Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91566
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉建豪zh_TW
dc.contributor.advisorChien-Hao Liuen
dc.contributor.author許恩愷zh_TW
dc.contributor.authorEn-Kai Hsuen
dc.date.accessioned2024-01-28T16:33:42Z-
dc.date.available2024-02-24-
dc.date.copyright2024-01-28-
dc.date.issued2023-
dc.date.submitted2023-08-12-
dc.identifier.citation[1] M. K. Assadi, S. Bakhoda, R. Saidur, and H. Hanaei, “Recent progress in perovskite solar cells,”Renew. Sustain. Energy Rev., vol. 81, no. P2, pp. 2812–2822, 2018.
[2] M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics., vol. 8, no. 7, Art. no. 7, Jul. 2014.
[3] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc., vol. 131, no. 17, pp. 6050–6051, May 2009.
[4] J. Burschka et al., “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature, vol. 499, no. 7458, Art. no. 7458, Jul. 2013.
[5] N.-G. Park, “Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell,” J. Phys. Chem. Lett., vol. 4, no. 15, pp. 2423–2429, Aug. 2013.
[6] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells,” Nat. Mater., vol. 13, no. 9, Art. no. 9, Sep. 2014.
[7] H. Zhou et al., “Interface engineering of highly efficient perovskite solar cells,” Science, vol. 345, no. 6196, pp. 542–546, Aug. 2014.
[8] G.-J. A. H. Wetzelaer, M. Scheepers, A. M. Sempere, C. Momblona, J. Ávila, and H. J. Bolink, “Trap-assisted non-radiative recombination in organic-inorganic perovskite solar cells,” Adv. Mater., vol. 27, no. 11, pp. 1837–1841, Mar. 2015.
[9] W. Tress, N. Marinova, T. Moehl, S. M. Zakeeruddin, M. K. Nazeeruddin, and M. Grätzel, “Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH 3 NH 3 PbI 3 perovskite solar cells: the role of a compensated electric field,” Energy Environ. Sci., vol. 8, no. 3, pp. 995–1004, 2015.
[10] Z.-Y. Zhang et al., “The role of trap-assisted recombination in luminescent properties of organometal halide CH3NH3PbBr3 perovskite films and quantum dots,” Sci Rep, vol. 6, no. 1, p. 27286, Jun. 2016.
[11] D. B. Khadka, Y. Shirai, M. Yanagida, and K. Miyano, “Degradation of encapsulated perovskite solar cells driven by deep trap states and interfacial deterioration,” J. Mater. Chem. C, vol. 6, no. 1, pp. 162–170, 2018.
[12] O. Almora, C. Aranda, E. Mas-Marzá, and G. Garcia-Belmonte, “On Mott-Schottky analysis interpretation of capacitance measurements in organometal perovskite solar cells,” Appl. Phys. Lett., vol. 109, no. 17, p. 173903, Oct. 2016.
[13] M. Fischer, K. Tvingstedt, A. Baumann, and V. Dyakonov, “Doping Profile in Planar Hybrid Perovskite Solar Cells Identifying Mobile Ions,” ACS Appl. Energy Mater., Oct. 2018.
[14] J. T. Heath, J. D. Cohen, and W. N. Shafarman, “Bulk and metastable defects in CuIn1ÀxGaxSe2 thin films using drive-level capacitance profiling,” J. Appl. Phys., vol. 95, no. 3, 2004.
[15] C. E. Michelson, A. V. Gelatos, and J. D. Cohen, “Drive‐level capacitance profiling: Its application to determining gap state densities in hydrogenated amorphous silicon films,” Appl. Phys. Lett., vol. 47, no. 4, pp. 412–414, Aug. 1985.
[16] M. T. Khan, P. Huang, A. Almohammedi, S. Kazim, and S. Ahmad, “Protocol for deciphering the electrical parameters of perovskite solar cells using immittance spectroscopy,” STAR Protoc., vol. 2, no. 2, p. 100510, Jun. 2021.
[17] J. Joy, M. P. Date, B. M. Arora, K. L. Narasimhan, and S. Tallur, “Capacitance-voltage profiling of MOS capacitors: A case study of hands-on semiconductor testing for an undergraduate laboratory,” Am. J. Phys., vol. 86, no. 10, pp. 787–796, Oct. 2018.
[18] H.-S. Pang et al., “Nature of defect states within amorphous NPB investigated through drive-level capacitance profiling,” J. Phys. Chem. C, vol. 123, no. 1, pp. 165–174, Jan. 2019.
[19] T. Kirchartz et al., “Sensitivity of the Mott–Schottky analysis in organic solar cells,” J. Phys. Chem. C, vol. 116, no. 14, pp. 7672–7680, Apr. 2012.
[20] D. C. Johnson, “Novel capacitance measurements in copper indium gallium diselenide alloys: final subcontract report, 1 July 1999--31 August 2003,” NREL/SR-520-35614, 15007675, May 2004.
[21] K. Ramspeck et al., “Determination of base doping concentration of silicon solar cells from light IV-curves,” presented at the SiliconPV 2021, The 11th International Conference on Crystalline Silicon Photovoltaics, Hamelin, Germany / Online, 2022, p. 030008.
[22] R. A. Kumar, M. S. Suresh, and J. Nagaraju, “Measurement of AC parameters of gallium arsenide (GaAs/Ge) solar cell by impedance spectroscopy,” IEEE T Electron Dev., vol. 48, no. 9, pp. 2177–2179, Sep. 2001.
[23] I. Mora-Seró et al., “Recombination rates in heterojunction silicon solar cells analyzed by impedance spectroscopy at forward bias and under illumination,” Sol. Energy Mater Sol. Cells., vol. 92, pp. 505–509, Apr. 2008.
[24] J. Bisquert, “Beyond the quasistatic approximation: Impedance and capacitance of an exponential distribution of traps,” Phys. Rev. B, vol. 77, no. 23, p. 235203, Jun. 2008.
[25] A. F. Braña, E. Forniés, N. López, and B. J. García, “High efficiency si solar cells characterization using impedance spectroscopy analysis,” J. Phys.: Conf. Ser., vol. 647, p. 012069, Oct. 2015.
[26] F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Seró, and J. Bisquert, “Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy,” Phys. Chem. Chem. Phys., vol. 13, no. 20, pp. 9083–9118, May 2011.
[27] A. Guerrero, E. J. Juarez-Perez, J. Bisquert, I. Mora-Sero, and G. Garcia-Belmonte, “Electrical field profile and doping in planar lead halide perovskite solar cells,” Appl. Phys. Lett., vol. 105, no. 13, p. 133902, Sep. 2014,
[28] S. S. Shin et al., “Tailoring of electron-collecting oxide nanoparticulate layer for flexible perovskite solar cells,” J. Phys. Chem. Lett., vol. 7, no. 10, pp. 1845–1851, May 2016.
[29] H.-S. Kim et al., “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci Rep, vol. 2, no. 1, p. 591, Aug. 2012.
[30] O. Almora, I. Zarazua, E. Mas-Marza, I. Mora-Sero, J. Bisquert, and G. Garcia-Belmonte, “Capacitive dark currents, hysteresis, and electrode polarization in lead halide perovskite solar cells,” J. Phys. Chem. Lett., vol. 6, no. 9, pp. 1645–1652, May 2015.
[31] “Ionic charging by local imbalance at interfaces in hybrid lead halide perovskites | Applied Physics Letters | AIP Publishing.” internet : https://pubs.aip.org-/aip/apl/article/108/4/043903/31577/Ionic-charging-by-local-imbalance-at-interfaces-in (accessed Jun. 29, 2023).
[32] R. A. Belisle et al., “Interpretation of inverted photocurrent transients in organic lead halide perovskite solar cells: proof of the field screening by mobile ions and determination of the space charge layer widths,” Energy Environ. Sci., vol. 10, no. 1, pp. 192–204, 2017.
[33] J. Carrillo et al., “Ionic reactivity at contacts and aging of methylammonium lead triiodide perovskite solar cells,” Adv. Energy Mater., vol. 6, no. 9, p. 1502246, 2016.
[34] B. Chen et al., “Impact of Capacitive effect and ion migration on the hysteretic behavior of perovskite solar cells,” J Phys Chem Lett, vol. 6, no. 23, pp. 4693–4700, Dec. 2015.
[35] C. Eames, J. M. Frost, P. R. F. Barnes, B. C. O’Regan, A. Walsh, and M. S. Islam, “Ionic transport in hybrid lead iodide perovskite solar cells,” Nat. Commun., vol. 6, no. 1, Art. no. 1, Jun. 2015.
[36] E. L. Unger et al., “Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells,” Energy Environ. Sci., vol. 7, no. 11, pp. 3690–3698, Oct. 2014.
[37] R. Gottesman et al., “Extremely Slow Photoconductivity Response of CH3NH3PbI3 Perovskites Suggesting Structural Changes under Working Conditions,” J. Phys. Chem. Lett., vol. 5, no. 15, pp. 2662–2669, Aug. 2014.
[38] Y. Cheng et al., “The detrimental effect of excess mobile ions in planar CH 3 NH 3 PbI 3 perovskite solar cells,” J. Mater. Chem. A, vol. 4, no. 33, pp. 12748–12755, 2016.
[39] U. Rau and H. W. Schock, “Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges,” Appl Phys A., vol. 69, no. 2, pp. 131–147, Aug. 1999.
[40] M. Igalson, A. Kubiaczyk, and P. Zabierowski, “Deep centers and fill factor losses in the CIGS devices,” MRS Online Proceedings Library, vol. 668, no. 1, p. 92, Mar. 2011.
[41] T. Meyer, M. Schmidt, F. Engelhardt, J. Parisi, and U. Rau, “A model for the open circuit voltage relaxation in Cu(In,Ga)Se2 heterojunction solar cells,” Eur. Phys. J. AP, vol. 8, no. 1, Oct. 1999.
[42] R. V. Forest et al., “Diffusion of sodium in single crystal CuInSe2,” J. Appl. Phys., vol. 121, no. 24, p. 245102, Jun. 2017.
[43] J.-F. Guillemoles, L. Kronik, D. Cahen, U. Rau, A. Jasenek, and H.-W. Schock, “Stability issues of Cu(In,Ga)Se2-based solar cells,” J. Phys. Chem. B, vol. 104, no. 20, pp. 4849–4862, May 2000.
[44] Z. Ni et al., “Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells,” Science, vol. 367, no. 6484, pp. 1352–1358, Mar. 2020.
[45] N.-G. Park, “Perovskite solar cells: an emerging photovoltaic technology,” Mater. Today., vol. 18, no. 2, pp. 65–72, Mar. 2015.
[46] L. M. Herz, “Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits,” ACS Energy Lett., vol. 2, no. 7, pp. 1539–1548, Jul. 2017.
[47] Q. Dong et al., “Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals,” Science, vol. 347, no. 6225, pp. 967–970, Feb. 2015.
[48] C. Gehrmann and D. A. Egger, “Dynamic shortening of disorder potentials in anharmonic halide perovskites,” Nat Commun., vol. 10, no. 1, Jul. 2019.
[49] Z. Chen et al., “Thin single crystal perovskite solar cells to harvest below-bandgap light absorption,” Nat Commun., vol. 8, no. 1, Dec. 2017.
[50] Z. Chen et al., “Single-crystal MAPbI3 perovskite solar cells exceeding 21% power conversion efficiency,” ACS Energy Lett., vol. 4, no. 6, pp. 1258–1259, Jun. 2019.
[51] Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells,” Nat Commun., vol. 5, no. 1, Dec. 2014.
[52] S. Ravishankar, T. Unold, and T. Kirchartz, “Comment on ‘Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells,’” Science, vol. 371, no. 6532, Feb. 2021.
[53] M. Burgelman, P. Nollet, and S. Degrave, “Modelling polycrystalline semiconductor solar cells,” Thin Solid Films, vol. 361–362, pp. 527–532, Feb. 2000.
[54] L. M. Mansfield et al., “Comparison of CIGS solar cells made with different structures and fabrication techniques,” IEEE J. Photovoltaics., vol. 7, no. 1, pp. 286–293, Jan. 2017.
[55] T. Eisenbarth, T. Unold, R. Caballero, C. A. Kaufmann, and H.-W. Schock, “Interpretation of admittance, capacitance-voltage, and current-voltage signatures in Cu(In,Ga)Se2 thin film solar cells,” J. Appl. Phys., vol. 107, no. 3, p. 034509, Feb. 2010.
[56] D. Menossi, E. Artegiani, A. Salavei, S. Di Mare, and A. Romeo, “Study of MgCl 2 activation treatment on the defects of CdTe solar cells by capacitance-voltage, drive level capacitance profiling and admittance spectroscopy techniques,” Thin Solid Films, vol. 633, pp. 97–100, Jul. 2017.
[57] E. A. Luque, S. Hegedus, and J. Wiley, “Handbook of Photovoltaic Science and Engineering,”New York, USA:John Wiley & Sons, Ltd.,2003.
[58] S. M. Sze and K. K. Ng, Physics of semiconductor devices, 3rd ed. Hoboken, N.J: Wiley-Interscience, 2007.
[59] M. Taukeer Khan, F. Khan, A. Al‐Ahmed, S. Ahmad, and F. Al‐Sulaiman, “Evaluating the capacitive response in metal halide perovskite solar cells,” The Chem Rec., vol. 22, no. 7, Jul. 2022.
[60] J. Joy, M. P. Date, B. M. Arora, K. L. Narasimhan, and S. Tallur, “Capacitance-voltage profiling of MOS capacitors: A case study of hands-on semiconductor testing for an undergraduate laboratory,” Am J Phys., vol. 86, no. 10, pp. 787–796, Oct. 2018.
[61] M. J. Cristea, “Capacitance-voltage Profiling Techniques for Characterization of Semiconductor Materials and Devices,” SSRN journal, 2019.
[62] M. Mingebach, C. Deibel, and V. Dyakonov, “Built-in potential and validity of the Mott-Schottky analysis in organic bulk heterojunction solar cells,” Phys. Rev. B, vol. 84, no. 15, p. 153201, Oct. 2011.
[63] C. W. Warren, E. T. Roe, D. W. Miller, W. N. Shafarman, and M. C. Lonergan, “An improved method for determining carrier densities via drive level capacitance profiling,” Appl. Phys. Lett., vol. 110, no. 20, p. 203901, May 2017.
[64] “Keithley 多功能電源電錶.” internet : https://www.lockinc.com.tw/style/Frame-/m9/product_detail.asp?customer_id=2496&lang=1&content_set=color_1&name_id=245319&id=617212 (accessed Jun. 05, 2023).
[65] “E4990A 阻抗分析儀, 20 Hz 至 10/20/30/50/120 MHz,” Keysight. internet : https://www.keysight.com/tw/zh/product/E4990A/impedance-analyzer-20-hz-10-20-30-50-120-mhz.html (accessed Jun. 05, 2023).
[66] “阻抗测量手册-阻抗基本知识 Impedance Measurement Handbook ,” internet : https://zhuanlan.zhihu.com/p/191525087 (accessed Jun. 06, 2023).
[67] W. Tress, “Metal halide perovskites as mixed electronic–ionic conductors: challenges and opportunities—from hysteresis to memristivity,” J. Phys. Chem. Lett., vol. 8, no. 13, pp. 3106–3114, Jul. 2017.
[68] G. A. Nemnes et al., “How measurement protocols influence the dynamic J-V characteristics of perovskite solar cells: Theory and experiment,” Sol Energy., vol. 173, pp. 976–983, Oct. 2018.
[69] Y. Jiang, Y. Feng, X. Sun, R. Qin, and H. Ma, “Identifying inverted-hysteresis behavior of CH 3 NH 3 PbI 3−x Cl x planar hybrid perovskite solar cells based on external bias precondition,” J. Phys. D: Appl. Phys., vol. 52, no. 38, p. 385501, Sep. 2019.
[70] G. Tumen-Ulzii et al., “Hysteresis-less and stable perovskite solar cells with a self-assembled monolayer,” Commun. Mater., vol. 1, no. 1, p. 31, May 2020.
[71] Q. Gao, Y. Zhang, Y. Yu, F. Meng, and Z. Liu, “Effects of I–V measurement parameters on the hysteresis effect and optimization in high-capacitance PV module testing,” IEEE J. Photovoltaics., vol. 8, no. 3, pp. 710–718, May 2018.
[72] J. Bisquert, A. Guerrero, and C. Gonzales, “Theory of hysteresis in halide perovskites by integration of the equivalent circuit,” ACS Phys. Chem. Au., vol. 1, no. 1, pp. 25–44, Nov. 2021.
[73] O. Almora, L. D. V. Roca, and G. G. Belmonte, “Perovskite Solar Cells: A Brief Introduction and some Remarks.”Rev.Cuba.de Fis., [S.l.], v. 34, n. 1, p. 58-68, july 2017
[74] S. Wang, P. Kaienburg, B. Klingebiel, D. Schillings, and T. Kirchartz, “Understanding thermal admittance spectroscopy in low-mobility semiconductors,” J. Phys. Chem. C, vol. 122, no. 18, pp. 9795–9803, May 2018.
[75] J. V. Li et al., “Theoretical analysis of effects of deep level, back contact, and absorber thickness on capacitance–voltage profiling of CdTe thin-film solar cells,” Sol. Energy Mater Sol. Cells., vol. 100, pp. 126–131, May 2012.
[76] A. Seemann et al., “Reversible and irreversible degradation of organic solar cell performance by oxygen,” Sol Energy., vol. 85, no. 6, pp. 1238–1249, Jun. 2011.
[77] M. Cwil, M. Igalson, P. Zabierowski, and S. Siebentritt, “Charge and doping distributions by capacitance profiling in Cu(In,Ga)Se2 solar cells,” J. Appl. Phys., vol. 103, no. 6, p. 063701, Mar. 2008.
[78] Z. Ni et al., “Evolution of defects during the degradation of metal halide perovskite solar cells under reverse bias and illumination,” Nat. Energy., vol. 7, no. 1, pp. 65–73, Dec. 2021.
[79] C. Pereyra, H. Xie, and M. Lira-Cantu, “Additive engineering for stable halide perovskite solar cells,” J. Energy Chem., vol. 60, pp. 599–634, Sep. 2021.
[80] Y. Xie et al., “Balanced-strength additive for high-efficiency stable perovskite solar cells,” ACS Appl. Energy Mater., vol. 5, no. 7, pp. 8034–8041, Jul. 2022.
[81] Y. Ma et al., “Amidinium additives for high-performance perovskite solar cells,” J. Mater. Chem. A, vol. 10, no. 7, pp. 3506–3512, Feb. 2022.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91566-
dc.description.abstract近幾年來,鈣鈦礦太陽能電池相較於傳統材料與結構的太陽能電池因其優秀光電性能而備受關注,轉換效率的發展非常快速,然而目前仍存在許多限制,如鈣鈦礦材料在具有光、熱、濕的環境下,容易影響其穩定性,使得鈣鈦礦太陽能電池仍處於相對不成熟的階段,結構以及材料的選擇仍有許多改進空間。
其中,影響鈣鈦礦太陽能電池性能的一個重要關鍵是缺陷密度,造成缺陷密度增加的原因有很多,包括鈣鈦礦層晶體結構缺陷、鈣鈦礦層的降解以及界面接觸產生的缺陷等等,這些缺陷可以通過改進鈣鈦礦太陽能電池的性能材料設計和使用添加劑或化學修飾劑來填補或修復缺陷,以提高材料的電荷傳輸和穩定性。
本研究請英國牛津大學與香港科技大學團隊所製作的鈣鈦礦太陽能電池,主要透過不同方法量測鈣鈦礦太陽能電池電容,企圖深入研究其內部缺陷密度及現象,並分析鈣鈦礦太陽能電池有無使用添加劑的狀況下,以及鈣鈦礦太陽能電池經過照光後之缺陷密度,藉由此方法判斷鈣鈦礦太陽能電池的效率及穩定性,並且與文獻進行驗證,提高量測結果的正確性,藉由結果了解缺陷密度如何影響鈣鈦礦太陽能電池的性能與效率,進一步探索鈣鈦礦太陽能電池內部效應。
zh_TW
dc.description.abstractIn recent years, compared with solar cells with traditional materials and structures, perovskite solar cells have attracted much attention because of their excellent photoelectric performance, and the conversion efficiency has developed very rapidly. However, there are still many limitations. For example, perovskite materials have Under light, heat, and humid environments, it is easy to affect their stability, making perovskite solar cells still in a relatively immature stage, and there is still much room for improvement in the selection of structures and materials.
Among them, the defect density is an important key affecting perovskite solar cells' performance. There are many reasons for the increase in defect density, including defects in the crystal structure of the perovskite layer, degradation of the perovskite layer, and defects generated by interface contacts. The charge transport and stability of the material can be improved by improving the performance material design of perovskite solar cells and using additives or chemical modifiers to fill or repair defects.
In this study, the perovskite solar cells produced by the team of Oxford University and Hong Kong University of Science and Technology were mainly used to measure the capacitance of perovskite solar cells by different methods, in an attempt to deeply study the internal defect density and phenomenon, and analyze the perovskite solar cells. With or without the use of additives in the solar cell, and the defect density of the perovskite solar cell after being illuminated, the efficiency and stability of the perovskite solar cell can be judged by this method, and verified with the literature to improve the accuracy of the measurement results Through the results, we can understand how the defect density affects the performance and efficiency of perovskite solar cells, and further explore the internal effects of perovskite solar cells.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-28T16:33:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-01-28T16:33:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 v
圖目錄 vii
表目錄 xii
Chapter 1 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1 傳統C-V量測的應用 2
1.2.2 鈣鈦礦太陽能電池的DLCP量測與缺陷密度 7
Chapter 2 理論 14
2.1 半導體理論 14
2.1.1 pn接面太陽能電池的基本原理 16
2.1.2 半導體基本方程式 19
2.1.3 空乏區 22
2.2 電容量測理論 26
2.2.1 C-V 26
2.2.2 DLCP 28
Chapter 3 太陽能電池簡介 32
3.1 理想轉換效率與電壓-電流曲線 32
3.2 寬能隙鈣鈦礦太陽能電池 35
Chapter 4 量測實驗設計 39
4.1 實驗儀器和參數介紹 39
4.1.1 Keithley 2400多功能電源電錶 39
4.1.2 阻抗分析儀(Impedance Analyzer) 40
4.1.3 測量儀器之等效電路 41
4.2 量測結果與分析 45
4.2.1 I-V 47
4.2.2 Admittance Spectron(C-F) 51
4.2.3 C-V 52
4.2.4 DLCP 57
Chapter 5 結論與未來展望 60
5.1 結果分析 60
5.1.1 缺陷密度分析 60
5.1.2 不同樣品量測結果比較 63
5.1.3 文獻比較 65
5.2 結論與未來展望 67
參考文獻 68
-
dc.language.isozh_TW-
dc.subject鈣鈦礦太陽能電池zh_TW
dc.subject太陽能電池zh_TW
dc.subject缺陷密度zh_TW
dc.subject激勵電容剖面法zh_TW
dc.subject傳統電容-電壓量測zh_TW
dc.subjecttraditional capacitance-voltage measurementen
dc.subjectDrive-Level Capacitance Profilingen
dc.subjectdefect densityen
dc.subjectperovskite solar cellsen
dc.subjectsolar cellsen
dc.title太陽能電池之電性分析zh_TW
dc.titleElectrical properties characterizations of solar cellsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林彥宏;許麗zh_TW
dc.contributor.oralexamcommitteeYen-Hung LIN;Li Xuen
dc.subject.keyword太陽能電池,鈣鈦礦太陽能電池,傳統電容-電壓量測,激勵電容剖面法,缺陷密度,zh_TW
dc.subject.keywordsolar cells,perovskite solar cells,traditional capacitance-voltage measurement,Drive-Level Capacitance Profiling,defect density,en
dc.relation.page77-
dc.identifier.doi10.6342/NTU202303909-
dc.rights.note未授權-
dc.date.accepted2023-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
9.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved