Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91578
標題: 三碘化鉛甲基銨反式鈣鈦礦太陽能電池
Inverted Perovskite Solar Cells Based on Methylammonium Lead Triiodide
作者: 郭大緯
Da-Wei Kuo
指導教授: 陳昭岑
Chao-Tsen Chen
關鍵字: 反式鈣鈦礦太陽能電池,電洞傳輸材料,溶液凝膠法,氧化鎳,有機光伏高分子,光電轉換效率,金屬螯合物,
Inverted perovskite solar cells,hole transporting materials,sol-gel,NiOx,organic photovoltavic polymer,power conversion efficiency,metal chelate,
出版年 : 2024
學位: 博士
摘要: 本論文由三個研究主題所構成,第一部分 (第三章) 著重在無機氧化鎳電洞傳輸層材料的改良,透過簡單且省時的溶膠-凝膠法 (sol-gel) 來製備氧化鎳薄膜,並藉由調整致氧化鎳薄膜之前驅液組成: 鎳鹽以及穩定劑之化學成份比例 (1:0.6、1:0.8、1:1.0、1:1.2和1:1.4) 來探討其成分組成比例的差異對於鈣鈦礦元件的電性及光伏特性的探討,本研究證實了較少穩定劑比例的組成對於氧化鎳薄膜的性質是有所助益的,在前驅液比例為1:0.8時可以得到一個最優化的元件效率表現 (19.54 %)。
第二部分(第四章)則是以優化的氧化鎳薄膜元件為基礎,分別以 (1) 有機光伏高分子材料作為氧化鎳界面修飾層、(2) 以金屬螯合物作為鈣態礦添加劑、以及 (3) 以金屬螯合物作為鈣態礦界面修飾層之三種不同的方式來對元件進行修飾,並探討其對元件光電性質的影響;首先第一種方式是透過引入了三種含有氰基團的光伏聚合物,分別是基於苯二噁呋亞乙烯噻吩亞乙烯 (pBαCN)、吡啶并吡咯吡咯四噁呋烯 (P4TDPPCN) 和吡唑并吡咯四噁呋烯 (P4TICN) 的聚合物,作為氧化鎳 (optNiOx) 和鈣鈦礦之間的界面修飾層,來彌補因氧化鎳薄膜在熱處理過程中,於表面產生的裂紋缺陷所造成劣化的界面接觸。通過引入這些光伏高分子聚合物,我們發現其不僅降低了NiOx的表面粗糙度,同時也與鈣鈦礦產生了配位作用力,形成了良好的接觸界面,抑制了缺陷的生成,從而促進了從鈣鈦礦中高效地提取電洞並抑制了載子複合行為;它們本身的疏水特性還增加了鈣鈦礦的晶粒尺寸,延長了元件的穩定性。這些含有聚合物中間層的反式鈣態礦太陽能電池展現出高達20.09 % (P4TDPPCN) 和21.43 % (P4TICN) 的光電轉換效率。第二、三種方法 (第四章) 則利用實驗室已開發的一系列以氮喹啉 (4-methyl-[1.5]-naph- thyridin-8-ol; HmND) 為配位基、搭配許多不同類型中心金屬:鋅 (Zn)、鎂 (Mg)、鋁 (Al)、鎵 (Ga)、銦 (In)、鉿 (Hf),所構成之金屬螯合物,應用於反式鈣鈦礦太陽能電池中,除了透過配基上的含孤對電子的氮原子與鈣鈦礦之間有作用力之外,其不同的中心金屬、及化學構型都將影響著元件的效率表現;作為鈣鈦礦層添加劑,InmND3有著最好的效率表現 (20.03 %),可能跟其特別的化學構型或是電性有關;作為鈣鈦礦修飾層,單純配基HmND展現出最佳的效率表現 (20.52 %),透過HmND與鈣鈦礦產生作用力,一方面除了降低鈣鈦礦表面缺陷之外,也能使電子傳輸層,[6,6]-苯基-碳61-丁酸甲酯 (PC61BM) 有較好的成膜均勻性;而更詳細深入的研究仍需更多的實驗數據作相關的探討。
最後,本研究第三部分(第五章)則是相比於無機的氧化鎳電洞傳輸材料,藉由設計合成了兩種以2,4,6-三取代吡啶為核心、和4,4''-二甲氧基三苯胺作為外圍供體基團组成之兩種新型電子供體-電子受體-電子供體型 (D-A-D) 有機小分子電洞傳輸層材料,TPA-TPy和TPA-Py-PTZ,並將其應用於反式鈣鈦礦的電洞傳輸層中;與TPA-Py-PTZ相比之下,TPA-TPy在與鈣鈦礦有著較為良好的界面接觸,並由於結構上較延展共軛系統的其有著更為良好的電洞遷移、傳輸效率,不僅如此,沉積在TPA-TPy上的鈣鈦礦展現出無針孔缺陷、緻密、覆蓋性佳且大晶粒尺寸的優點也減少了載子在界面上重組的機會,以TPA-TPy為電洞傳輸層其鈣鈦礦元件表現出15.33 %的光電轉換效率,在長時間元件穩定性的表現上,與參考元件相比 (NiOx),有機電洞傳輸層材料TPA-TPy和TPA-Py-PTZ都表現出較為優良的溼度穩定性。
This paper consists of three research themes. The first part (Chapter 3) focuses on the enhancement of inorganic nickel oxide hole transport layer material. It involves the preparation of NiOx thin films using a simple and time-efficient sol-gel method. By adjusting the precursor solution's composition of nickel salt and stabilizer in ratios of 1:0.6, 1:0.8, 1:1.0, 1:1.2, and 1:1.4, the impact of varying component proportions on the electrical and photovoltaic properties of perovskite devices is investigated. The study confirms the beneficial effects of a lower stabilizer proportion on the properties of NiOx films. The power conversion efficiency (PCE) of 19.54 % based on the optimized NiOx device is achieved with a precursor ratio of 1:0.8 (optNiOx).
The second part (Chapter 4) builds upon optNiOx thin-film devices. It explores modifications using three different methods: (1) organic photovoltaic polymer materials (OPV) as interface modifiers for NiOx, (2) using metal chelates as additives for perovskite, and (3) employing metal chelates as interfacial modifiers for perovskite. According to the first method, we introduce three cyanide-containing polymer materials—based on polybenzodithiophene-thienothiophene (pBαCN), pyridine-based (P4TDPPCN), and pyrazine-based (P4TICN) polymers—as interfacial modifiers between optNiOx and perovskite to passivate deteriorated interfacial contacts due to surface crack defects generated during the thermal treatment of NiOx films. These OPV polymers not only reduce the surface roughness of NiOx but also coordinate with perovskite, establishing better interfacial contact, suppressing defect generation, and promoting the capacity of hole extraction from perovskite while inhibiting carrier recombination. Additionally, their hydrophobic properties increase perovskite grain size, extending the device stability. The inverted perovskite solar cells (PSCs) with polymer interlayers exhibit PCE up to 20.09 % (P4TDPPCN) and 21.43 % (P4TICN). In the second and third methods (Chapter 4), we utilize a series of metal chelates were prepared in the laboratory using the coordination base of 4-methyl-[1.5]-naphthyridin-8-ol (HmND), in combination with various central metals such as zinc (Zn), magnesium (Mg), aluminum (Al), gallium (Ga), indium (In), and hafnium (Hf) to be applied in inverted PSCs. In addition to the interaction between the nitrogen atom with lone pair electrons in the coordinating base and the perovskite, the different central metals and chemical configurations had an impact on the PCE of the devices. As a perovskite layer additive, InmND3 performs the best PCE (20.03%), likely due to its unique chemical configuration or electrical properties. As a perovskite modifier, the simple ligand HmND demonstrates the highest PCE (20.52%) by interacting with perovskite, reducing surface defects, and improving the film uniformity of the electron transport layer, [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM). Further in-depth research requires additional experimental data for relevant investigation.
Finally, the third part (Chapter 5) of this study primarily focused on the design of two small molecule organic electron donor-acceptor-donor (D-A-D) type, TPA-TPy and TPA-Py-PTZ, which were applied in inverted PSCs as hole-transport layer materials (HTM). The chemical structure of these HTM materials were composed of 2,4,6-trisubstituted pyridine as an electron-acceptor core and 4,4'-dimethoxytriphenylamine as peripheral electron-donor groups. In comparison to TPA-Py-PTZ; TPA-TPy exhibited better interfacial contact with perovskite, not only that, due to its more extended conjugated structure, leading to enhance hole migration and transport efficiency. Moreover, perovskite deposited on TPA-TPy showed advantages such as defect-free, dense, good coverage, and larger grain size, which may suppress the carrier recombination at the interface. When TPA-TPy was used as the hole-transport layer, perovskite devices achieved a PCE of 15.33 %. In terms of long-term device stability, both organic hole-transport materials, TPA-TPy and TPA-Py-PTZ demonstrated excellent humidity stability compared to the reference material (NiOx).
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91578
DOI: 10.6342/NTU202400188
全文授權: 同意授權(全球公開)
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf9.28 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved