Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91579
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李百祺zh_TW
dc.contributor.advisorPai-Chi Lien
dc.contributor.author温皆循zh_TW
dc.contributor.authorChieh-Hsun Wenen
dc.date.accessioned2024-02-01T16:11:32Z-
dc.date.available2024-02-02-
dc.date.copyright2024-02-01-
dc.date.issued2024-
dc.date.submitted2024-01-26-
dc.identifier.citation吳文卲, "使用單發雷射之雙模態光聲/超音波顯微系統," 臺灣大學生醫電子與資訊學研究所學位論文, 2016.
C. Ma, W. Li, D. Li, M. Chen, M. Wang, L. Jiang, L. S. Mille, C. E. Garciamendez, Z. Zhao, and Q. Zhou, "Photoacoustic imaging of 3D-printed vascular networks," Biofabrication, vol. 14, no. 2, p. 025001, 2022.
A. G. Bell, "On the production and reproduction of sound by light," American Journal of Science, vol. 20, no. 118, p. 305, 1880.
M. Xu and L. V. Wang, "Photoacoustic imaging in biomedicine," Review of scientific instruments, vol. 77, no. 4, 2006.
J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, "Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo," Nature medicine, vol. 18, no. 8, pp. 1297-1302, 2012.
P. Xi, Optical Nanoscopy and Novel Microscopy Techniques. CRC Press, 2014.
J. Yao and L. V. Wang, "Sensitivity of photoacoustic microscopy," Photoacoustics, vol. 2, no. 2, pp. 87-101, 2014.
A. Fenster and D. B. Downey, "3-D ultrasound imaging: A review," IEEE Engineering in Medicine Biology magazine, vol. 15, no. 6, pp. 41-51, 1996.
A. Fenster, A. Landry, D. B. Downey, R. A. Hegele, and J. D. Spence, "3D ultrasound imaging of the carotid arteries," Current Drug Targets-Cardiovascular & Hematological Disorders, vol. 4, no. 2, pp. 161-175, 2004.
F. Lindseth, T. Langø, T. Selbekk, R. Hansen, I. Reinertsen, C. Askeland, O. Solheim, G. Unsgård, R. Mårvik, and T. A. N. Hernes, "Ultrasound-based guidance and therapy," in Advancements and breakthroughs in ultrasound imaging: IntechOpen, 2013.
C. E. Morton and G. R. Lockwood, "Theoretical assessment of a crossed electrode 2-D array for 3-D imaging,"IEEE Symposium on Ultrasonics, vol. 1, pp. 968-971, 2003.
C. H. Seo and J. T. Yen, "5A-5 64× 64 2-D array transducer with row-column addressing,"IEEE Ultrasonics Symposium, pp. 74-77, 2006.
C. H. Seo and J. T. Yen, "A 256 x 256 2-D array transducer with row-column addressing for 3-D rectilinear imaging,"IEEE transactions on ultrasonics, ferroelectrics, frequency control, vol. 56, no. 4, pp. 837-847, 2009.
C. H. Seo and J. T. Yen, "Recent results using a 256× 256 2-D array transducer for 3-D rectilinear imaging,"IEEE Ultrasonics Symposium, pp. 1146-1149, 2008.
C. H. Seo and J. T. Yen, "P5J-4 256x256 2-D Array Transducer with Row-Column Addressing for 3-D Imaging,"IEEE Ultrasonics Symposium Proceedings, pp. 2381-2384, 2007.
A. S. Logan, L. L. Wong, A. I. Chen, and J. T. Yeow, "A 32 x 32 element row-column addressed capacitive micromachined ultrasonic transducer," IEEE transactions on ultrasonics, ferroelectrics, frequency control, vol. 58, no. 6, pp. 1266-1271, 2011.
L. L. Wong, A. I. Chen, Z. Li, A. S. Logan, and J. T. Yeow, "A row–column addressed micromachined ultrasonic transducer array for surface scanning applications," Ultrasonics, vol. 54, no. 8, pp. 2072-2080, 2014.
J. Hansen-Shearer, M. Lerendegui, M. Toulemonde, and M.-X. Tang, "Ultrafast 3-D ultrasound imaging using row–column array-specific frame-multiply-and-sum beamforming," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 69, no. 2, pp. 480-488, 2021.
B. E. Treeby and B. T. Cox, "k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields," Journal of biomedical optics, vol. 15, no. 2, pp. 021314-021314-021312, 2010.
X. Song and X. Zhou, "Photoacoustic microscopy simulation platform based on K-Wave simulation toolbox,"Photonics for Quantum, vol. 11844, pp. 54-57, 2021.
Y. Lou and J. T. Yen, "A K-space-based approach to coherence estimation,"IEEE International Ultrasonics Symposium, pp. 1-4, 2020.
黎世豪, "使用 K 空間濾波重建全採樣陣列資料的行列式陣列波束成型改善方法," 臺灣大學生醫電子與資訊學研究所學位論文, 2021.
M. Tanter and M. Fink, "Ultrafast imaging in biomedical ultrasound," IEEE transactions on ultrasonics, ferroelectrics, frequency control, vol. 61, no. 1, pp. 102-119, 2014.
W. Ran-ran, X. Hui, Z. Jing-jing, X. Li-na, S. Zhi-shen, and L. Yuan-yuan, "Photoacoustic Properties of Carbon Nanotubes-Polydimethylsiloxane," Spectroscopy Spectral Analysis, vol. 40, no. 7, pp. 2079-2086, 2020.
李夢麟, "以同調因子為基礎之超音波可適性影像," 臺灣大學生醫電子與資訊學研究所學位論文, 2004.
Hollman, K. W., K. W. Rigby, and M. O''donnell. "Coherence factor of speckle from a multi-row probe." IEEE Ultrasonics Symposium. Proceedings. International Symposium, vol 2, no 99, pp. 1257-1260, 1999.
R. K. Chee, A. Sampaleanu, D. Rishi, and R. J. Zemp, "Top orthogonal to bottom electrode (TOBE) 2-D CMUT arrays for 3-D photoacoustic imaging," IEEE transactions on ultrasonics, ferroelectrics, frequency control, vol. 61, no. 8, pp. 1393-1395, 2014.
G. R. Monteith, D. McAndrew, H. M. Faddy, and S. J. Roberts-Thomson, "Calcium and cancer: targeting Ca2+ transport," Nature Reviews Cancer, vol. 7, no. 7, pp. 519-530, 2007.
M. H. Chiu, H. S. Liu, Y. H. Wu, M. R. Shen, and C. Y. Chou, "SPAK mediates KCC 3‐enhanced cervical cancer tumorigenesis," The FEBS journal, vol. 281, no. 10, pp. 2353-2365, 2014.
S. Yang, J. J. Zhang, and X.-Y. Huang, "Orai1 and STIM1 are critical for breast tumor cell migration and metastasis," Cancer cell, vol. 15, no. 2, pp. 124-134, 2009.
W.-W. Liu, S.-H. Chen, and P.-C. Li, "Functional photoacoustic calcium imaging using chlorophosphonazo III in a 3D tumor cell culture," Biomedical Optics Express, vol. 12, no. 2, pp. 1154-1166, 2021.
T. Schrödel, R. Prevedel, K. Aumayr, M. Zimmer, and A. Vaziri, "Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light," Nature methods, vol. 10, no. 10, pp. 1013-1020, 2013.
R. Prevedel, Y.-G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, and E. S. Boyden, "Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy," Nature methods, vol. 11, no. 7, pp. 727-730, 2014.
I. Parker, K. T. Evans, K. Ellefsen, D. A. Lawson, and I. F. Smith, "Lattice light sheet imaging of membrane nanotubes between human breast cancer cells in culture and in brain metastases," Scientific reports, vol. 7, no. 1, p. 11029, 2017.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91579-
dc.description.abstract使用光學解析度光聲顯微(optical-resolution photoacoustic microscopy)進行細胞等級之三維光聲成像時,會因取樣速度過慢而無法準確呈現物體動態變化。然而,當應用於三維腫瘤細胞培養系統時,可以放寬對於空間解析度之要求,以提升成像速度。因此可使用聲學解析度光聲顯微(acoustic-resolution photoacoustic microscopy)來即時擷取三維光聲影像。本研究以脈衝雷射透過光纖激發目標物體發生光聲效應,並使用中心頻率為11 MHz之行列式陣列(row-column addressed array)超音波探頭接收光聲訊號。透過超音波波束成型方法形成三維光聲影像。但在使用行列式陣列進行三維光聲成像時,會遇到影像不確定性(ambiguity)的問題,導致無法正確成像物體。行列式陣列三維光聲成像方法是分別對行陣列以及列陣列成像後,將兩者三維影像相乘而得。然而,由於行陣列和列陣列是由線型傳感器元件組成的一維陣列,所以分別在仰角方向和方位角方向上缺乏影像解析度。為了克服行列式陣列三維光聲成像中的影像不確定性,本研究提出了兩種方法。第一種方法為K空間濾波(k-space filtering)重建全採樣陣列通道資料。第二種方法為多角度接收複合方法,該方法透過將行列式陣列沿軸向旋轉,以不同角度來接收光聲訊號,分別進行成像後再依照旋轉的角度將影像回正,最後進行複合,以改善行列式陣列三維光聲成像時的影像不確定性。經過64次複合可以達到與全採樣陣列相似的結果,但成像所需的時間也會增加。因此需要在成像時間以及影像品質之間權衡。經模擬實驗結果評估,16次複合可以將影像不確定性造成的假影強度降低至-40 dB 以下,所需的成像時間也較少。在k-Wave模擬實驗中以點仿體以及網狀仿體來驗證效果。以波長532 nm雷射光架設實驗系統,照射碳粉薄膜、黑色裁縫線仿體。zh_TW
dc.description.abstractOptical-resolution photoacoustic microscopy (OR-PAM) has been utilized for cellular-level 3-D photoacoustic imaging. However, its slow volume rate challenges capturing dynamic changes in real-time. In the context of 3-D tumor cell culture systems, where spatial resolution requirements can be relaxed, acoustic-resolution photoacoustic microscopy (AR-PAM) emerges as a viable solution for real-time imaging. This study utilizes an 11 MHz row-column addressed array (RCA) ultrasound transducer for the implementation of a 3D AR-PAM system. Specifically, the RCA encounters ambiguity issues leading to incorrect imaging. This study proposes a multi-angle reception compounding method to overcome the ambiguity problem. This method rotates the RCA along the central axis to receive photoacoustic signals at different angles. After individual imaging at each angle, the images are realigned according to the rotation angle and then combined to reduce ambiguity. Results show that after compounding 64 times, similar results to a fully sampled array can be achieved at the cost of the imaging time. On the other hand, compounding 16 times can reduce the artifact by ambiguity to below -40 dB. The effectiveness of the proposed method was verified through k-Wave simulation using point phantoms and mesh phantoms. In actual experiments, the proposed method was tested using a 532 nm wavelength laser and carbon films, black wire phantom. Finally, a k-space filtering approach previously proposed for ultrasound imaging (i.e., two-way focusing) was also tested in this study for photoacoustic imaging. The results were discussed, and it was concluded that the k-space approach is inadequate to solve the ambiguity problem.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-01T16:11:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-01T16:11:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
ABSTRACT iii
目次 iv
圖次 vii
表次 xiii
第一章 緒論 1
1.1 研究背景 1
1.2 光聲顯微術 2
1.2.1 光聲效應 2
1.2.2 光聲顯微系統 4
1.3 三維超音波影像 6
1.3.1 一維陣列超音波影像 6
1.3.2 二維陣列超音波影像 7
1.4 行列式二維陣列超音波影像 8
1.4.1 硬體架構 8
1.4.2 成像方式 9
1.5 研究目標 12
1.6 論文架構 12
第二章 行列式二維陣列三維光聲成像 13
2.1 三維光聲影像模擬方法 13
2.1.1 全採樣二維陣列光聲成像 14
2.1.2 行列式二維陣列光聲成像 15
2.1.3 點擴散函數分析 17
2.2 影像不確定性 19
第三章 解決影像不確定性之方法 23
3.1 重建全採樣陣列通道資料 23
3.1.1 光聲影像K空間濾波 23
3.1.2 從影像重建通道資料 32
3.1.3 重建結果 34
3.2 多角度接收複合影像 35
3.2.1 仿體模擬 41
3.2.2 實驗架構 45
3.2.3 實驗結果 46
第四章 重建全採樣陣列通道資料方法之分析 52
4.1 光聲K空間濾波重建單一元件接收事件之影像 52
4.2 重建全採樣陣列光聲影像 55
4.3 重建結果討論 57
4.3.1 重建通道資料相位分析 57
4.3.2 重建通道資料影像分析 60
第五章 分析與討論 61
5.1 多角度接收複合方法之討論 61
5.1.1 旋轉角度範圍 61
5.1.2 旋轉複合次數 63
5.1.3 引入同調因子 (coherent factor) 多角度接收複合方法 64
5.2 其他解決影像不確定性的方法 67
5.2.1 多角度傾斜接收複合影像 67
5.2.2 上下正交電極電容式微機電超音波傳感器 (TOBE CMUTs) 71
5.3 光聲影像K空間 (單向聚焦) 72
第六章 結論與未來展望 74
6.1 結論 74
6.2 未來展望 75
6.2.1 超快四維AR-PAM影像系統 75
6.2.2 其他欠採樣陣列 78
參考文獻 91
-
dc.language.isozh_TW-
dc.title使用行列式陣列之三維光聲成像zh_TW
dc.title3-D Photoacoustic Imaging Using Row-Column Addressed Arraysen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉瑋文;沈哲州;謝寶育zh_TW
dc.contributor.oralexamcommitteeWei-Wen Liu;Che-Chou Shen;Bao-Yu Hsiehen
dc.subject.keyword聲學解析度光聲顯微系統,三維成像,行列式陣列,波束成型,影像不確定性,zh_TW
dc.subject.keywordacoustic-resolution photoacoustic microscopy,3-D imaging,row-column addressed array,beamforming,ambiguity,en
dc.relation.page93-
dc.identifier.doi10.6342/NTU202304590-
dc.rights.note未授權-
dc.date.accepted2024-01-30-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生醫電子與資訊學研究所-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  目前未授權公開取用
8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved