請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91560
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭修伯 | zh_TW |
dc.contributor.advisor | Hsiu-Po Kuo | en |
dc.contributor.author | 李易鑫 | zh_TW |
dc.contributor.author | Yi-Shin Lee | en |
dc.date.accessioned | 2024-01-28T16:32:12Z | - |
dc.date.available | 2024-02-24 | - |
dc.date.copyright | 2024-01-28 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-07 | - |
dc.identifier.citation | 1. Vogt, E.T. and B.M. Weckhuysen, Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem Soc Rev, 2015. 44(20): p. 7342-70.
2. Wu, F. and D. Wu, Attrition resistances and mechanisms of three types of FCC catalysts. Powder Technology, 2017. 305: p. 289-296. 3. Grigoriev, S.N., et al., Granulation of Silicon Nitride Powders by Spray Drying: A Review. Materials, 2022. 15(14): p. 4999. 4. Nandiyanto, A.B.D. and K. Okuyama, Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges. Advanced Powder Technology, 2011. 22(1): p. 1-19. 5. Storm, C. and F. Joos, Comparison of secondary breakup models for droplet-laden compressor flows. International Journal of Multiphase Flow, 2019. 116: p. 125-136. 6. Jain, S.S., et al., Secondary breakup of drops at moderate Weber numbers: Effect of density ratio and Reynolds number. International Journal of Multiphase Flow, 2019. 117: p. 25-41. 7. Pilch, M. and C. Erdman, Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. International journal of multiphase flow, 1987. 13(6): p. 741-757. 8. Thybo, P., et al., Droplet size measurements for spray dryer scale-up. Pharmaceutical development and technology, 2008. 13(2): p. 93-104. 9. Ferreira, S. and V.R. Nicoletti, Complex coacervation assisted by a two-fluid nozzle for microencapsulation of ginger oil: Effect of atomization parameters. Food Research International, 2020. 138: p. 109828. 10. Brodkey, R.S. and A. Brodkey, The phenomena of fluid motions. Vol. 552. 1967: Addison-Wesley Reading, MA. 11. Al Rabadi, S., Prediction of droplet velocity and rain out in horizontal, isothermal two-phase free jet flows. 2008: Cuvillier Verlag. 12. O'Sullivan, J.J., et al., Atomisation technologies used in spray drying in the dairy industry: A review. Journal of Food Engineering, 2019. 243: p. 57-69. 13. Kemp, I.C., et al., Experimental Study of Spray Drying and Atomization with a Two-Fluid Nozzle to Produce Inhalable Particles. Drying Technology, 2013. 31(8): p. 930-941. 14. Mezhericher, M., A. Levy, and I. Borde, Modelling the morphological evolution of nanosuspension droplet in constant-rate drying stage. Chemical Engineering Science, 2011. 66(5): p. 884-896. 15. Mezhericher, M., A. Levy, and I. Borde, Spray drying modelling based on advanced droplet drying kinetics. Chemical Engineering and Processing: Process Intensification, 2010. 49(11): p. 1205-1213. 16. Iskandar, F., L. Gradon, and K. Okuyama, Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol. Journal of Colloid and Interface Science, 2003. 265(2): p. 296-303. 17. Rhodes, M.J., Introduction to particle technology. 2008: John Wiley & Sons. 18. Ortega-Rivas, E., Unit operations of particulate solids: theory and practice. 2011: Taylor & Francis. 19. Sadeghbeigi, R., Fluid catalytic cracking handbook: An expert guide to the practical operation, design, and optimization of FCC units. 2020: Butterworth-Heinemann. 20. Forsythe, W. and W. Hertwig, Attrition characteristics of fluid cracking catalysts. Industrial & Engineering Chemistry, 1949. 41(6): p. 1200-1206. 21. Bayham, S.C., R. Breault, and E. Monazam, Particulate solid attrition in CFB systems – An assessment for emerging technologies. Powder Technology, 2016. 302: p. 42-62. 22. Gwyn, J., On the particle size distribution function and the attrition of cracking catalysts. AIChE Journal, 1969. 15(1): p. 35-39. 23. Ghadiri, M. and R. Boerefijn, A model of attrition in the jetting region of fluidised beds. KONA Powder and Particle Journal, 1996. 14: p. 5-15. 24. Bao, J., et al., Effect of the Microstructure of Support Materials on Cracking Catalyst Performance. Crystals, 2023. 13(1): p. 123. 25. Komvokis, V., et al., Zeolites in fluid catalytic cracking (FCC), in Zeolites in sustainable chemistry. 2016, Springer. p. 271-297. 26. Moshoeshoe, M., M.S. Nadiye-Tabbiruka, and V. Obuseng, A review of the chemistry, structure, properties and applications of zeolites. Am. J. Mater. Sci, 2017. 7(5): p. 196-221. 27. Vogt, E.T., et al., Zeolites and zeotypes for oil and gas conversion, in Advances in catalysis. 2015, Elsevier. p. 143-314. 28. Bai, P., et al., Fluid catalytic cracking technology: current status and recent discoveries on catalyst contamination. Catalysis Reviews, 2018. 61(3): p. 333-405. 29. García-Martínez, J., K. Li, and G. Krishnaiah, A mesostructured Y zeolite as a superior FCC catalyst–from lab to refinery. Chemical Communications, 2012. 48(97): p. 11841-11843. 30. Lutz, W., Zeolite Y: Synthesis, Modification, and Properties—A Case Revisited. Advances in Materials Science and Engineering, 2014. 2014: p. 1-20. 31. Farneth, W. and R. Gorte, Methods for characterizing zeolite acidity. Chemical reviews, 1995. 95(3): p. 615-635. 32. Tai, S., V. Custodis, and J. van Bokhoven, Lignin Fast Pyrolysis: Towards Enhanced Product Selectivities by Varying Particle Sizes of HZSM-5 Zeolites. Swiss Federal Institute of Technology Zurich: Zurich, Switzerland, 2016: p. 66. 33. Shoinkhorova, T., et al., Shaping of ZSM-5-Based Catalysts via Spray Drying: Effect on Methanol-to-Olefins Performance. ACS Appl Mater Interfaces, 2019. 11(47): p. 44133-44143. 34. Woltermann, G.M., J.S. Magee, and S.D. Griffith, Chapter 4 Commercial Preparation and Characterization of FCC Catalysts, in Fluid Catalytic Cracking: Science and Technology. 1993. p. 105-144. 35. Esposito, S., "Traditional" Sol-Gel Chemistry as a Powerful Tool for the Preparation of Supported Metal and Metal Oxide Catalysts. Materials (Basel), 2019. 12(4). 36. Wright, J.D. and N.A. Sommerdijk, Sol-gel materials: chemistry and applications. Vol. 4. 2000: CRC press. 37. Ebelmen, J.J., Recherches sur les combinaisons des acides borique et silicique avec les éthers. 1846. 38. Dislich, H. and P. Hinz, History and principles of the sol-gel process, and some new multicomponent oxide coatings. Journal of Non-Crystalline Solids, 1982. 48(1): p. 11-16. 39. Tamon, H., T. Kitamura, and M. Okazaki, Preparation of silica aerogel from TEOS. Journal of colloid and interface science, 1998. 197(2): p. 353-359. 40. Bergna, H.E., Colloid chemistry of silica: An overview. 1994. 41. Abdullah, H., et al., (SiO2) 100-x-Nix (x= 2.5, 10.0) Composite-based photoanode with polymer gel electrolyte for increased dye-sensitized solar cell performance. Ionics, 2019. 25(7): p. 3387-3396. 42. Iler, R.K., The colloid chemistry of silica and silicates. Vol. 80. 1955: LWW. 43. Brinker, C.J. and G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing. 2013: Academic press. 44. Boonstra, A. and J. Baken, Relation between the acidity and reactivity of a teos, ethanol and water mixture. Journal of non-crystalline solids, 1990. 122(2): p. 171-182. 45. Bergna, H.E. and W.O. Roberts, Colloidal silica: fundamentals and applications. 2005: CRC Press. 46. Colby, M.W., A. Osaka, and J.D. Mackenzie, Effects of temperature on formation of silica gel. Journal of Non-Crystalline Solids, 1986. 82(1-3): p. 37-41. 47. Sullivan, C.E., Binder kinetics and FCC catalyst microstructure. 1995: The University of Wisconsin-Madison. 48. Zheng, Y., et al., Peptization Mechanism of Boehmite and Its Effect on the Preparation of a Fluid Catalytic Cracking Catalyst. Industrial & Engineering Chemistry Research, 2014. 53(24): p. 10029-10034. 49. Bingre, R., B. Louis, and P. Nguyen, An overview on zeolite shaping technology and solutions to overcome diffusion limitations. Catalysts, 2018. 8(4): p. 163. 50. Boumaza, A., et al., Transition alumina phases induced by heat treatment of boehmite: an X-ray diffraction and infrared spectroscopy study. Journal of solid state chemistry, 2009. 182(5): p. 1171-1176. 51. Krokidis, X., et al., Theoretical study of the dehydration process of boehmite to γ-alumina. The Journal of Physical Chemistry B, 2001. 105(22): p. 5121-5130. 52. Feng, R., et al., Preparation and characterization of γ-Al2O3 with rich Brønsted acid sites and its application in the fluid catalytic cracking process. The Journal of Physical Chemistry C, 2014. 118(12): p. 6226-6234. 53. Urbonavicius, M., et al., Production of gamma alumina using plasma-treated aluminum and water reaction byproducts. Materials, 2020. 13(6): p. 1300. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91560 | - |
dc.description.abstract | 噴霧乾燥造粒是一種常用來造粒的方法,透過將一次顆粒分散於溶劑中並加入黏合劑,利用霧化器將液體進料霧化成液滴形式,再以高溫的熱風與液滴進行快速的熱交換使液滴裡的溶劑蒸發並形成固體的二次顆粒,最後使用氣固分離裝置來收集造粒完成後的二次顆粒。
本研究先利用組成FCC觸媒矽溶膠溶液進行噴霧乾燥造粒,並改變不同參數討論對產物的粒徑和形貌的影響。研究發現矽溶膠的液滴粒徑經驗式會在韋伯數數值120以上時,對實驗數據有較好的擬合結果,溶膠凝膠化反應則在熱風進口溫度95℃-96.5℃和pH = 3.3酸性條件下,形成了較大的二氧化矽顆粒。同時也觀察到了在高溫條件下形成的甜甜圈狀顆粒環形區域較薄,表明高溫增強了熱泳現象的作用,在pH = 3.3下,由於矽溶膠的界達電位較低,受到靜電排斥作用的影響較小,液滴中的一次顆粒更容易形成圓球狀。整體而言,在酸性條件下,矽溶膠更容易形成連續的介質形態,適合用於製備FCC觸媒顆粒。在旋風分離器收集率方面利用除溼後的空氣並在切向速度達到13.5 m/s,旋風分離器收集率可達到最大值61.4%。 依據上述結果,本研究認為將FCC觸媒的進料調配於酸性條件有利於造粒後的粒徑尺寸的增長以及圓球的形貌。造粒完後的觸媒顆粒經XRD圖譜分析後仍保有Y型沸石的結晶,BET比表面積為233.7 m2/g,在裂解反應測試時轉化率也達到了90.4%,物理強度則是利用磨耗測試機決定,經5小時的測試後磨耗損失為21.43%。 | zh_TW |
dc.description.abstract | Spray drying is a commonly used granulation method that involves dispersing primary particles in solvent with the addition of binder. The liquid feed is atomized into droplets using atomizer, and then rapid heat exchange with hot air at high temperatures causes solvent evaporation and the formation of secondary particles. Finally, an air-solid separation device is used to collect the secondary particles.
In this study, spray drying granulation was employed to silica sol solution, and the effects of different parameters on the particle size and morphology of the resulting SiO2 products were investigated. It was found that the empirical equation describing the droplet size exhibited a better fit when the Weber number exceeded 120. The sol gel reaction was observed to form larger silica particles with a hot air inlet temperature of 95°C to 96.5°C and a pH of 3.3. Additionally, it was observed that the ring region of the doughnut shape particles formed at high temperatures was thinner, indicating an enhanced thermophoretic effect. Under pH = 3.3 conditions, the lower zeta potential of silica sol led to less electrostatic repulsion, making it easier for the primary particles in the droplets to form spherical shapes. Overall, under acidic conditions, the silica sol tended to form a continuous intermediate morphology, which is suitable for the preparation of FCC catalyst particles. The yield of the particles in the cyclone separator reached a maximum of 61.4% when using dehumidified air at a tangential velocity of 13.5 m/s. Based on these results, it was concluded that adjusting the feed of the FCC catalyst under acidic conditions promotes an increase in particle size and the formation of spherical shapes. XRD analysis confirmed the presence of crystalline Y-type zeolite in the as-prepared catalyst particles, with a BET specific surface area of 233.7 m2/g. The catalyst exhibited a conversion of 90.4% in the cracking reaction test. The physical strength was determined by using an attrition tester, and after a 5-hour test, the attrition loss was measured to be 21.43%. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-28T16:32:12Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-01-28T16:32:12Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 目錄 I
圖目錄 IV 表目錄 IX 第一章 緒論 1 第二章 文獻回顧 2 2.1 噴霧乾燥 2 2.1.1 霧化液滴 3 2.1.2 乾燥過程 11 2.1.3 乾燥顆粒收集 14 2.2 FCC製程 16 2.3 觸媒磨耗 17 2.3.1 磨耗機制 17 2.3.2 磨耗速率 18 2.4 觸媒製備方法與材料 20 2.4.1 觸媒製備方法 21 2.4.2 沸石 (Zeolite) 22 2.4.3 填充物 (Filler) 25 2.4.4 黏合劑 (Binder) 27 2.5 溶膠凝膠法 (Sol gel method) 28 2.5.1 pH值影響 29 2.5.2 溫度影響 31 2.5.3 矽酸鋁複合物 31 第三章 實驗方法 33 3.1 製備FCC觸媒材料 33 3.2 實驗裝置 35 3.3 實驗步驟與操作條件 37 3.4 分析設備 40 3.4.1 指針型黏度計 (Viscometer) 40 3.4.2 靜態雷射光繞射粒徑分析儀 41 3.4.3 掃描式電子顯微鏡 42 3.4.4 FCC觸媒磨耗測試機 43 3.4.5 氣相層析儀 45 3.4.6 熱線式流量計 45 3.4.7 X射線繞射分析儀 46 3.5 矽溶膠液滴粒徑尺寸與韋伯數關係式 48 3.5.1 以乾燥二氧化矽顆粒計算矽溶膠液滴尺寸大小 48 3.5.2 計算噴嘴空氣線性速度以及進料線性速度 49 第四章 結果與討論 52 4.1 矽溶膠液滴粒徑尺寸與韋伯數的關係式 52 4.2 pH值與熱風進口溫度對於二氧化矽粒徑大小的影響 62 4.3二氧化矽顆粒形貌 67 4.3.1 溫度對於二氧化矽顆粒形貌的影響 67 4.3.2 噴嘴空氣體積流率對於二氧化矽顆粒形貌的影響 69 4.3.3 矽溶膠pH值以及固成分含量對於二氧化矽顆粒形貌的影響 71 4.4 旋風分離器之收集率 76 4.5 進料性質與操作條件對FCC觸媒收集率影響 78 4.5.1 進料pH值對旋風分離器收集率影響 78 4.5.2 進料固成分含量對旋風分離器收集率影響 79 4.5.3 噴嘴空氣體積流率對旋風分離器收集率影響 80 4.5.4 進料速率對旋風分離器收集率影響 81 4.6 進料性質與操作條件對FCC觸媒粒徑影響 83 4.6.1 進料pH值對粒徑影響 83 4.6.2 進料固成分含量對粒徑影響 84 4.6.3 噴嘴空氣體積流率對粒徑影響 86 4.6.4 進料速率對粒徑影響 88 4.6.5 粒徑分析總結 89 4.7 FCC觸媒顆粒形貌圖 91 4.7.1 乾燥室收集之顆粒 91 4.7.2 旋風分離器收集之顆粒 92 4.8 FCC觸媒顆粒磨耗測試 95 4.9 FCC觸媒結晶比較與反應性測試 97 4.9.1 觸媒結晶與比表面積分析 97 4.9.2 觸媒反應性測試 100 第五章 結論 103 參考文獻 105 | - |
dc.language.iso | zh_TW | - |
dc.title | 利用噴霧乾燥方法製備矽鋁觸媒 | zh_TW |
dc.title | Preparation of Silica-Alumina Catalyst by Nozzle Spray Drying | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 許瑞祺;余柏毅 | zh_TW |
dc.contributor.oralexamcommittee | Ruey-Chi Hsu;Bor-Yih Yu | en |
dc.subject.keyword | 噴霧乾燥造粒,矽溶膠,溶膠凝膠化反應,FCC觸媒, | zh_TW |
dc.subject.keyword | Spray drying granulation,Silica sol,Sol-gel reaction,FCC catalyst, | en |
dc.relation.page | 109 | - |
dc.identifier.doi | 10.6342/NTU202302726 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-08-08 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 化學工程學系 | - |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 5.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。