Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91556
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳永芳zh_TW
dc.contributor.advisorYang-Fang Chenen
dc.contributor.author簡郁軒zh_TW
dc.contributor.authorYu-Hsuan Chienen
dc.date.accessioned2024-01-28T16:31:13Z-
dc.date.available2024-02-24-
dc.date.copyright2024-01-28-
dc.date.issued2023-
dc.date.submitted2023-08-01-
dc.identifier.citation(1) Kim, D. H.; Rogers, J. A. Stretchable Electronics: Materials Strategies and Devices. Adv. Mater. 2008, 20, 4887-4892.
(2) Rogers, J. A.; Someya, T.; Huang, Y. Materials and Mechanics for Stretchable Electronics. Science 2010, 327, 1603-1607.
(3) Wagner, S.; Bauer, S. Materials for Stretchable Electronics. MRS Bull. 2012, 37, 207-213.
(4) White, M. S. et al. Ultrathin, Highly Flexible and Stretchable PLEDs. Nat. Photonics 2013, 7, 811-816.
(5) Huang, S.; Liu, Y.; Zhao, Y.; Ren, Z.; Guo, C. F. Flexible Electronics: Stretchable Electrodes and Their Future. Adv. Funct. Mater. 2018, 29, 1805924.
(6) Bae, S. et al. Roll-to-roll Production of 30-inch Graphene Films for Transparent Electrodes. Nat. Nanotechnol. 2010, 5, 574-578.
(7) Le, C. T. et al. Nonlinear Optical Characteristics of Monolayer MoSe2. Ann. Phys. 2016, 528, 551-559.
(8) Koppens, F. H. et al. Photodetectors Based on Graphene, Other Two-dimensional Materials and Hybrid Systems. Nat. Nanotechnol. 2014, 9, 780-793.
(9) Singh, E. et al. Flexible Molybdenum Disulfide (MoS2) Atomic Layers for Wearable Electronics and Optoelectronics. ACS Appl. Mater. Interfaces 2019, 11, 11061-11105.
(10) Pospischil, A.; Mueller, T. Optoelectronic Devices Based on Atomically Thin Transition Metal Dichalcogenides. Appl. Sci. 2016, 6, 78.
(11) Lu, G. Z. et al. All-Carbon Stretchable and Cavity-Free White Lasers. Opt. Express 2022, 30, 20213-20224.
(12) Bardarson, J. H. et al. One-parameter Scaling at the Dirac Point in Graphene. Phys. Rev. Lett. 2007, 99, 106801.
(13) Mak, K. F.; da Jornada, F. H.; He, K.; Deslippe, J.; Petrone, N.; Hone, J.; Shan, J.; Louie, S. G.; Heinz, T. F. Tuning Many-Body Interactions in Graphene: The Effects of Doping on Excitons and Carrier Lifetimes. Phys. Rev. Lett. 2014, 112, 207401.
(14) Marini, A.; Garcia de Abajo, F. J. Graphene-Based Active Random Metamaterials for Cavity-Free Lasing. Phys. Rev. Lett. 2016, 116, 217401.
(15) Li, T.; Luo, L.; Hupalo, M.; Zhang, J.; Tringides, M. C.; Schmalian, J.; Wang, J. Femtosecond Population Inversion and Stimulated Emission of Dense Dirac Fermions in Graphene. Phys. Rev. Lett. 2012, 108, 167401.
(16) Cao, H. et al. Random Laser Action in Semiconductor Powder. Phys. Rev. Lett. 1999, 82, 2278.
(17) Liu, J. et al. Laser-Induced Graphene (LIG)-Driven Medical Sensors for Health Monitoring and Diseases Diagnosis. Microchim. Acta 2022, 189, 1-14.
(18) Spears, T. G.; Gold, S. A. In-Process Sensing in Selective Laser Melting (SlM) Additive Manufacturing. Integr. Mater. Manuf. Innov. 2016, 5, 16-40.
(19) Hu, H. W. et al. Wrinkled 2D Materials: A Versatile Platform for Low-Threshold Stretchable Random Lasers. Adv. Mater. 2017, 29, 1703549.
(20) Tsai, C. Y. et al. Magnetically Controllable Random Lasers. Adv. Mater. Technol. 2017, 2, 1700170.
(21) Shi, X. et al. Dissolvable and Recyclable Random Lasers. ACS nano 2017, 11, 7600-7607.
(22) Liao, Y. M. et al. Highly Stretchable Label‐Like Random Laser on Universal Substrates. Adv. Mater. Technol. 2016, 1, 1600068
(23) Liao, W. C. et al. Plasmonic Carbon-Dot-Decorated Nanostructured Semiconductors for Efficient and Tunable Random Laser Action. ACS Appl. Nano Mater. 2017, 1, 152-159.
(24) Rodríguez-Lorenzo, L.; de La Rica, R.; Álvarez-Puebla, R. A.; Liz-Marzán, L. M.; Stevens, M. M. Plasmonic Nanosensors with Inverse Sensitivity by Means of Enzyme Guided Crystal Growth. Nat. Mater. 2012, 11, 604-607.
(25) Willets, K. A.; Van Duyne, R. P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-297
(26)Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A. Review of Some Interesting Surface Plasmon Resonance-Enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems. Plasmonics 2007, 2, 107-118.
(27) Gong, M. et al. Localized Surface Plasmon Resonance Enhanced Light Absorption in AuCu/CsPbCl3 Core/Shell Nanocrystals. Adv. Mater. 2020, 32, 2002163.
(28) Amendola, V. et al. Surface Plasmon Resonance in Gold Nanoparticles: A Review. J. Phys. Condens. 2017, 29.20: 203002.
(29) Liang, Z. et al. Plasmonic Enhanced Optoelectronic Devices. Plasmonics 2014, 9, 859-866.
(30) Zada, A. et al. Surface Plasmonic‐Assisted Photocatalysis and Optoelectronic Devices with Noble Metal Nanocrystals: Design, Synthesis, and Applications. Adv. Funct. Mater. 2020, 30, 1906744.
(31) Lee, H. Y. et al. Wrinkled 2D Hybrid Heterostructures for Stretchable and Sensitive Photodetectors. J. Mater. Chem. C 2022, 10, 16370-16378.
(32) Yang, Y. F. et al. Stretchable and Broadband Cavity‐Free Lasers Based on All 2D Metamaterials. Adv. Opt. Mater. 2020, 8, 1901326.
(33) Roy, P. K. et al. Ultrasensitive Gas Sensors Based on Vertical Graphene Nanowalls/SiC/Si Heterostructure. ACS Sens. 2019, 4, 406-412.
(34) Chamorro, W. et al. Local Structure-Driven Localized Surface Plasmon Absorption and Enhanced Photoluminescence in ZnO-Au Thin Films. J. Mater. Chem. C 2016, 120, 29405-29413.
(35) Hu, K. et al. Broadband Photoresponse Enhancement of A High‐Performance T‐Se Microtube Photodetector by Plasmonic Metallic Nanoparticles. Adv. Funct. Mater. 2016, 26, 6641-6648.
(36) Wurstbauer, U. et al. Light–Matter Interaction in Transition Metal Dichalcogenides and Their Heterostructures. J. Phys. D: Appl. Phys. 2017, 50, 173001.
(37) Ramirez, H. Y. et al. Optical Fine Structures of Highly Quantized InGaAs/GaAs Self-Assembled Quantum Dots. Phys. Rev. B 2010, 81, 245324.
(38) Feria, D. N. et al. Mechanisms of Negative Differential Resistance in Glutamine Functionalized WS2 Quantum Dots. Nanotechnology 2021, 33, 075203.
(39) Xu, S., Li, D.; Wu, P. One‐Pot, Facile, and Versatile Synthesis of Monolayer MoS2/WS2 Quantum Dots as Bioimaging Probes and Efficient Electrocatalysts for Hydrogen Evolution Reaction. Adv. Funct. Mater. 2015, 25, 1127-1136.
(40) Lu, G. Z. et al. Electrically Pumped White‐Light‐Emitting Diodes Based on Histidine‐Doped MoS2 Quantum Dots. Small 2019, 15, 1901908.
(41) Su, W. et al. Defect Passivation Induced Strong Photoluminescence Enhancement of Rhombic Monolayer MoS2. Phys. Chem. Chem. Phys. 2016, 18, 14001-14006.
(42) Zhu, S. et al. Photoluminescence Mechanism In Graphene Quantum Dots: Quantum Confinement Effect And Surface/Edge State. Nano Today, 2017, 13, 10-14.
(43) Chang, S. W. et al. A White Random Laser. Sci. Rep. 2018, 8, 2720.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91556-
dc.description.abstract本研究提出了對基於glutamine(GLN)-functionalized WS2量子點(QDs)的可拉伸無腔白光雷射的製作、特性分析和性能評估的全面研究。通過Au奈米顆粒(Au NPs)和皺褶結構來增強器件,引入了局部表面等離子共振(LSPR),從而增強了光與物質的相互作用,提高了性能並降低了雷射臨界值。這些器件的可拉伸性通過機械彎曲測試得到驗證,展示了它們在柔性和可穿戴應用中的潛力。此外,雷射結構中的無腔設計簡化了器件的設計和製作過程,使其具有高度的多功能性和可擴展性。GLN功能化的WS2 QDs表現出強烈的光致發光發射,與Au NPs和Graphene的皺摺結構的集成產生協同效應,提高了發射效率並實現了無腔雷射。在不同變形比下對發射光譜進行廣泛的特性分析和分析,為這些器件的可調性、可靠性及基於Graphene皺摺結構的光束縛的重要性提供了有價值的見解。本研究的結果凸顯了基於2D GLN功能化的WS2量子點的局部表面等離子共振和皺褶結構引起的可拉伸無腔白光雷射在柔性和可穿戴光子學領域中的重要潛力。這項工作展示了實現性能和多功能性提升的下一代光電子器件發展的關鍵一步。zh_TW
dc.description.abstractThis study presents an investigation into the fabrication, characterization, and performance analysis of cavity-free and stretchable white lasers based on 2D glutamine(GLN)-functionalized WS2 quantum dots (QDs) enhanced by the integration of Au nanoparticles (NPs) and wrinkled graphene structure. Incorporating Au NPs introduces localized surface plasmon resonance (LSPR), which enables to enhance of the light-matter interaction, resulting in reduced lasing thresholds. The stretchable nature of these devices is demonstrated through mechanical bending tests, showcasing their potential for seamless integration into flexible and wearable applications. Furthermore, the absence of a cavity in the laser structure simplifies the device design and fabrication process, making them highly versatile and scalable. The GLN-functionalized WS2 QDs exhibit strong photoluminescence emission, and their integration with wrinkled graphene structure and Au NPs creates a synergistic effect that enhances the emission efficiency and enables the realization of cavity-free lasing. The extensive characterization and analysis of the emission spectra under different deformation ratios provide valuable insights into the tunability and reliability of these devices as well as the importance of light trapping due to wrinkled graphene structure. The findings of this study underscore the significant potential of localized surface plasmon resonance and wrinkled graphene structure induced stretchable and cavity-free white lasers based on 2D GLN-functionalized WS2 quantum dots for a wide range of applications in the field of flexible and wearable photonics, which is a critical step toward the development of next-generation optoelectronic devices with enhanced performance and versatility.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-28T16:31:13Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-01-28T16:31:13Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Contents vi
List of Figures viii
Introduction 1
Theoretical Background 5
2.1 PHOTOLUMINESCENCE (PL) 5
2.2 RANDOM LASER (RL) 7
2.2.1 Mechanism 7
2.2.2 Emission Properties 9
2.3 QUANTUM DOTS (QDS) 11
2.4 SURFACE PLASMON RESONANCE (SPR) 13
Experimental Details 15
3.1 SYNTHESIS OF WS2 QUANTUM DOTS AND GLN- FUNCTIONALIZED WS2 QUANTUM DOTS 15
3.2 SYNTHESIS OF POLYDIMETHYLSILOXANE STRETCHABLE SUBSTRATE 16
3.3 CHEMICAL VAPOR DEPOSITION(CVD) OF GRAPHENE 17
3.4 DEVICE FABRICATION AND STRUCTURE 20
Results and Discussion 22
4.1 DEVICE FABRICATION AND WRINKLED STRUCTURES 22
4.2 WS2 QUANTUM DOTS CHARACTERISTICS 25
4.3 AU NANOPARTICLES DEPENDENCE 28
4.4 GRAPHENE DEPENDENCE 31
4.5 ANGULAR DEPENDENCE OF EMISSION SPECTRA 34
4.6 STRAIN DEPENDENCE OF PHOTOLUMINESCENCE (PL) SPECTRA AND CYCLIC TENSILE TESTING 36
Conclusion 39
Reference 41
-
dc.language.isoen-
dc.subject穿戴式電子zh_TW
dc.subject皺褶結構zh_TW
dc.subject局部表面等離子共振zh_TW
dc.subject二維材料zh_TW
dc.subjectWS2 量子點zh_TW
dc.subject無腔體雷射zh_TW
dc.subjectlocalized surface plasmon resonanceen
dc.subjectstretchable cavity-free lasersen
dc.subjectquantum dotsen
dc.subjectglutamine-functionalized WS2en
dc.subject2D materialen
dc.subjectwrinkled graphene structureen
dc.title皺褶石墨烯結構表面和等離子共振誘導的GLN功能化二維材料二硫化鎢量子點可拉伸和無腔體白光雷射zh_TW
dc.titleWrinkled Graphene Structure and Localized Surface Plasmon Resonance Induced Stretchable and Cavity-Free White Lasers Based on GLN-functionalized 2D WS2 Quantum Dotsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee沈志霖;許芳琪zh_TW
dc.contributor.oralexamcommitteeJi-Lin Shen;Fang-Chi Hsuen
dc.subject.keyword穿戴式電子,皺褶結構,局部表面等離子共振,二維材料,WS2 量子點,無腔體雷射,zh_TW
dc.subject.keywordwrinkled graphene structure,localized surface plasmon resonance,2D material,glutamine-functionalized WS2,quantum dots,stretchable cavity-free lasers,en
dc.relation.page45-
dc.identifier.doi10.6342/NTU202302128-
dc.rights.note未授權-
dc.date.accepted2023-08-03-
dc.contributor.author-college理學院-
dc.contributor.author-dept應用物理研究所-
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
1.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved