulations. 83
Appendix D. The Displacement Processes in Section 4.2.1’s Simulations. 89
Appendix E. The Displacement Processes in Section 4.2.2’s Simulations. 92
Appendix F. The Displacement Processes in Section 4.3’s Simulations. 95
Appendix G. The Displacement Processes in Section 4.4’s Simulations. 96
-
dc.language.isoen-
dc.title利用計算流體力學探討孔隙尺度新舊流體的混合zh_TW
dc.titlePore Scale Study of the Mixing of Old and New Fluids by Using Computational Fluid Dynamicsen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee羅偉誠;余化龍;胡明哲;邱永嘉zh_TW
dc.contributor.oralexamcommitteeWei-Cheng Lo;Hwa-Lung Yu;Ming-Che Hu;Yung-Chia Chiuen
dc.subject.keyword濕潤相流體,多孔隙介質,非濕潤相流體,計算流體力學,雙水世界假說,zh_TW
dc.subject.keywordwetting fluid,porous media,non-wetting fluid,computational fluid dynamics (CFD),two water worlds hypothesis,en
dc.relation.page101-
dc.identifier.doi10.6342/NTU202400152-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-01-23-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物環境系統工程學系-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
8.21 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved