Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91567
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉建豪zh_TW
dc.contributor.advisorChien-Hao Liuen
dc.contributor.author蔣築灝zh_TW
dc.contributor.authorChu-Hao Chiangen
dc.date.accessioned2024-01-28T16:33:57Z-
dc.date.available2024-02-24-
dc.date.copyright2024-01-28-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citation[1] Y. Fan, H. Yang, X. Liu, H. Zhu, and G. Zou, “Preparation and study on radar absorbing materials of nickel-coated carbon fiber and flake graphite,” J. Alloys Compd., vol. 461, no. 1, pp. 490–494, Aug. 2008.
[2] S. K. Ghosh, S. Das, and S. Bhattacharyya, “Graphene-based metasurface for tunable absorption and transmission characteristics in the near mid-infrared region,” IEEE Trans. Antennas Propag., vol. 70, no. 6, pp. 4600–4612, Jun. 2022.
[3] C.-W. Lin, C.-K. Shen, C.-N. Chiu, and T.-L. Wu, “Design and modeling of a compact partially transmissible resistor-free absorptive frequency selective surface for wi-fi applications,” IEEE Trans. Antennas Propag., vol. 67, no. 2, pp. 1306–1311, Feb. 2019.
[4] S. Gupta and N.-H. Tai, “Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band,” Carbon, vol. 152, pp. 159–187, Nov. 2019.
[5] L. Zhang, S. Bi, M. Liu, L. Zhang, S. Bi, and M. Liu, “Lightweight electromagnetic interference shielding materials and their mechanisms,” in Electromagnetic Materials and Devices, IntechOpen, 2018.
[6] J.-M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen, and C. Detrembleur, “Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials,” Mater. Sci. Eng. R Rep., vol. 74, no. 7, pp. 211–232, Jul. 2013.
[7] X.-Y. Wang et al., “Electromagnetic interference shielding materials: recent progress, structure design, and future perspective,” J. Mater. Chem. C, vol. 10, no. 1, pp. 44–72, 2022.
[8] A. G. El-Shamy, A. A. Maati, W. Attia, and K. M. Abd El-Kader, “Promising method for preparation the PVA/Ag nanocomposite and Ag nano-rods,” J. Alloys Compd., vol. 744, pp. 701–711, May 2018.
[9] S.-Y. Liao et al., “Flexible liquid metal/cellulose nanofiber composites film with excellent thermal reliability for highly efficient and broadband EMI shielding,” Chem. Eng. J., vol. 422, p. 129962, Oct. 2021.
[10] H. Ji, R. Zhao, N. Zhang, C. Jin, X. Lu, and C. Wang, “Lightweight and flexible electrospun polymer nanofiber/metal nanoparticle hybrid membrane for high-performance electromagnetic interference shielding,” NPG Asia Mater., vol. 10, no. 8, Art. no. 8, Aug. 2018.
[11] L.-X. Liu, W. Chen, H.-B. Zhang, Q.-W. Wang, F. Guan, and Z.-Z. Yu, “Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity,” Adv. Funct. Mater., vol. 29, no. 44, p. 1905197, 2019.
[12] D.-H. Kim, K.-C. Yu, Y. Kim, and J.-W. Kim, “Highly stretchable and mechanically stable transparent electrode based on composite of silver nanowires and polyurethane–urea,” ACS Appl. Mater. Interfaces, vol. 7, no. 28, pp. 15214–15222, Jul. 2015.
[13] D.-H. Kim, Y. Kim, and J.-W. Kim, “Transparent and flexible film for shielding electromagnetic interference,” Mater. Des., vol. 89, pp. 703–707, Jan. 2016.
[14] S. Wu et al., “Robust and stable Cu nanowire@graphene core–shell aerogels for ultraeffective electromagnetic interference shielding,” Small, vol. 14, no. 23, p. 1800634, 2018.
[15] L. Wu, L. Wang, Z. Guo, J. Luo, H. Xue, and J. Gao, “Durable and multifunctional superhydrophobic coatings with excellent joule heating and electromagnetic interference shielding performance for flexible sensing electronics,” ACS Appl. Mater. Interfaces, vol. 11, no. 37, pp. 34338–34347, Sep. 2019.
[16] R. Ravindren, S. Mondal, P. Bhawal, Shek. M. N. Ali, and N. C. Das, “Superior electromagnetic interference shielding effectiveness and low percolation threshold through the preferential distribution of carbon black in the highly flexible polymer blend composites,” Polym. Compos., vol. 40, no. 4, pp. 1404–1418, 2019.
[17] P. Ghosh and A. Chakrabarti, “Conducting carbon black filled EPDM vulcanizates: assessment of dependence of physical and mechanical properties and conducting character on variation of filler loading,” Eur. Polym. J., vol. 36, no. 5, pp. 1043–1054, May 2000.
[18] M. Madani, “Conducting carbon black filled NR/ IIR blend vulcanizates: Assessment of the dependence of physical and mechanical properties and electromagnetic interference shielding on variation of filler loading,” J. Polym. Res., vol. 17, no. 1, pp. 53–62, Jan. 2010.
[19] S. Lu et al., “Flexible, mechanically resilient carbon nanotube composite films for high-efficiency electromagnetic interference shielding,” Carbon, vol. 136, pp. 387–394, Sep. 2018.
[20] G. S. Kumar, D. Vishnupriya, A. Joshi, S. Datar, and T. U. Patro, “Electromagnetic interference shielding in 1–18 GHz frequency and electrical property correlations in poly(vinylidene fluoride)–multi-walled carbon nanotube composites,” Phys. Chem. Chem. Phys., vol. 17, no. 31, pp. 20347–20360, Jul. 2015.
[21] S. J. Pothupitiya Gamage et al., “MWCNT coated free-standing carbon fiber fabric for enhanced performance in EMI shielding with a higher absolute EMI SE,” Materials, vol. 10, no. 12, Art. no. 12, Dec. 2017.
[22] C. A. Ramírez-Herrera, H. Gonzalez, F. de la Torre, L. Benitez, J. G. Cabañas-Moreno, and K. Lozano, “Electrical properties and electromagnetic interference shielding effectiveness of interlayered systems composed by carbon nanotube filled carbon nanofiber mats and polymer composites,” Nanomaterials, vol. 9, no. 2, Art. no. 2, Feb. 2019.
[23] N. C. Das, D. Khastgir, T. K. Chaki, and A. Chakraborty, “Electromagnetic interference shielding effectiveness of hybrid conductive polymer composite,” J. Elastomers Plast., vol. 34, no. 3, pp. 199–223, Jul. 2002.
[24] L. Nayak, D. Khastgir, and T. K. Chaki, “A mechanistic study on electromagnetic shielding effectiveness of polysulfone/carbon nanofibers nanocomposites,” J. Mater. Sci., vol. 48, no. 4, pp. 1492–1502, Feb. 2013.
[25] S.-T. Hsiao et al., “Lightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performance,” ACS Appl. Mater. Interfaces, vol. 6, no. 13, pp. 10667–10678, Jul. 2014.
[26] W. Gao et al., “High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading,” Carbon, vol. 157, pp. 570–577, Feb. 2020.
[27] C. Pavlou et al., “Effective EMI shielding behaviour of thin graphene/PMMA nanolaminates in the THz range,” Nat. Commun., vol. 12, no. 1, Art. no. 1, Aug. 2021.
[28] B. Shen, W. Zhai, and W. Zheng, “Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding,” Adv. Funct. Mater., vol. 24, no. 28, pp. 4542–4548, 2014.
[29] B. Wen et al., “Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world,” Nanoscale, vol. 6, no. 11, pp. 5754–5761, May 2014.
[30] S.-T. Hsiao et al., “Effect of covalent modification of graphene nanosheets on the electrical property and electromagnetic interference shielding performance of a water-borne polyurethane composite,” ACS Appl. Mater. Interfaces, vol. 7, no. 4, pp. 2817–2826, Feb. 2015.
[31] D. Han, Y.-H. Zhao, S.-L. Bai, and W. C. Ping, “High shielding effectiveness of multilayer graphene oxide aerogel film/polymer composites,” RSC Adv., vol. 6, no. 95, pp. 92168–92174, Sep. 2016.
[32] Z. Liu et al., “Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites,” Carbon, vol. 45, no. 4, pp. 821–827, Apr. 2007.
[33] M. H. Al-Saleh and U. Sundararaj, “Electromagnetic interference shielding mechanisms of CNT/polymer composites,” Carbon, vol. 47, no. 7, pp. 1738–1746, Jun. 2009.
[34] S. Gong, Z. H. Zhu, M. Arjmand, U. Sundararaj, J. T. W. Yeow, and W. Zheng, “Effect of carbon nanotubes on electromagnetic interference shielding of carbon fiber reinforced polymer composites,” Polym. Compos., vol. 39, no. S2, pp. E655–E663, 2018.
[35] S. Abazari et al., “Carbon nanotubes (CNTs)-reinforced magnesium-based matrix composites: a comprehensive review,” Materials, vol. 13, no. 19, Art. no. 19, Jan. 2020.
[36] J. Li et al., “Robust electromagnetic interference shielding, joule heating, thermal conductivity, and anti-dripping performances of polyoxymethylene with uniform distribution and high content of carbon-based nanofillers,” Compos. Sci. Technol., vol. 206, p. 108681, Apr. 2021.
[37] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature, vol. 438, no. 7065, Art. no. 7065, Nov. 2005.
[38] S. Lin, S. Ju, J. Zhang, G. Shi, Y. He, and D. Jiang, “Ultrathin flexible graphene films with high thermal conductivity and excellent EMI shielding performance using large-sized graphene oxide flakes,” RSC Adv., vol. 9, no. 3, pp. 1419–1427, 2019.
[39] F. Xu et al., “Variable densification of reduced graphene oxide foam into multifunctional high-performance graphene paper,” J. Mater. Chem. C, vol. 6, no. 45, pp. 12321–12328, Nov. 2018.
[40] L. Zhang et al., “Preparation and characterization of graphene paper for electromagnetic interference shielding,” Carbon, vol. 82, pp. 353–359, Feb. 2015.
[41] J. Liang et al., “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon, vol. 47, no. 3, pp. 922–925, Mar. 2009.
[42] N. Yousefi et al., “Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites,” Carbon, vol. 59, pp. 406–417, Aug. 2013.
[43] N. Yousefi, M. M. Gudarzi, Q. Zheng, S. H. Aboutalebi, F. Sharif, and J.-K. Kim, “Self-alignment and high electrical conductivity of ultralarge graphene oxide–polyurethane nanocomposites,” J. Mater. Chem., vol. 22, no. 25, pp. 12709–12717, Jun. 2012.
[44] Y. Huang, K. Yasuda, and C. Wan, “Intercalation: constructing nanolaminated reduced graphene oxide/silica ceramics for lightweight and mechanically reliable electromagnetic interference shielding applications,” ACS Appl. Mater. Interfaces, vol. 12, no. 49, pp. 55148–55156, Dec. 2020.
[45] C. Sun et al., “Embedding two-dimensional graphene array in ceramic matrix,” Sci. Adv., vol. 6, no. 39, p. eabb1338, Sep. 2020.
[46] N. Yousefi et al., “Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding,” Adv. Mater., vol. 26, no. 31, pp. 5480–5487, 2014.
[47] Y.-J. Wan, P.-L. Zhu, S.-H. Yu, R. Sun, C.-P. Wong, and W.-H. Liao, “Ultralight, super-elastic and volume-preserving cellulose fiber/graphene aerogel for high-performance electromagnetic interference shielding,” Carbon, vol. 115, pp. 629–639, May 2017.
[48] P. K. Sahoo, R. Aepuru, H. S. Panda, and D. Bahadur, “Ice-templated synthesis of multifunctional three dimensional graphene/noble metal nanocomposites and their mechanical, electrical, catalytic and electromagnetic shielding properties,” Sci. Rep., vol. 5, no. 1, Art. no. 1, Dec. 2015.
[49] B. Shen, Y. Li, D. Yi, W. Zhai, X. Wei, and W. Zheng, “Microcellular graphene foam for improved broadband electromagnetic interference shielding,” Carbon, vol. 102, pp. 154–160, Jun. 2016.
[50] Y. Chen, H.-B. Zhang, Y. Yang, M. Wang, A. Cao, and Z.-Z. Yu, “High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding,” Adv. Funct. Mater., vol. 26, no. 3, pp. 447–455, 2016.
[51] D. Lai, X. Chen, G. Wang, X. Xu, and Y. Wang, “Highly conductive porous graphene film with excellent folding resilience for exceptional electromagnetic interference shielding,” J. Mater. Chem. C, vol. 8, no. 26, pp. 8904–8916, 2020.
[52] M. Han et al., “Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding,” ACS Nano, vol. 14, no. 4, pp. 5008–5016, Apr. 2020.
[53] L. Ding, Y. Wei, Y. Wang, H. Chen, J. Caro, and H. Wang, “A two-dimensional lamellar membrane: MXene nanosheet stacks,” Angew. Chem. Int. Ed., vol. 56, no. 7, pp. 1825–1829, 2017.
[54] A. Feng et al., “Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2,” Mater. Des., vol. 114, pp. 161–166, Jan. 2017.
[55] X. Shen and J.-K. Kim, “Graphene and MXene-based porous structures for multifunctional electromagnetic interference shielding,” Nano Res., vol. 16, no. 1, pp. 1387–1413, Jan. 2023.
[56] P. He, M.-S. Cao, W.-Q. Cao, and J. Yuan, “Developing MXenes from wireless communication to electromagnetic attenuation,” Nano-Micro Lett., vol. 13, no. 1, p. 115, Apr. 2021.
[57] F. Shahzad et al., “Electromagnetic interference shielding with 2D transition metal carbides (MXenes),” Science, vol. 353, no. 6304, pp. 1137–1140, Sep. 2016.
[58] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, no. 3, Art. no. 3, Mar. 2007.
[59] D. R. Cooper et al., “Experimental review of graphene,” Int. Sch. Res. Not., vol. 2012, p. e501686, Apr. 2012.
[60] J. Baker-Jarvis, E. J. Vanzura, and W. A. Kissick, “Improved technique for determining complex permittivity with the transmission/reflection method,” IEEE Trans. Microw. Theory Tech., vol. 38, no. 8, pp. 1096–1103, Aug. 1990.
[61] J. A. Kong, “Electromagnetic wave interaction with stratified negative isotropic media,” Prog. Electromagn. Res., vol. 35, pp. 1–52, 2002.
[62] H. Elmajid, J. Terhzaz, H. Ammor, M. Chaïbi, and A. Mediavilla, “A new method to determine the complex permittivity and complex permeability of dielectric materials at X-band frequencies,” International J. of Microwave and Optical Technology, vol. 10, no. 1, pp. 35-39, 2015.
[63] S. Kim and J. Baker-Jarvis, “An approximate approach to determining the permittivity and permeability near λ/2 resonances in transmission/reflection measurements,” Prog. Electromagn. Res. B, vol. 58, pp. 95–109, 2014.
[64] X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E, vol. 70, no. 1, p. 016608, Jul. 2004.
[65] Z. Szabó, G.-H. Park, R. Hedge, and E.-P. Li, “A unique extraction of metamaterial parameters based on Kramers–Kronig relationship,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 10, pp. 2646–2653, Oct. 2010.
[66] H. Chen et al., “Experimental retrieval of the effective parameters of metamaterials based on a waveguide method,” Opt. Express, vol. 14, no. 26, p. 12944, 2006.
[67] C. Larsson, D. Sjoberg, and L. Elmkvist, “Waveguide measurements of the permittivity and permeability at temperatures of up to 1000°C,” IEEE Trans. Instrum. Meas., vol. 60, no. 8, pp. 2872–2880, Aug. 2011.
[68] A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instrum. Meas., vol. 19, no. 4, pp. 377–382, Jan. 1970.
[69] W. B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE, vol. 62, no. 1, pp. 33–36, Jan. 1974.
[70] S. Ganguly, P. Bhawal, R. Ravindren, and N. C. Das, “Polymer nanocomposites for electromagnetic interference shielding: a review,” J. Nanosci. Nanotechnol., vol. 18, no. 11, pp. 7641–7669, Nov. 2018.
[71] Y. Chen, J. Li, T. Li, L. Zhang, and F. Meng, “Recent advances in graphene-based films for electromagnetic interference shielding: Review and future prospects,” Carbon, vol. 180, pp. 163–184, Aug. 2021.
[72] S. A. Schelkunoff, “The electromagnetic theory of coaxial transmission lines and cylindrical shields,” Bell Syst. Tech. J., vol. 13, no. 4, pp. 532–579, Oct. 1934.
[73] P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, “Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4–18.0GHz range,” Synth. Met., vol. 161, no. 15, pp. 1522–1526, Aug. 2011.
[74] R. S. Yadav et al., “Excellent, lightweight and flexible electromagnetic interference shielding nanocomposites based on polypropylene with MnFe2O4 spinel ferrite nanoparticles and reduced graphene oxide,” Nanomaterials, vol. 10, no. 12, Art. no. 12, Dec. 2020.
[75] L. Wang, Z. Ma, Y. Zhang, L. Chen, D. Cao, and J. Gu, “Polymer-based EMI shielding composites with 3D conductive networks: A mini-review,” SusMat., vol. 1, no. 3, pp. 413–431, 2021.
[76] D. Jiang et al., “Electromagnetic interference shielding polymers and nanocomposites - A Review,” Polym. Rev., vol. 59, no. 2, pp. 280–337, Apr. 2019.
[77] M. Wang and N. Pan, “Predictions of effective physical properties of complex multiphase materials,” Mater. Sci. Eng. R Rep., vol. 63, no. 1, pp. 1–30, Dec. 2008.
[78] V. A. Markel, “Introduction to the Maxwell Garnett approximation: tutorial,” JOSAA, vol. 33, no. 7, pp. 1244–1256, Jul. 2016.
[79] K. K. Karkkainen, A. H. Sihvola, and K. I. Nikoskinen, “Effective permittivity of mixtures: numerical validation by the FDTD method,” IEEE Trans. Geosci. Remote Sens., vol. 38, no. 3, pp. 1303–1308, May 2000.
[80] D. a. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. I. dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen,” Ann. Phys., vol. 416, no. 7, pp. 636–664, 1935.
[81] M. S. Sarto, A. G. D’Aloia, A. Tamburrano, and G. De Bellis, “Synthesis, modeling, and experimental characterization of graphite nanoplatelet-based composites for EMC applications,” IEEE Trans. Electromagn. Compat., vol. 54, no. 1, pp. 17–27, Feb. 2012.
[82] “Modeling graphene in high-frequency electromagnetics,” COMSOL. https://www.comsol.com/blogs/modeling-graphene-in-high-frequency-electromagnetics/ (accessed Jul. 10, 2023).
[83] O. Balci, E. O. Polat, N. Kakenov, and C. Kocabas, “Graphene-enabled electrically switchable radar-absorbing surfaces,” Nat. Commun., vol. 6, no. 1, p. 6628, Mar. 2015.
[84] A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express, vol. 21, no. 7, p. 9144, Apr. 2013.
[85] I. Llatser, C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcón, and D. N. Chigrin, “Graphene-based nano-patch antenna for terahertz radiation,” Photonics Nanostructures - Fundam. Appl., vol. 10, no. 4, pp. 353–358, Oct. 2012.
[86] N. Behdad, M. Al-Joumayly, and M. Salehi, “A Low-Profile Third-Order Bandpass Frequency Selective Surface,” IEEE Trans. Antennas Propag., vol. 57, no. 2, pp. 460–466, Feb. 2009,
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91567-
dc.description.abstract近年來,智能電子設備和無線通信的普及導致了電磁汙染越來越嚴重,電磁干擾影響了電子產品的使用與人體健康。EMI屏蔽材料廣泛應用於商業和科學電子、天線系統、太空探索和醫療設備等領域。EMI屏蔽材料主要是利用高導電性填料達到屏蔽的目的,主要可以分為三類:金屬類屏蔽材料、碳類屏蔽材料、MXene類屏蔽材料。其中碳類填料如:碳黑、奈米碳管和石墨烯奈米片,因其具有高長寬比、輕量、出色的機械性能、易加工性和高導電性而受到廣泛關注。石墨烯憑藉其優異的導電性、散熱性、機械性質和可調性,因此石墨烯在EMI屏蔽領域受到極大的重視。其中排列整齊的石墨烯複合材料具有優異的屏蔽性能、力學性能、導電性能、熱傳導性能和光學性能,對於各種應用領域具有廣泛的應用價值。有許多研究團隊致力於研發各種X頻段的屏蔽複合材料,但是都沒有模擬可以完整的模擬出屏蔽複合材料。複合材料由於內部結構非常複雜,並且填料與波長的尺度相差非常多,因此在模擬方面會因為網格太過複雜而產生計算資源的不足的問題。
本研究利用COMSOL Multiphysics建立一個合理的模型模擬出高度排列石墨烯複合材料,利用邊界條件的方法來模擬石墨烯達到減少網格的目的,以此減少計算資源。並且計算出了EMI 屏蔽的效果、等效材料特性與分析內部電磁效應。此模擬模型的EMI SE值與介電係數與濃度和頻率的趨勢都與文獻相符合。
zh_TW
dc.description.abstractIn recent years, the widespread use of smart electronic devices and wireless communication has led to an increasing concern about electromagnetic pollution and its impact on the usage of electronic products and human health. EMI (Electromagnetic Interference) shielding materials have found wide applications in commercial and scientific electronics, antenna systems, space exploration, medical devices, and other fields. These materials primarily rely on highly conductive fillers to achieve shielding, and they can be broadly classified into three categories: metal-based shielding materials, carbon-based shielding materials, and MXene-based shielding materials. Among them, carbon-based fillers such as carbon black, carbon nanotubes, and graphene nanosheets have gained significant attention due to their high aspect ratio, lightweight, excellent mechanical properties, processability, and high conductivity. Graphene, in particular, has received great attention in the EMI shielding field due to its outstanding electrical conductivity, thermal conductivity, mechanical properties, and tunability. Highly ordered graphene-based composites exhibit excellent shielding performance, mechanical properties, electrical conductivity, thermal conductivity, and optical properties, making them highly valuable for various applications. Numerous research teams are dedicated to developing shielding composites for various frequency ranges, but there is currently no simulation that can accurately model the shielding composite materials. Composite materials have complex internal structures, and the scale difference between the fillers and the wavelength poses a challenge in simulation due to the complexity of the computational grid, leading to insufficient computational resources.
In this study, we employ COMSOL Multiphysics to establish a reasonable model for simulating highly ordered graphene composites. We utilize boundary conditions to simulate graphene and reduce the complexity of the computational grid, thereby minimizing the computational resources required. Furthermore, we calculate the EMI shielding effectiveness, and equivalent material properties, and analyze the internal electromagnetic effects. The simulated EMI shielding effectiveness (SE) values and dielectric coefficients exhibit trends consistent with the literature, validating the accuracy of our simulation model.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-28T16:33:57Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-01-28T16:33:57Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES x
Chapter 1 緒論 1
1.1 前言 1
1.2 文獻回顧 5
1.2.1 金屬類EMI屏蔽材料 6
1.2.2 碳類EMI屏蔽材料 6
1.2.3 Mxene類EMI屏蔽材料 13
1.3 研究動機與目的 15
Chapter 2 石墨稀 16
Chapter 3 基礎理論 18
3.1 電磁理論 18
3.1.1 平面波入射 18
3.1.2 傳輸線與矩形波導 21
3.1.3 材料參數反演公式 24
3.2 電磁干擾屏蔽 26
3.2.1 電磁干擾屏蔽效能(EMI SE) 26
3.2.2 EMI屏蔽機制 26
3.2.3 屏蔽效能量測 28
3.3 等效介電係數 30
3.3.1 等效介質理論 30
Chapter 4 模擬分析 32
4.1 模擬軟體簡介與設定 32
4.1.1 COMSOL Multiphysics 32
4.1.2 石墨烯模擬方法 32
4.1.3 邊界條件設定 35
4.2 屏蔽複合材料模擬 37
4.2.1 導電材料受電磁波影響分析 37
4.2.2 屏蔽複合材料模型 45
Chapter 5 分析與討論 51
Chapter 6 結論與未來展望 57
6.1 結論 57
6.2 未來展望 57
REFERENCE 58
-
dc.language.isozh_TW-
dc.titleX頻段電磁屏蔽石墨烯複合材料zh_TW
dc.titleGraphene-Based Composite with X-Band EM Shieldingen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張子璿;黃琴雅zh_TW
dc.contributor.oralexamcommitteeTzu-Hsuan Chang;Chin-Ya Huangen
dc.subject.keyword石墨烯,電磁干擾屏蔽,屏蔽複合材料,有限元素模擬,zh_TW
dc.subject.keywordGraphene,EMI Shielding,Shielding Composite,FEM,en
dc.relation.page71-
dc.identifier.doi10.6342/NTU202303454-
dc.rights.note未授權-
dc.date.accepted2023-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
6.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved