Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91562
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧中仁zh_TW
dc.contributor.advisorChung-Jen Luen
dc.contributor.author葉謙zh_TW
dc.contributor.authorChien Yehen
dc.date.accessioned2024-01-28T16:32:41Z-
dc.date.available2024-02-24-
dc.date.copyright2024-01-28-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citation[1] S. Timoshenko, "Method of analysis of static and dynamic stresses in rail," in Proceedings of the 2nd International Congress on Applied Mechanics, 1926, pp. 407-418.
[2] J. Kenney Jr, "Steady-State Vibrations of Beam on Elastic Foundation for Moving Load," Journal of Applied Mechanics, vol. 21, no. 4, pp. 359-364, 1954.
[3] S. Chonan, "The elastically supported Timoshenko beam subjected to an axial force and a moving load," International Journal of Mechanical Sciences, vol. 17, no. 9, pp. 573-581, 1975.
[4] O. Jaiswal and R. Iyengar, "Dynamic response of a beam on elastic foundation of finite depth under a moving force," Acta Mechanica, vol. 96, no. 1-4, pp. 67-83, 1993.
[5] M. Ansari, E. Esmailzadeh, and D. Younesian, "Internal-external resonance of beams on non-linear viscoelastic foundation traversed by moving load," Nonlinear Dynamics, vol. 61, pp. 163-182, 2010.
[6] D. Younesian, Z. Saadatnia, and H. Askari, "Analytical solutions for free oscillations of beams on nonlinear elastic foundations using the variational iteration method," Journal of Theoretical and Applied Mechanics, vol. 50, no. 2, pp. 639-652, 2012.
[7] A. Mallik, S. Chandra, and A. B. Singh, "Steady-state response of an elastically supported infinite beam to a moving load," Journal of Sound and Vibration, vol. 291, no. 3-5, pp. 1148-1169, 2006.
[8] G. Adams, "Critical speeds and the response of a tensioned beam on an elastic foundation to repetitive moving loads," International Journal of Mechanical Sciences, vol. 37, no. 7, pp. 773-781, 1995.
[9] G. Denisov, E. Kugusheva, and V. Novikov, "On the problem of the stability of one-dimensional unbounded elastic systems," Journal of Applied Mathematics and Mechanics, vol. 49, no. 4, pp. 533-537, 1985.
[10] P. Mathews, "Vibrations of a beam on elastic foundation," ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol. 38, no. 3‐4, pp. 105-115, 1958.
[11] P. Mathews, "Vibrations of a beam on elastic foundation II," ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol. 39, no. 1‐2, pp. 13-19, 1959.
[12] S. Chonan, "Moving harmonic load on an elastically supported Timoshenko beam," ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol. 58, no. 1, pp. 9-15, 1978.
[13] J. Padovan, "On the effects of variable magnitude traveling loads," International Journal of Engineering Science, vol. 19, no. 9, pp. 1203-1219, 1981.
[14] Y.-H. Chen, Y.-H. Huang, and C.-T. Shih, "Response of an infinite Timoshenko beam on a viscoelastic foundation to a harmonic moving load," Journal of Sound and Vibration, vol. 241, no. 5, pp. 809-824, 2001.
[15] D. G. Duffy, "The Response of an Infinite Railroad Track to a Moving, Vibrating Mass," Journal of Applied Mechanics, vol. 57, no. 1, p. 66, 1990.
[16] A. Kononov and R. De Borst, "Instability analysis of vibrations of a uniformly moving mass in one and two-dimensional elastic systems," European Journal of Mechanics-A/Solids, vol. 21, no. 1, pp. 151-165, 2002.
[17] A. Metrikine and H. Dieterman, "Instability of vibrations of a mass moving uniformly along an axially compressed beam on a viscoelastic foundation," Journal of Sound and Vibration, vol. 201, no. 5, pp. 567-576, 1997.
[18] A. Metrikine and S. Verichev, "Instability of vibrations of a moving two-mass oscillator on a flexibly supported Timoshenko beam," Archive of Applied Mechanics, vol. 71, pp. 613-624, 2001.
[19] A. Metrikine, S. Verichev, and J. Blaauwendraad, "Stability of a two-mass oscillator moving on a beam supported by a visco-elastic half-space," International Journal of Solids and Structures, vol. 42, no. 3-4, pp. 1187-1207, 2005.
[20] S. Verichev and A. Metrikine, "Instability of a bogie moving on a flexibly supported Timoshenko beam," Journal of Sound and Vibration, vol. 253, no. 3, pp. 653-668, 2002.
[21] T. Mazilu, M. Dumitriu, and C. Tudorache, "On the dynamics of interaction between a moving mass and an infinite one-dimensional elastic structure at the stability limit," Journal of Sound Vibration, vol. 330, no. 15, pp. 3729-3743, 2011.
[22] W. Wei and H. Yabuno, "Subcritical Hopf and saddle-node bifurcations in hunting motion caused by cubic and quintic nonlinearities: experimental identification of nonlinearities in a roller rig," Nonlinear Dynamics, vol. 98, pp. 657-670, 2019.
[23] T. Mazilu, "Instability of a train of oscillators moving along a beam on a viscoelastic foundation," Journal of Sound and Vibration, vol. 332, no. 19, pp. 4597-4619, 2013.
[24] J.-S. Chen, S.-Y. Chen, and W.-Z. Hsu, "Effects of geometric nonlinearity on the response of a long beam on viscoelastic foundation to a moving mass," Journal of Sound and Vibration, vol. 497, p. 115961, 2021.
[25] Y. Weitsman, "On Foundations That React in Compression Only," Journal of Applied Mechanics, vol. 37, no. 4, p. 1019, 1970.
[26] Y. Weitsman, "Onset of separation between a beam and a tensionless elastic foundation under a moving load," International Journal of Mechanical Sciences, vol. 13, no. 8, pp. 707-711, 1971.
[27] N. Kameswara Rao, "Onset of Separation Between a Beam and Tensionless Foundation Due to Moving Loads," Journal of Applied Mechanics, vol. 41, no. 1, p. 303, 1974.
[28] A. Nobili, "Superposition principle for the tensionless contact of a beam resting on a Winkler or a Pasternak foundation," Journal of Engineering Mechanics, vol. 139, no. 10, pp. 1470-1478, 2013.
[29] M. Attar, A. Karrech, and K. Regenauer-Lieb, "Non-linear analysis of beam-like structures on unilateral foundations: A lattice spring model," International Journal of Solids and Structures, vol. 88, pp. 192-214, 2016.
[30] S. Lenci and F. Clementi, "Flexural wave propagation in infinite beams on a unilateral elastic foundation," Nonlinear Dynamics, vol. 99, no. 1, pp. 721-735, 2020.
[31] J. Choros and G. Adams, "A Steadily Moving Load on an Elastic Beam Resting on a Tensionless Winkler Foundation," Journal of Applied Mechanics, vol. 46, no. 1, p. 175, 1979.
[32] L. Lin and G. Adams, "Beam on tensionless elastic foundation," Journal of Engineering Mechanics, vol. 113, no. 4, pp. 542-553, 1987.
[33] J.-S. Chen and Y.-K. Chen, "Steady state and stability of a beam on a damped tensionless foundation under a moving load," International Journal of Non-Linear Mechanics, vol. 46, no. 1, pp. 180-185, 2011.
[34] E. Sapountzakis and A. Kampitsis, "Nonlinear response of shear deformable beams on tensionless nonlinear viscoelastic foundation under moving loads," Journal of Sound and Vibration, vol. 330, no. 22, pp. 5410-5426, 2011.
[35] Y. Zhang and X. Liu, "Response of an infinite beam resting on the tensionless Winkler foundation subjected to an axial and a transverse concentrated loads," European Journal of Mechanics-A/Solids, vol. 77, p. 103819, 2019.
[36] S. Bhatra and P. Maheshwari, "Double beam model for reinforced tensionless foundations under moving loads," KSCE Journal of Civil Engineering, vol. 23, pp. 1600-1609, 2019.
[37] S. Bhatra and P. Maheshwari, "Effect of adjacent axle loads on uplift of rails on geocell-stone column improved tensionless foundation," Geotechnical and Geological Engineering, vol. 39, no. 2, pp. 1059-1078, 2021.
[38] R. Sanches, F. Simões, and A. Pinto da Costa, "Physical and geometrical nonlinear dynamic analysis of beams on foundations under moving loads," Journal of Engineering Mechanics, vol. 146, no. 1, p. 04019114, 2020.
[39] J.-S. Chen, Q.-W. Wen, and C. Yeh, "Steady state responses of an infinite beam resting on a tensionless visco-elastic foundation under a harmonic moving load," Journal of Sound and Vibration, vol. 540, p. 117298, 2022.
[40] J. Den Hartog, Advanced Strength of Materials. Courier Corporation, 2014.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91562-
dc.description.abstract隨著高速列車軌道技術的快速發展,對於列車在鐵軌上運行時的動力學特性研究變得愈加重要。其中,軌道與車輛運行時產生的振動對乘客的舒適度影響極大,因此對軌道的變形與振動反應進行深入探討顯得尤為必要。
在過去的研究中,大多採用雙向彈性基底模型來模擬列車和鐵軌的交互作用。為了更貼近實際情況,本論文中使用了單向黏彈性基底分析受其支撐的無限長尤拉梁在等速移動質點作用下的變形。
本論文的主要目標在於探討梁的平衡變形和穩定性。利用分段匹配法,求取梁的平衡變形,並獲得變形隨著各參數(例如速度、質量等)變化的結果。運用微擾法和動態分析判別平衡解的穩定性。求出梁存在平衡解的最高速度(臨界速度)和最大質量(臨界質量),繪製各參數下的臨界曲線。我們發現單向黏彈性基底的臨界速度遠低於雙向黏彈性基底的臨界速度。
zh_TW
dc.description.abstractWith the rapid development of high-speed railway track technology, studying the dynamic characteristics of trains running on rails has become increasingly important. The vibrations generated during track and vehicle operation greatly impact passenger comfort, making a comprehensive investigation into track deformation and vibration responses crucial.
In previous research, a bi-directional elastic foundation model was commonly used to simulate the interaction between trains and rail tracks. To better reflect real-world conditions, this paper employs a unidirectional viscoelastic foundation to analyze the deformation of an infinitely long Euler beam subjected to a uniformly moving point load.
The main objective of this paper is to explore the equilibrium deformation and stability of the beam. The segmented matching method is used to calculate the equilibrium deformation and obtain the deformation results with varying parameters (such as speed, mass, etc.). Stability of the equilibrium solution is determined using perturbation methods and dynamic analysis. The critical speed (critical velocity) and maximum mass (critical mass) at which the beam has equilibrium solutions are determined, and critical curves for different parameter values are plotted. We found that the critical speed for the unidirectional viscoelastic foundation is significantly lower than that for the tensionless viscoelastic foundation.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-28T16:32:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-01-28T16:32:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
摘要 iii
ABSTRACT iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 導論 1
第二章 理論分析 4
2.1 統御方程式 4
2.1.1 固定座標系 4
2.1.2 移動座標系 8
2.1.3 有限長梁 8
2.2 平衡解 9
2.2.1 平衡方程式 9
2.3 動態解 12
2.3.1 Galerkin法 12
2.3.2 Newmark法 14
2.4 穩定性分析 16
2.4.1 微擾法 16
2.4.2 特徵值法 19
第三章 結果與討論 21
3.1 數值方法驗證 21
3.1.1 接觸條件 21
3.1.2 收斂性 27
3.2 平衡解穩定性 28
3.3 平衡解的穩定性 37
3.4 單向與雙向基底比較 39
3.5 質點和力比較 40
第四章 結論 42
參考文獻 43
附錄目錄 46
附錄A 分段匹配法 47
附錄B Galerkin法離散化過程 49
-
dc.language.isozh_TW-
dc.subject單向黏彈性基底zh_TW
dc.subject穩定性zh_TW
dc.subject振動zh_TW
dc.subjectvibrationen
dc.subjecttensionless viscoelastic foundationen
dc.subjectstabilityen
dc.title單向黏彈性基底上無限長梁受等速移動質點的變形zh_TW
dc.titleResponse of an Infinite Beam Resting on a Tensionless Visco-Elastical Foundation to a Moving Massen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee田孟軒;盧南佑zh_TW
dc.contributor.oralexamcommitteeMeng-Hsuan Tien;Nan-You Luen
dc.subject.keyword單向黏彈性基底,振動,穩定性,zh_TW
dc.subject.keywordtensionless viscoelastic foundation,stability,vibration,en
dc.relation.page50-
dc.identifier.doi10.6342/NTU202302990-
dc.rights.note未授權-
dc.date.accepted2023-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
5.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved