Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91554
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭修伯zh_TW
dc.contributor.advisorHsiu-Po Kuoen
dc.contributor.author沈宜蓁zh_TW
dc.contributor.authorI-Chen Shenen
dc.date.accessioned2024-01-28T16:30:40Z-
dc.date.available2024-02-24-
dc.date.copyright2024-01-28-
dc.date.issued2023-
dc.date.submitted2023-08-02-
dc.identifier.citationJurtz, N., M. Kraume, and G.D. Wehinger, Advances in fixed-bed reactor modeling using particle-resolved computational fluid dynamics (CFD). Reviews in Chemical Engineering, 2019. 35(2): p. 139-190.

Dixon, A.G., M. Nijemeisland, and E.H. Stitt, Packed Tubular Reactor Modeling and Catalyst Design using Computational Fluid Dynamics, in Computational Fluid Dynamics. 2006. p. 307-389.

Yang, X., et al., Direct numerical simulation of pore-scale flow in a bead pack: Comparison with magnetic resonance imaging observations. Advances in Water Resources, 2013. 54: p. 228-241.

Yang, J., et al., Computational study of forced convective heat transfer in structured packed beds with spherical or ellipsoidal particles. Chemical Engineering Science, 2010. 65(2): p. 726-738.

Eppinger, T. and G.D. Wehinger, A Generalized Contact Modification for Fixed‐Bed Reactor CFD Simulations Chemie Ingenieur Technik, 2020. 93(1-2): p. 143-153.

Wehinger, G.D., C. Fütterer, and M. Kraume, Contact Modifications for CFD Simulations of Fixed-Bed Reactors: Cylindrical Particles. Industrial & Engineering Chemistry Research, 2016. 56(1): p. 87-99.

Bai, H., et al., A Coupled DEM and CFD Simulation of Flow Field and Pressure Drop in Fixed Bed Reactor with Randomly Packed Catalyst Particles. Industrial & Engineering Chemistry Research, 2009. 48(8): p. 4060-4074.

Ferziger, J.H., M. Perić, and R.L. Street, Computational methods for fluid dynamics. Vol. 3. 2002: Springer.

Clement, C., Computational Fluid Dynamics (CFD) Investigation of Hydrodynamic Loading on Subsea Gratings. 2015, UNIVERSITY OF ABERDEEN.

Eppinger, T., N. Jurtz, and R. Aglave. Automated workflow for spatially resolved packed bed reactors with spherical and non-spherical particles. in Proceedings of the 10th International Conference on CFD in Oil & Gas, Metallurgical and process Industries SINTEF, Trondheim, Norway. 2014.

Caulkin, R., et al., Digital predictions of complex cylinder packed columns. Computers & Chemical Engineering, 2009. 33(1): p. 10-21.

Partopour, B. and A.G. Dixon, Effect of particle shape on methanol partial oxidation in a fixed bed using CFD reactor modeling. AIChE Journal, 2020. 66(5).

Karthik, G.M. and V.V. Buwa, Effect of particle shape on fluid flow and heat transfer for methane steam reforming reactions in a packed bed. AIChE Journal, 2017. 63(1): p. 366-377.

Wehinger, G.D., Particle-resolved CFD simulations of catalytic flow reactors. 2016: Technische Universitaet Berlin (Germany).

Eppinger, T., K. Seidler, and M. Kraume, DEM-CFD simulations of fixed bed reactors with small tube to particle diameter ratios. Chemical Engineering Journal, 2011. 166(1): p. 324-331.

González-Castaño, M., B. Dorneanu, and H. Arellano-García, The reverse water gas shift reaction: a process systems engineering perspective. Reaction Chemistry & Engineering, 2021. 6(6): p. 954-976.

Wolf, A., A. Jess, and C. Kern, Syngas Production via Reverse Water-Gas Shift Reaction over a Ni-Al2O3 Catalyst: Catalyst Stability, Reaction Kinetics, and Modeling. Chemical Engineering & Technology, 2016. 39(6): p. 1040-1048.

Cheng, K., et al., Advances in catalysis for syngas conversion to hydrocarbons, in Advances in catalysis. 2017, Elsevier. p. 125-208.

Davis, B.H., Fischer–Tropsch synthesis: current mechanism and futuristic needs. Fuel processing technology, 2001. 71(1-3): p. 157-166.

Sarup, B. and B.W. Wojciechowski, Studies of the fischer-tropsch synthesis on a cobalt catalyst II. Kinetics of carbon monoxide conversion to methane and to higher hydrocarbons. The Canadian Journal of Chemical Engineering, 1989. 67(1): p. 62-74.

Mahmoudi, H., et al., A review of Fischer Tropsch synthesis process, mechanism, surface chemistry and catalyst formulation. Biofuels Engineering, 2017. 2(1): p. 11-31.

Ail, S.S. and S. Dasappa, Biomass to liquid transportation fuel via Fischer Tropsch synthesis – Technology review and current scenario. Renewable and Sustainable Energy Reviews, 2016. 58: p. 267-286.

Méndez, C.I. and J. Ancheyta, Kinetic models for Fischer-Tropsch synthesis for the production of clean fuels. Catalysis Today, 2020. 353: p. 3-16.

Van Der Laan, G.P. and A.A.C.M. Beenackers, Kinetics and Selectivity of the Fischer–Tropsch Synthesis: A Literature Review. Catalysis Reviews, 1999. 41(3-4): p. 255-318.

McGregor, J., 21. Fischer–Tropsch synthesis using CO2, in Transformations. 2019. p. 413-432.

Yang, H., et al., A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catalysis Science & Technology, 2017. 7(20): p. 4580-4598.

Panzone, C., et al., Development and Validation of a Detailed Microkinetic Model for the CO2 Hydrogenation Reaction toward Hydrocarbons over an Fe–K/Al2O3 Catalyst. Industrial & Engineering Chemistry Research, 2022. 61(13): p. 4514-4533.

Teimouri, Z., N. Abatzoglou, and A.K. Dalai, Kinetics and Selectivity Study of Fischer–Tropsch Synthesis to C5+ Hydrocarbons: A Review. Catalysts, 2021. 11(3).

Panzone, C., et al., Catalytic and Kinetic Study of the CO2 Hydrogenation Reaction over a Fe–K/Al2O3 Catalyst toward Liquid and Gaseous Hydrocarbon Production. Industrial & Engineering Chemistry Research, 2021. 60(46): p. 16635-16652.

Tavares, M., et al., Modified fischer-tropsch synthesis: A review of highly selective catalysts for yielding olefins and higher hydrocarbons. Frontiers in Nanotechnology, 2022. 4.

Boreriboon, N., et al., Higher hydrocarbons synthesis from CO 2 hydrogenation over K-and La-promoted Fe–Cu/TiO 2 catalysts. Topics in Catalysis, 2018. 61: p. 1551-1562.

Najari, S., et al., Modeling and optimization of hydrogenation of CO2: Estimation of kinetic parameters via Artificial Bee Colony (ABC) and Differential Evolution (DE) algorithms. International Journal of Hydrogen Energy, 2019. 44(10): p. 4630-4649.

Zhao, H., et al., Multi-Promoters Regulated Iron Catalyst with Well-Matching Reverse Water-Gas Shift and Chain Propagation for Boosting CO2 Hydrogenation. Journal of CO2 Utilization, 2021. 52.

Jiang, F., et al., Hydrogenation of CO2 into hydrocarbons: enhanced catalytic activity over Fe-based Fischer–Tropsch catalysts. Catalysis Science & Technology, 2018. 8(16): p. 4097-4107.

Frontera, P., et al., Supported Catalysts for CO2 Methanation: A Review. Catalysts, 2017. 7(12).

Schaaf, T., et al., Methanation of CO2 - storage of renewable energy in a gas distribution system. Energy, Sustainability and Society, 2014. 4(1).

Su, X., et al., Catalytic carbon dioxide hydrogenation to methane: A review of recent studies. Journal of Energy Chemistry, 2016. 25(4): p. 553-565.

Di Nardo, A., et al., CO2 methanation in a shell and tube reactor CFD simulations: high temperatures mitigation analysis. Chemical Engineering Science, 2021. 246.

Champon, I., et al., Carbon dioxide methanation kinetic model on a commercial Ni/Al2O3 catalyst. Journal of CO2 Utilization, 2019. 34: p. 256-265.

Bassano, C., et al., P2G movable modular plant operation on synthetic methane production from CO2 and hydrogen from renewables sources. Fuel, 2019. 253: p. 1071-1079.

Gao, J., et al., A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC advances, 2012. 2(6): p. 2358-2368.

Falbo, L., et al., Kinetics of CO2 methanation on a Ru-based catalyst at process conditions relevant for Power-to-Gas applications. Applied Catalysis B: Environmental, 2018. 225: p. 354-363.

Koschany, F., D. Schlereth, and O. Hinrichsen, On the kinetics of the methanation of carbon dioxide on coprecipitated NiAl(O). Applied Catalysis B: Environmental, 2016. 181: p. 504-516.

Stangeland, K., et al., CO 2 Methanation: The Effect of Catalysts and Reaction Conditions. Energy Procedia, 2017. 105: p. 2022-2027.

Wambach, J., A. Baiker, and A. Wokaun, CO 2 hydrogenation over metal/zirconia catalysts. Physical Chemistry Chemical Physics, 1999. 1(22): p. 5071-5080.

Gao, J., et al., A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Advances, 2012. 2(6).

Abate, S., et al., Catalytic Performance of γ-Al2O3–ZrO2–TiO2–CeO2 Composite Oxide Supported Ni-Based Catalysts for CO2 Methanation. Industrial & Engineering Chemistry Research, 2016. 55(16): p. 4451-4460.

Lin, Y., et al., CFD simulation of the Sabatier process in a shell-and-tube reactor under local thermal non-equilibrium conditions: Parameter sensitivity and reaction mechanism analysis. International Journal of Hydrogen Energy, 2022. 47(34): p. 15254-15269.

Zhang, W., et al., Computational fluid dynamics simulation of CO2 methanation in a shell-and-tube reactor with multi-region conjugate heat transfer. Chemical Engineering Science, 2020. 211.

Walton, O.R. and R.L. Braun, Viscosity, granular‐temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. Journal of rheology, 1986. 30(5): p. 949-980.

ESSS Rocky, DEM Technical Manual. ESSS Rocky DEM, S.R.L., 2021.

Do, T.N. and J. Kim, Green C2-C4 hydrocarbon production through direct CO2 hydrogenation with renewable hydrogen: Process development and techno-economic analysis. Energy Conversion and Management, 2020. 214.

Ergun, S., Fluid flow through packed columns. Chem. Eng. Prog., 1952. 48(2): p. 89-94.

Zhavoronkov, N., M. Aerov, and N. Umnik, Hydraulic resistance and density of packing of a granular bed. J. Phys. Chem, 1949. 23: p. 342-361.

Reichelt, W., Zur Berechnung des Druckverlustes einphasig durchströmter Kugel‐und Zylinderschüttungen. Chemie Ingenieur Technik, 1972. 44(18): p. 1068-1071.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91554-
dc.description.abstract本研究使用CFD-DEM模擬填充床反應器,先利用離散元素法(Discrete Element Method, DEM)自由落體生成虛擬填充床中的顆粒堆疊,後續耦合有限元素法計算流體力學(Computational Fluid Dynamics, CFD)。觸媒形狀影響填充床反應器的表現,本文選用圓球、圓柱、圓環或三葉柱狀觸媒顆粒進行填充床之堆疊,利用顆粒解析CFD來探討顆粒形狀對填充床內的影響,如氣體流態、壓降及溫度分布等,同時比較全域模式與局部切除兩模式的點接觸修飾表現,以提升有限元素法所需的網格品質。此外,本研究亦在填充床中耦合反應,第一部份是逆水煤氣轉化(RWGS)及費托(FT)整合反應,主要針對不同操作條件下對產物及反應器內的現象進行分析,第二部分是在殼管式反應器內進行二氧化碳甲烷化反應,探討不同殼層操作條件對轉化率之影響。
結果顯示使用局部切除1%修飾時,空隙度僅比真實空隙度少0.039%-0.231%,比較1 cm圓球於34.4 mm管中堆疊25 cm高的填充床兩端壓力降,在0.5 m/s-2 m/s空氣流速範圍內,CFD-DEM模擬預測的壓力降與實驗所測壓力降差異僅7.64%,當使用三葉柱狀顆粒填充時,填充床徑向空隙率變化最平緩、軸向速度分布最接近栓流,滯留時間分布也最窄,同時擁有最好的熱傳效果,且發生逆流的比例最低。
在RWGS和FT整合反應的部分,溫度為主要影響之因素,其次是滯留時間,而入口混合氣體各物質之比例影響最小,當管壁溫度上升時,能有效的提升二氧化碳轉化率及碳氫化合物之選擇率,同時能得到高烯烴/烷烴比。在二氧化碳甲烷化反應的部分,當殼層流動方向為逆流時,會有較高的二氧化碳轉化率,亦利用改變殼層入口溫度及氣體空速使內管達到適合反應之溫度,以得到高轉化率(80%左右),殼層的操作條件會隨反應物進料溫度不同而改變,但其趨勢相同,殼層要操作在低溫及低流量或相對高溫及高流量來得到高二氧化碳轉化率。
zh_TW
dc.description.abstractThe CFD-DEM simulation of packed bed reactors involves generating the packed bed structure by Discrete element method (DEM), followed by realizing the gas hydrodynamics using Computational Fluid Dynamics (CFD). The shape of the catalyst particles affects the performance of packed bed reactors. This study selects spherical, cylindrical, ring, or trilobe catalyst particles for the bed packing and utilizes particle-resolved CFD to discuss the influence of particle shape on various phenomena within the packed bed, such as gas flow field, pressure drop, and temperature distribution. In addition, this study also couples reactions within the packed bed. The first part focuses on the Reverse Water-Gas Shift (RWGS) and Fischer-Tropsch (FT) reactions, primarily analyzing the products and phenomena within the reactor under different operating conditions. The second part involves the carbon dioxide methanation reaction conducted in a shell-and-tube reactor, discussing the influence of different shell-side operating conditions on the conversion rate.
In order to improve the mesh quality required by the finite element method, two particle-contact modification methods, the global gap method and the local cap method, are adopted in this research. When using the local cap method with the shrinking ratio of 1%, the predicted voidage is 0.039%-0.231% smaller than the voidage without contact-point modification. The average error between the predicted and the measured pressure drop in the superficial velocity range studied of 0.5 m/s-2 m/s is 7.64%, which is good enough for shape testing. When using trilobe particles for packing, the radial voidage shows the smoothest variations, the axial velocity distribution is closest to plug flow, and the gas residence time distribution is the narrowest. Additionally, it exhibits the best heat transfer performance and has the lowest backflow ratio.
In the RWGS and FT reactions, temperature is the primary influencing factor, followed by residence time, while the ratio of different components in the inlet gas has the least impact. When the wall temperature increases, it effectively enhances the carbon dioxide conversion rate and the selectivity of hydrocarbon compounds, also get a higher ratio of olefins to paraffins. In the carbon dioxide methanation reaction, a higher carbon dioxide conversion rate is achieved when the shell-side flow is countercurrent. By adjusting the shell inlet temperature and gas hourly space velocity to attain the suitable reaction temperature in the inner tube, high conversion rates (around 80%) are obtained. The operating conditions of the shell side vary depending on the feed temperature of the reactants, but the trend remains the same. To achieve a high carbon dioxide conversion rate, the shell side should be operated at low temperature and low flow rate or relatively high temperature and high flow rate.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-28T16:30:40Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-01-28T16:30:40Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目錄 I
圖目錄 V
表目錄 XIV
第一章 緒論 1
第二章 文獻回顧 2
2.1 顆粒解析CFD (Particle-resolved CFD) 2
2.1.1 填充床生成 4
2.1.1.1 重建法(Reconstructive methods) 4
2.1.1.2 理想顆粒排列(Idealized particle arrangements) 5
2.1.1.3 隨機顆粒排列(Random particle arrangements) 6
2.1.2 網格(Meshing) 6
2.1.3 湍流模型(Turbulence Model) 8
2.2 填充床形態(Bed morphology) 10
2.2.1 填充床之空隙度 10
2.2.2 顆粒形狀之影響 14
2.3 填充床壓降模擬 16
2.4逆水煤氣轉化反應(Reverse Water-Gas Shift, RWGS) 18
2.5 費托合成(Fischer–Tropsch process, FT) 19
2.5.1 FT合成反應之機制 19
2.5.2 FT合成反應之產物 19
2.5.3 FT合成反應之觸媒 21
2.5.4 滯留時間對RWGS和FT整合反應之影響 23
2.5.5 溫度對RWGS和FT整合反應之影響 25
2.5.6二氧化碳和氫氣入口分壓對RWGS和FT整合反應之影響 26
2.5.7壓力對RWGS和FT整合反應之影響 28
2.6 二氧化碳甲烷化 29
2.6.1 二氧化碳甲烷化反應之催化劑材料 29
2.6.2 壓力及溫度對二氧化碳甲烷化反應之影響 29
2.6.3 氣體空速(Gas Hourly Space Velocity, GHSV)對二氧化碳甲烷化反應之影響 32
2.6.4 進料的H2/CO2比率對二氧化碳甲烷化反應之影響 33
2.7 利用多孔介質模型模擬填充床反應器 34
第三章 研究方法 36
3.1 CFD與DEM的耦合 36
3.2 利用DEM生成填充床幾何結構 38
3.2.1 顆粒的運動 38
3.2.2 填充床之生成 40
3.3 接觸點之修飾及網格生成 43
3.3.1 接觸點之修飾 43
3.3.2 網格生成 44
3.4 CFD數值模擬 45
3.4.1 流體統御方程式 46
3.4.1.1 質量守恆 46
3.4.1.2 動量守恆 46
3.4.1.3 能量守恆 46
3.4.1.4 物質傳輸方程式 47
3.4.2 RANS湍流模型(Reynolds-averaged Navier-Stokes Turbulence Model) 48
3.4.2.1 Spalart-Allmaras模型(SA) 49
3.4.2.2 k-ε模型 49
3.4.2.3 Reynolds Stress模型(RSM) 50
3.4.3 多孔介質模型(Porous Media Model) 50
3.4.3.1 多孔介質動量方程式 50
3.4.3.2 多孔介質能量方程 52
3.4.3.3以CFD(多孔介質模型)耦合DEM模擬填充床反應器 52
3.5反應動力學 54
3.5.1 逆水煤氣轉化反應(RWGS)及費托合成(FT) 54
3.5.2 二氧化碳甲烷化 57
3.6邊界條件及參數設定 58
3.7 實驗方法 62
3.7.1 實驗裝置 62
3.7.2 實驗材料 63
3.7.3 實驗步驟 63
第四章 結果與討論 64
4.1 顆粒解析CFD (Particle-resolved CFD) 64
4.1.1 DEM生成填充床幾何之結果 64
4.1.2 接觸點修飾之結果 66
4.1.3 壓降之驗證 67
4.1.4 湍流模型的選擇 70
4.1.5 不同形狀顆粒堆疊之影響 71
4.1.5.1 空隙度與速度分布 71
4.1.5.2 壓降 74
4.1.5.3 溫度分布 75
4.1.5.4 填充床內逆流情形 77
4.2 利用多孔介質模型模擬填充床 80
4.2.1 N=4的空隙度分布 80
4.2.1.1 球形顆粒堆疊之填充床 80
4.2.1.2 圓柱顆粒堆疊之填充床 83
4.2.2 N=8的空隙度分布 84
4.2.3 N=40的空隙度分布 85
4.3 RWGS和FT整合反應 86
4.3.1 RWGS和FT整合反應動力式驗證 86
4.3.2 滯留時間對RWGS和FT整合反應之影響 87
4.3.2.1 反應器長度對RWGS和FT整合反應之影響 87
4.3.2.2 入口流速對RWGS和FT整合反應之影響 94
4.3.3 反應器管壁溫度對RWGS和FT整合反應之影響 99
4.3.4 入口混合氣體成分比例對RWGS和FT整合反應之影響 104
4.3.4.1 入口H2/CO2比對RWGS和FT整合反應之影響 104
4.3.4.2 不同入口惰性氣體(inert)比例對RWGS和FT整合反應之影響 108
4.3.5 不同堆疊情形對RWGS和FT整合反應之影響 113
4.3.5.1 不同形狀之填充顆粒對RWGS和FT整合反應之影響 113
4.3.5.2 不同管徑及粒徑比(D/dp=N)對RWGS和FT整合反應之影響 117
4.4 二氧化碳甲烷化 121
4.4.1 二氧化碳甲烷化反應動力式驗證 121
4.4.2 殼層流動方向對二氧化碳甲烷化反應之影響 122
4.4.3 殼層入口溫度對二氧化碳甲烷化反應之影響 127
4.4.4 殼層入口水蒸氣流速對二氧化碳甲烷化反應之影響 133
4.4.5 操作條件對二氧化碳轉化率之綜合影響 137
第五章 結論 139
附錄 141
參考文獻 151
-
dc.language.isozh_TW-
dc.subject填充床zh_TW
dc.subjectCFD-DEMzh_TW
dc.subject顆粒形狀zh_TW
dc.subject二氧化碳再利用zh_TW
dc.subject費托反應zh_TW
dc.subject甲烷化zh_TW
dc.subjectcarbon dioxide reuseen
dc.subjectCFD-DEMen
dc.subjectpacked beden
dc.subjectparticle shapeen
dc.subjectmethanationen
dc.subjectFischer-Tropsch reactionen
dc.title以CFD-DEM模擬填充床內之二氧化碳再利用之合成反應zh_TW
dc.titleSimulating the Synthesis Reaction with the Reuse of Carbon Dioxide in a Packed Bed Reactor by CFD-DEMen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee徐振哲;黃安婗zh_TW
dc.contributor.oralexamcommitteeCheng-Che Hsu;An-Ni Huangen
dc.subject.keyword填充床,CFD-DEM,顆粒形狀,二氧化碳再利用,費托反應,甲烷化,zh_TW
dc.subject.keywordpacked bed,CFD-DEM,particle shape,carbon dioxide reuse,Fischer-Tropsch reaction,methanation,en
dc.relation.page155-
dc.identifier.doi10.6342/NTU202302741-
dc.rights.note未授權-
dc.date.accepted2023-08-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
8.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved