請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91575完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 駱尚廉 | zh_TW |
| dc.contributor.advisor | Shang-Lien Lo | en |
| dc.contributor.author | 楊友瑞 | zh_TW |
| dc.contributor.author | Yu-Ruei Yang | en |
| dc.date.accessioned | 2024-01-28T16:35:55Z | - |
| dc.date.available | 2024-01-29 | - |
| dc.date.copyright | 2024-01-28 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-20 | - |
| dc.identifier.citation | Aouni, A., Fersi, C., Ali, M. B. S., & Dhahbi, M. (2009). Treatment of textile wastewater by a hybrid electrocoagulation/nanofiltration process. Journal of hazardous materials, 168(2-3), 868-874.
Appleman, T. D., Dickenson, E. R., Bellona, C., & Higgins, C. P. (2013). Nanofiltration and granular activated carbon treatment of perfluoroalkyl acids. Journal of hazardous materials, 260, 740-746. Asuquo, E., Martin, A., Nzerem, P., Siperstein, F., & Fan, X. (2017). Adsorption of Cd (II) and Pb (II) ions from aqueous solutions using mesoporous activated carbon adsorbent: Equilibrium, kinetics and characterisation studies. Journal of environmental chemical engineering, 5(1), 679-698. Ateia, M., Alsbaiee, A., Karanfil, T., & Dichtel, W. (2019). Efficient PFAS removal by amine-functionalized sorbents: critical review of the current literature. Environmental Science & Technology Letters, 6(12), 688-695. Ateia, M., Maroli, A., Tharayil, N., & Karanfil, T. (2019). The overlooked short-and ultrashort-chain poly-and perfluorinated substances: A review. Chemosphere, 220, 866-882. Bera, A., & Belhaj, H. (2016). Ionic liquids as alternatives of surfactants in enhanced oil recovery—A state-of-the-art review. Journal of Molecular Liquids, 224, 177-188. Berlin, A. A. (1986). Kinetics of radical-chain decomposition of persulfate in aqueous solutions of organic compounds. Kinet. Catal.(Engl. Transl.);(United States), 27(1 PT 1). Cai, M., Zhao, Z., Yin, Z., Ahrens, L., Huang, P., Cai, M., Yang, H., He, J., Sturm, R., & Ebinghaus, R. (2012). Occurrence of perfluoroalkyl compounds in surface waters from the North Pacific to the Arctic Ocean. Environmental science & technology, 46(2), 661-668. Cao, M., Wang, B., Yu, H., Wang, L., Yuan, S., & Chen, J. (2010). Photochemical decomposition of perfluorooctanoic acid in aqueous periodate with VUV and UV light irradiation. Journal of hazardous materials, 179(1-3), 1143-1146. Chen, W.-f., Zhang, Z.-Y., Li, Q., & Wang, H.-Y. (2012). Adsorption of bromate and competition from oxyanions on cationic surfactant-modified granular activated carbon (GAC). Chemical Engineering Journal, 203, 319-325. Choi, H.-D., Jung, W.-S., Cho, J.-M., Ryu, B.-G., Yang, J.-S., & Baek, K. (2009). Adsorption of Cr (VI) onto cationic surfactant-modified activated carbon. Journal of hazardous materials, 166(2-3), 642-646. Coggan, T. L., Moodie, D., Kolobaric, A., Szabo, D., Shimeta, J., Crosbie, N. D., Lee, E., Fernandes, M., & Clarke, B. O. (2019). An investigation into per-and polyfluoroalkyl substances (PFAS) in nineteen Australian wastewater treatment plants (WWTPs). Heliyon, 5(8), e02316. Deng, S., Niu, L., Bei, Y., Wang, B., Huang, J., & Yu, G. (2013). Adsorption of perfluorinated compounds on aminated rice husk prepared by atom transfer radical polymerization. Chemosphere, 91(2), 124-130. Deng, S., Yu, Q., Huang, J., & Yu, G. (2010). Removal of perfluorooctane sulfonate from wastewater by anion exchange resins: Effects of resin properties and solution chemistry. Water research, 44(18), 5188-5195. Dinglasan, M. J. A., Ye, Y., Edwards, E. A., & Mabury, S. A. (2004). Fluorotelomer alcohol biodegradation yields poly-and perfluorinated acids. Environmental science & technology, 38(10), 2857-2864. Du, Z., Deng, S., Bei, Y., Huang, Q., Wang, B., Huang, J., & Yu, G. (2014). Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—A review. Journal of hazardous materials, 274, 443-454. Espartero, L. J. L., Yamada, M., Ford, J., Owens, G., Prow, T., & Juhasz, A. (2022). Health-related toxicity of emerging per-and polyfluoroalkyl substances: Comparison to legacy PFOS and PFOA. Environmental Research, 212, 113431. Fromme, H., Tittlemier, S. A., Völkel, W., Wilhelm, M., & Twardella, D. (2009). Perfluorinated compounds–exposure assessment for the general population in Western countries. International journal of hygiene and environmental health, 212(3), 239-270. Fujii, S., Polprasert, C., Tanaka, S., Hong Lien, N. P., & Qiu, Y. (2007). New POPs in the water environment: distribution, bioaccumulation and treatment of perfluorinated compounds–a review paper. Journal of Water Supply: Research and Technology—AQUA, 56(5), 313-326. Gómez, C., Vicente, J., Echavarri-Erasun, B., Porte, C., & Lacorte, S. (2011). Occurrence of perfluorinated compounds in water, sediment and mussels from the Cantabrian Sea (North Spain). Marine pollution bulletin, 62(5), 948-955. Gerçel, Ö., Özcan, A., Özcan, A. S., & Gercel, H. F. (2007). Preparation of activated carbon from a renewable bio-plant of Euphorbia rigida by H2SO4 activation and its adsorption behavior in aqueous solutions. Applied surface science, 253(11), 4843-4852. Glüge, J., Scheringer, M., Cousins, I. T., DeWitt, J. C., Goldenman, G., Herzke, D., Lohmann, R., Ng, C. A., Trier, X., & Wang, Z. (2020). An overview of the uses of per-and polyfluoroalkyl substances (PFAS). Environmental Science: Processes & Impacts, 22(12), 2345-2373. Hansen, M. C., Børresen, M. H., Schlabach, M., & Cornelissen, G. (2010). Sorption of perfluorinated compounds from contaminated water to activated carbon. Journal of Soils and Sediments, 10, 179-185. Helmer, R. W., Reeves, D. M., & Cassidy, D. P. (2022). Per-and Polyfluorinated Alkyl Substances (PFAS) cycling within Michigan: Contaminated sites, landfills and wastewater treatment plants. Water research, 210, 117983. Hoelzer, J., Lilienthal, H., & Schuemann, M. (2021). Human Biomonitoring (HBM)-I values for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS)-Description, derivation and discussion. Regulatory Toxicology and Pharmacology, 121, 104862. Hu, C., Lo, S., Kuan, W., & Lee, Y. (2005). Removal of fluoride from semiconductor wastewater by electrocoagulation–flotation. Water research, 39(5), 895-901. Huang, K.-C., Couttenye, R. A., & Hoag, G. E. (2002). Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere, 49(4), 413-420. Inyang, M., & Dickenson, E. R. (2017). The use of carbon adsorbents for the removal of perfluoroalkyl acids from potable reuse systems. Chemosphere, 184, 168-175. Jian, J.-M., Chen, D., Han, F.-J., Guo, Y., Zeng, L., Lu, X., & Wang, F. (2018). A short review on human exposure to and tissue distribution of per-and polyfluoroalkyl substances (PFASs). Science of the Total Environment, 636, 1058-1069. Kah, M., Oliver, D., & Kookana, R. (2021). Sequestration and potential release of PFAS from spent engineered sorbents. Science of the Total Environment, 765, 142770. Kazwini, T., Yadav, S., Ibrar, I., Al-Juboori, R. A., Singh, L., Ganbat, N., Karbassiyazdi, E., Samal, A. K., Subbiah, S., & Altaee, A. (2022). Updated review on emerging technologies for PFAS contaminated water treatment. Chemical Engineering Research and Design. Khurana, P., Hasaneen, N., Pulicharla, R., Kaur, G., & Brar, S. K. (2022). Co-transport of PFCs in the environment-An interactive story. Current Research in Green and Sustainable Chemistry, 100302. Kirk, M., Smurthwaite, K., Braunig, J., Trevenar, S., D'Este, C., Lucas, R., Lal, A., Korda, R., Clements, A., & Mueller, J. (2018). The PFAS health study: systematic literature review. Kobya, M., Senturk, E., & Bayramoglu, M. (2006). Treatment of poultry slaughterhouse wastewaters by electrocoagulation. Journal of hazardous materials, 133(1-3), 172-176. Lee, Y.-C., Lo, S.-L., Chiueh, P.-T., & Chang, D.-G. (2009). Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate. Water research, 43(11), 2811-2816. Lenka, S. P., Kah, M., & Padhye, L. P. (2021). A review of the occurrence, transformation, and removal of poly-and perfluoroalkyl substances (PFAS) in wastewater treatment plants. Water research, 199, 117187. Li, F., Duan, J., Tian, S., Ji, H., Zhu, Y., Wei, Z., & Zhao, D. (2020). Short-chain per-and polyfluoroalkyl substances in aquatic systems: Occurrence, impacts and treatment. Chemical Engineering Journal, 380, 122506. Li, L., Quinlivan, P. A., & Knappe, D. R. (2002). Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon, 40(12), 2085-2100. Li, Y.-F., Chien, W.-Y., Liu, Y.-J., Lee, Y.-C., Lo, S.-L., & Hu, C.-Y. (2021). Perfluorooctanoic acid (PFOA) removal by flotation with cationic surfactants. Chemosphere, 266, 128949. Lin, J., & Wang, L. (2009). Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon. Frontiers of Environmental Science & Engineering in China, 3, 320-324. Lindstrom, A. B., Strynar, M. J., & Libelo, E. L. (2011). Polyfluorinated compounds: past, present, and future. Environ Sci Technol, 45(19), 7954-7961. Lindstrom, A. B., Strynar, M. J., & Libelo, E. L. (2011). Polyfluorinated compounds: past, present, and future. Environmental science & technology, 45(19), 7954-7961. Liu, S., Yang, R., Yin, N., & Faiola, F. (2020). The short-chain perfluorinated compounds PFBS, PFHxS, PFBA and PFHxA, disrupt human mesenchymal stem cell self-renewal and adipogenic differentiation. Journal of Environmental Sciences, 88, 187-199. Liu, X., Xu, Q., Li, Z., Pan, B., Ndagijimana, P., & Wang, Y. (2022). Simultaneous removal of cationic heavy metals and arsenic from drinking water by an activated carbon supported nanoscale zero-valent iron and nanosilver composite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 650, 129581. Mahyar, A., Miessner, H., Mueller, S., Hama Aziz, K. H., Kalass, D., Moeller, D., Kretschmer, K., Robles Manuel, S., & Noack, J. (2019). Development and application of different non-thermal plasma reactors for the removal of perfluorosurfactants in water: a comparative study. Plasma Chemistry and Plasma Processing, 39, 531-544. Mastropietro, T. F., Bruno, R., Pardo, E., & Armentano, D. (2021). Reverse osmosis and nanofiltration membranes for highly efficient PFASs removal: overview, challenges and future perspectives. Dalton Transactions, 50(16), 5398-5410. Modirshahla, N., Behnajady, M., & Kooshaiian, S. (2007). Investigation of the effect of different electrode connections on the removal efficiency of Tartrazine from aqueous solutions by electrocoagulation. Dyes and pigments, 74(2), 249-257. Mollah, M. Y., Morkovsky, P., Gomes, J. A., Kesmez, M., Parga, J., & Cocke, D. L. (2004). Fundamentals, present and future perspectives of electrocoagulation. Journal of hazardous materials, 114(1-3), 199-210. Murugesan, A., Vidhyadevi, T., Kalaivani, S., Baskaralingam, P., Anuradha, C., & Sivanesan, S. (2014). Kinetic studies and isotherm modeling for the removal of Ni2+ and Pb2+ ions by modified activated carbon using sulfuric acid. Environmental Progress & Sustainable Energy, 33(3), 844-854. Nzeribe, B. N., Crimi, M., Mededovic Thagard, S., & Holsen, T. M. (2019). Physico-chemical processes for the treatment of per-and polyfluoroalkyl substances (PFAS): A review. Critical Reviews in Environmental Science and Technology, 49(10), 866-915. Ochoa-Herrera, V., Field, J. A., Luna-Velasco, A., & Sierra-Alvarez, R. (2016). Microbial toxicity and biodegradability of perfluorooctane sulfonate (PFOS) and shorter chain perfluoroalkyl and polyfluoroalkyl substances (PFASs). Environmental Science: Processes & Impacts, 18(9), 1236-1246. Ochoa-Herrera, V., & Sierra-Alvarez, R. (2008). Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge. Chemosphere, 72(10), 1588-1593. Olsen, G. W., Mair, D. C., Church, T. R., Ellefson, M. E., Reagen, W. K., Boyd, T. M., Herron, R. M., Medhdizadehkashi, Z., Nobiletti, J. B., & Rios, J. A. (2008). Decline in perfluorooctanesulfonate and other polyfluoroalkyl chemicals in American Red Cross adult blood donors, 2000− 2006. Environmental science & technology, 42(13), 4989-4995. Paul, A. G., Jones, K. C., & Sweetman, A. J. (2009). A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environ Sci Technol, 43(2), 386-392. Pouet, M.-F., & Grasmick, A. (1995). Urban wastewater treatment by electrocoagulation and flotation. Water Science and Technology, 31(3-4), 275-283. Punyapalakul, P., Suksomboon, K., Prarat, P., & Khaodhiar, S. (2013). Effects of surface functional groups and porous structures on adsorption and recovery of perfluorinated compounds by inorganic porous silicas. Separation Science and Technology, 48(5), 775-788. Qu, Y., Zhang, C., Li, F., Bo, X., Liu, G., & Zhou, Q. (2009). Equilibrium and kinetics study on the adsorption of perfluorooctanoic acid from aqueous solution onto powdered activated carbon. Journal of hazardous materials, 169(1-3), 146-152. Rupprecht, H., & Gu, T. (1991). Structure of adsorption layers of ionic surfactants at the solid/liquid interface. Colloid and Polymer Science, 269, 506-522. Simonin, J.-P. (2016). On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chemical Engineering Journal, 300, 254-263. Soriano, Á., Gorri, D., & Urtiaga, A. (2017). Efficient treatment of perfluorohexanoic acid by nanofiltration followed by electrochemical degradation of the NF concentrate. Water research, 112, 147-156. Tang, H. P.-o. (2013). Recent development in analysis of persistent organic pollutants under the Stockholm Convention. TrAC Trends in Analytical Chemistry, 45, 48-66. Tegladza, I. D., Xu, Q., Xu, K., Lv, G., & Lu, J. (2021). Electrocoagulation processes: a general review about role of electro-generated flocs in pollutant removal. Process Safety and Environmental Protection, 146, 169-189. Teymourian, T., Teymoorian, T., Kowsari, E., & Ramakrishna, S. (2021). A review of emerging PFAS contaminants: sources, fate, health risks, and a comprehensive assortment of recent sorbents for PFAS treatment by evaluating their mechanism. Research on Chemical Intermediates, 1-36. Virkutyte, J., & Rokhina, E. (2010). Hybrid Advanced Oxidation techniques based on cavitation for Micropollutants degradation. Treatment of Micropollutants in Water and Wastewater. IWA Publishing, London, UK, 321-359. Wang, S., Yang, Q., Chen, F., Sun, J., Luo, K., Yao, F., Wang, X., Wang, D., Li, X., & Zeng, G. (2017). Photocatalytic degradation of perfluorooctanoic acid and perfluorooctane sulfonate in water: A critical review. Chemical Engineering Journal, 328, 927-942. Xiao, J.-X., Zhang, Y., Wang, C., Zhang, J., Wang, C.-M., Bao, Y.-X., & Zhao, Z.-G. (2005). Adsorption of cationic–anionic surfactant mixtures on activated carbon. Carbon, 43(5), 1032-1038. Xing, D. Y., Chen, Y., Zhu, J., & Liu, T. (2020). Fabrication of hydrolytically stable magnetic core-shell aminosilane nanocomposite for the adsorption of PFOS and PFOA. Chemosphere, 251, 126384. Yao, Y., Volchek, K., Brown, C. E., Robinson, A., & Obal, T. (2014). Comparative study on adsorption of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) by different adsorbents in water. Water Science and Technology, 70(12), 1983-1991. Yu, Q., Zhang, R., Deng, S., Huang, J., & Yu, G. (2009). Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study. Water research, 43(4), 1150-1158. Zhang, D., Luo, Q., Gao, B., Chiang, S.-Y. D., Woodward, D., & Huang, Q. (2016). Sorption of perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular activated carbon. Chemosphere, 144, 2336-2342. Zhang, Q., Deng, S., Yu, G., & Huang, J. (2011). Removal of perfluorooctane sulfonate from aqueous solution by crosslinked chitosan beads: sorption kinetics and uptake mechanism. Bioresource technology, 102(3), 2265-2271. Zhang, R., & Somasundaran, P. (2006). Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Advances in colloid and interface science, 123, 213-229. Zhao, Y., Wong, C., & Wong, M. H. (2012). Environmental contamination, human exposure and body loadings of perfluorooctane sulfonate (PFOS), focusing on Asian countries. Chemosphere, 89(4), 355-368. Zhou, Q., Deng, S., Yu, Q., Zhang, Q., Yu, G., Huang, J., & He, H. (2010). Sorption of perfluorooctane sulfonate on organo-montmorillonites. Chemosphere, 78(6), 688-694. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91575 | - |
| dc.description.abstract | 全氟化合物(Perfluorinated chemicals, PFCs)是由碳鏈上氫被氟取代形成穩定性極強之C-F鍵,另一端由親水官能基團組成之化合物,所以兼具親水及疏水兩種特性,因此被廣泛應用於各類產品與其製程中。過去產業間大多使用長碳鏈PFCs,但隨後發現長碳鏈PFCs具有環境持久性、生物累積毒性會對環境造成危害影響,於是各國之間開始擬定相關政策,長碳鏈逐漸被短碳鏈PFCs取代,如全氟丁酸(Perfluorobutanoic acid, PFBA),但對於短碳鏈PFCs之毒性、生物累積等相關知識不完善,相關研究已指出短探鏈PFCs可能導致人體以及環境暴露於相關風險之中。因此發展有效去除短碳鏈PFCs之技術,成為當今至關重要的議題。
本研究擬用活性碳(Activated Carbon, AC)吸附水中PFBA。首先,分析活性碳基本性質,如:界達電位、比表面積、組成元素、表面結構;比較PFBA初始濃度、pH值、AC劑量、攪拌速率等不同參數條件下比較去除效果影響,藉此找出最佳參數條件。進一步採用實驗所獲之最佳參數條件,以改性(陽離子界面活性劑、聚乙烯亞胺、硫酸) AC,探究改性AC對吸附PFBA產生之影響。研究結果顯示,在室溫、PFBA初始濃度為200 ppm、pH值為3.0、磁石長 =2.5 cm、AC劑量 = 8 g/L、600 rpm轉速攪拌250 mL水樣以及包含緩衝溶液(KH2PO4= 2.0 mM;H3BO3= 2.0 mM;KCl= 2.0 mM)的條件下反應六小時後,發現以陽離子界面活性劑的四丁基溴化銨(Tetrabutyl-ammonium bromide, TBAB)改性AC具有最佳吸附效果,去除率為96.72%,吸附量為24.23 mg/g。此外,在各pH值其他陽離子界面活性劑改性AC,均能增加對PFBA之吸附能力,但以聚乙烯亞胺或硫酸改性AC去除效果反而下降。研究吸附過程大多符合擬二階吸附動力模式。AC與改性TBAB之AC在濃度50~500 ppm範圍內吸附過程符合Langmuir等溫吸附模式。 另外,本研究探討競爭吸附行為,測試未改性於最佳吸附效果之AC吸附其他PFCs,比較PFBA、全 氟 己 酸 (Undecafluorohexanoic acid, PFHxA)、全氟丁基磺酸(Perfluorobutanesulfonic acid, PFBS)之競爭吸附行為。經本研究發現在合成廢水下使用未改性AC,PFHxA最容易被吸附,PFBA最不易被吸附;使用改性TBAB之AC,PFBS最容易被吸附,PFBA最不易被吸附。此外,改性TBAB之AC吸附PFBA、PFBS、PFHxA的吸附容量均高於未改性AC。最後研究為了驗證改性TBAB之AC可行性,以實廠廢水為基質與合成廢水進行比較,結果表明實廠廢水中存在有機物以及鹽類可能會與PFCs競爭吸附點位,造成吸附效果比研究合成廢水差。 經本研究證實改性TBAB之AC能比未改性AC更有效吸附短碳鏈之PFBA,但合成廢水未考慮實廠環境因素,因此未來可測試在不同實廠廢水基質下探討改性AC的可行性。 | zh_TW |
| dc.description.abstract | Perfluorinated chemicals (PFCs) are compounds composed of hydrogen substituted by fluorine in the carbon chain to form a highly stable C-F bond and hydrophilic functional groups, so that they are both hydrophilic and hydrophobic. They are widely used in various products and processes. PFCs with long carbon chains were widely used in the industry, but recently they were found to the environmental persistent with bioaccumulative toxicities. Countries began to formulate policies to replace long-chain PFCs with short-chain PFCs, such as perfluorobutanoic acid (PFBA). However, information about the toxicity and bioaccumulation of short-chain PFCs is scarce; studies have shown that short-chain PFCs might also pose human and ecological risks. Therefore, development of effective technologies for removal of short-chain PFCs from environmental media of importance.
In this study, activated carbon (AC) was used for removal of PFBA from water through adsorption. First, basic properties of activated carbon, such as zeta potential, specific surface area, constituent elements, and surface structure, were analyzed. Effects of the initial PFBA concentration, pH value, AC dose and stirring rate were then compared to find out the optimal parameters for removal. Further, best experimental parameters were used to modify AC (cationic surfactant, polyvinylideneamine, sulfuric acid) to investigate the effectiveness of the modified ACs on the adsorption removal of PFBA.The results showed that after six hours of reaction at room temperature, initial PFBA concentration of 200 ppm, pH 3.0, AC dose = 8 g/L, stirring speed = 600 rpm ,a stir bar = 2.5 cm, in a 250 mL buffer solution (KH2PO4 = 2.0 mM; H3BO3= 2.0 mM; KCl= 2.0 mM), the best adsorption effect was achieved by AC modified by tetrabutyl-ammonium bromide (TBAB), a cationic surfactant, with a removal rate of 96.72% and an adsorption capacity of 24.23 mg/g. In addition, modifications of AC with other cationic surfactants at various pH values also increased the adsorption removal of PFBA. However, the removal effectiveness of AC modified with polyvinylideneamine or sulfuric acid decreased. The adsorption processes were mostly in accordance with the the pseudo-second-order adsorption kinetics model, and the adsorption processes of the AC and the TBAB-modified AC were in accordance with the Langmuir isothermal adsorption model. This study also investigated the competitive adsorption behavior by testing the adsorption of PFBA, undecafluorohexanoic acid (PFHxA), and perfluorobutanesulfonic acid (PFBS) by the AC. When the AC was used in synthetic wastewater, the extents of adsorption were PFHxA > PFBS > PFBA. When the TBAB-modified AC was used in synthetic wastewater, the extents of adsorption were PFBS> PFHxA > PFBA. In addition, the adsorption capacities of the TBAB-modified AC for PFBA, PFBS, and PFHxA were higher than those of the AC. Finally, in order to verify the applicability of the TBAB-modified AC, a comparison was made between real wastewater and synthetic wastewater. The results showed that the presence of organic matter and salts in the real wastewater might compete with PFCs for the adsorption sites, resulting in poorer adsorption. This study confirmed that the TBAB-modified AC could adsorb PFBA more effectively than the AC. However, its applications for removal of PFBA in real wastewaters need to be further investigated. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-28T16:35:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-01-28T16:35:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目 錄
致謝…………………………………………………………………………….……..II 摘要…………………………………………………………………………….….…III Abstract ………………………………………………………………………………V 目錄 …………………………………………………………………………..……VII 圖目錄 ……………………………………………………………………………....XI 表目錄 ………………………………………………………………………….....XIII 第一章 緒論 . …………………………………………………………….………… 1 1.1 研究緣起 ………………………………………………………………...…1 1.2 研究目的 ………………………………………………………………...…3 1.3 研究內容 …………………………………………………………………...3 第二章 文獻回顧 ………………………………………………………………....…4 2.1 全氟化合物 …………………………………………………………...……4 2.1.1 全氟化合物歷史背景 ………………………………………………4 2.1.2 全氟化合物基本性質 ………………………………………………5 2.1.3 全氟化合物危害性 …………………………………………………8 2.1.4 短碳鏈全氟化合物 ……………………………………………..…10 2.2 全氟化合物處理技術 ………………………………………………….…12 2.2.1 活性碳吸附 …………………………………………………..……12 2.2.1.1活性碳吸附模式 ……………………………………………14 2.2.2 膜過濾處理法 ……………………………………………………..16 2.2.3 光催化降解法 …………………………………………………..…17 2.2.4 電混凝/浮除技術(ECF) ……………………………………………18 2.2.5 其他氧化處理法 ……………………………………………..……19 2.2.5.1超聲波處理 …………………………………………………19 2.2.5.2 過硫酸鹽氧化 …………………………………………...…20 2.2.5.3 非熱等離子體 ………………………………………...……21 2.3 改性活性碳種類 …………………………………………………….……22 2.3.1 界面活性劑 …………………………………………..……………22 2.3.1.1界面活性劑在固相及水相機制 …. ………………………...25 2.3.2 聚乙烯亞胺 ………………………………...………………...……26 2.3.6 硫酸 ……………………………………………………………..…26 第三章 材料與方法 …………..…………………………………………....………27 3.1 實驗架構 ……………………………………………………………….…27 3.2 實驗設計 ……………………………………………………………….…28 3.2.1 容器吸附實驗 ………………………………………………..……28 3.2.2 空白背景實驗 …………………………………………………..…28 3.2.3 未改性活性碳對PFBA之去除 ……………………………..……28 3.2.4 改性活性碳對PFBA之去除 …………………………………..….30 3.2.5 全氟丁酸 (PFBA)去除率計算…………..………………………...31 3.3 實驗藥品 …………………………………………………………….……31 3.4 實驗設備與儀器 ………………………………………………………… 32 3.5 分析儀器介紹 ……………………………………………………….……33 第四章 結果與討論 ……………………………………………………….………39 4.1 背景實驗 …………………………………………………………………39 4.1.1容器吸附實驗 …………………………………………………..…39 4.1.2 緩衝溶液空白實驗 …………………………………….…….……40 4.1.3 TBAB空白實驗 ………………………………………...……….…41 4.2 活性碳表面特徵分析 ………………………………………………….…42 4.2.1 界達電位分析 ………………………………………………….….42 4.2.2 掃描式電子顯微鏡分析 …………………………………..………43 4.2.3 比表面積分析 ………………………………………………..……49 4.3 實驗之操作參數 ……………………………………………………….…51 4.3.1 PFBA初始濃度對吸附影響 …………………………………….…51 4.3.2 活性碳添加量對吸附影響 …………………. ……………………52 4.3.3 攪拌速率對吸附影響 ………………………………………….….53 4.3.4 磁石長度對吸附影響 ……………………………………………..54 4.3.5 浸泡活性碳改性時間對吸附影響 ……………………………..…55 4.3.6 pH值對吸附影響 ……………………………………………..…57 4.4改性活性碳之吸附實驗 ………………………………………………..…58 4.4.1 陽離子界面活性劑 ……………………………………………..…58 4.4.1.1 TBAB ……………………………………………………..…58 4.4.1.2 OTAB ……………………………………………………..…60 4.4.1.3 DTAB ……………………………………………………..…61 4.4.1.4 CTAB …………………………………………………….….62 4.4.2 PEI ………………………………………………………………….64 4.4.3 H2SO4 …………………………………………………….……….…65 4.4.4 不同改性活性碳之吸附比較 ……………………………….….…66 4.5吸附模式 …………………………………………………………………..70 4.5.1 吸附動力模式 ……………………………..………………………70 4.5.2 等溫吸附模式 ………………………………………………..……73 4.6 實場應用 ……………………………………………………………….…79 4.6.1 應用於其他PFAs去除效果 ………………………………..…..…79 4.6.1.1 未改性AC………………………………..……………….…79 4.6.1.2 TBAB 改性 AC…………………..…………………………83 4.6.2 實廠廢水去除效果 ……………………………..…………………88 第五張 結論與建議 ……………………………………………………….………93 5.1 結論 ………………………………………………………………………93 5.2建議 ………………………………………………………………….……94 參考文獻 ………………………………………………………………..……….….95 附錄 …………………………………………………………………………….….102 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 陽離子界面活性劑 | zh_TW |
| dc.subject | 聚乙烯亞胺 | zh_TW |
| dc.subject | 競爭吸附 | zh_TW |
| dc.subject | 改性活性碳 | zh_TW |
| dc.subject | 全氟丁酸 | zh_TW |
| dc.subject | polyethyleneimine | en |
| dc.subject | perfluorinated chemicals | en |
| dc.subject | modified activated carbon | en |
| dc.subject | competitive adsorption | en |
| dc.subject | cationic surfactants | en |
| dc.title | 改性活性碳去除短碳鏈全氟丁酸之研究 | zh_TW |
| dc.title | Removal of Short-chained Perfluorobutanoic acid (PFBA) with Modified Activated Carbon | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 郭繼汾;陳映竹 | zh_TW |
| dc.contributor.oralexamcommittee | Jeff Kuo;Ying-Chu Chen | en |
| dc.subject.keyword | 全氟丁酸,改性活性碳,競爭吸附,陽離子界面活性劑,聚乙烯亞胺, | zh_TW |
| dc.subject.keyword | perfluorinated chemicals,modified activated carbon,competitive adsorption,cationic surfactants,polyethyleneimine, | en |
| dc.relation.page | 113 | - |
| dc.identifier.doi | 10.6342/NTU202301679 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-07-20 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 5.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
