Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91540
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳和麟zh_TW
dc.contributor.advisorHo-Lin Chenen
dc.contributor.author林芃廷zh_TW
dc.contributor.authorPeng-Ting Linen
dc.date.accessioned2024-01-28T16:27:12Z-
dc.date.available2024-01-29-
dc.date.copyright2024-01-28-
dc.date.issued2023-
dc.date.submitted2023-08-13-
dc.identifier.citationA. Aggarwal and S. Vitter, Jeffrey. The input/output complexity of sorting and related problems. Communications of the ACM, 31(9):1116–1127, 1988.
B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm for testing the truth of certain quantified boolean formulas. Information processing letters, 8(3):121–123, 1979.
G. Bacsó and Z. Tuza. Dominating cliques in p 5-free graphs. Periodica Mathematica Hungarica,21(4):303–308, 1990.
V. Bloemen. On-the-fly parallel decomposition of strongly connected components. Master’s thesis, University of Twente, 2015.
A. Brandstädt, P. L. Hammer, V. B. Le, and V. V. Lozin. Bisplit graphs. Discrete Mathematics, 299(1):11–32, 2005. Graph Theory of Brian Alspach.
A. L. Buchsbaum, S. Venkatasubramanian, and J. R. Westbrook. On external memory graph traversal.
A. Chakrabarti, P. Ghosh, A. McGregor, and S. Vorotnikova. Vertex ordering problems in directed graph streams. CoRR, abs/2105.08215, 2021.
D. Coppersmith, L. Fleischer, B. Hendrickson, and A. Pinar. A divide-and-conquer algorithm for identifying strongly connected components. 2003.
L. J. Cowen and C. G. Wagner. Compact roundtrip routing in directed networks. Journal of Algorithms, 50(1):79–95, 2004.
W. F. de La Vega. Random 2-sat: results and problems. Theoretical computer science, 265(1-2):131–146, 2001.
E. W. Dijkstra, E. W. Dijkstra, E. W. Dijkstra, and E. W. Dijkstra. A discipline of programming, volume 613924118. prentice-hall Englewood Cliffs, 1976.
S. Evangelista, A. Laarman, L. Petrucci, and J. Van De Pol. Improved multi-core nested depth-first search. In Automated Technology for Verification and Analysis: 10th International Symposium, ATVA 2012, Thiruvananthapuram, India, October 3-6, 2012. Proceedings 10, pages 269–283. Springer, 2012.
S. Even, A. Itai, and A. Shamir. On the complexity of time table and multi- commodity flow problems. In 16th annual symposium on foundations of computer science (sfcs 1975), pages 184–193. IEEE, 1975.
J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216, 2005.
A. Fiat and G. J. Woeginger. Online algorithms: The state of the art, volume 1442. Springer, 1998.
L. K. Fleischer, B. Hendrickson, and A. Pınar. On identifying strongly connected components in parallel. In Parallel and Distributed Processing: 15 IPDPS 2000 Workshops Cancun, Mexico, May 1–5, 2000 Proceedings 14, pages 505–511. Springer, 2000.
S. Foldes and P. L. Hammer. Split graphs. Universität Bonn. Institut für Ökonometrie und Operations Research, 1976.
P. A. Golovach, M. Johnson, D. Paulusma, and J. Song. A survey on the computational complexity of coloring graphs with forbidden subgraphs. Journal of Graph Theory, 84(4):331–363, 2017.
M. R. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams. External memory algorithms, 50:107–118, 1998.
D. S. Hochbaum, N. Megiddo, J. Naor, and A. Tamir. Tight bounds and 2-approximation algorithms for integer programs with two variables per inequality. Mathematical programming, 62(1-3):69–83, 1993.
N. D. Jones. Space-bounded reducibility among combinatorial problems. Journal of Computer and System Sciences, 11(1):68–85, 1975.
N. D. Jones, Y. E. Lien, and W. T. Laaser. New problems complete for nondeterministic loc space. Math. Syst. Theory, 10:1–17, 1976.
M. R. Krom. The decision problem for a class of first-order formulas in which all disjunctions are binary. Mathematical Logic Quarterly, 13(1-2):15–20, 1967.
G. Lowe. Concurrent depth-first search algorithms based on tarjan's algorithm. International Journal on Software Tools for Technology Transfer, 18:129–147, 2016.
F. Maffray and M. Preissmann. On the np-completeness of the k-colorability problem for triangle-free graphs. Discrete Mathematics, 162(1-3):313–317, 1996.
A. McGregor. Graph stream algorithms: a survey. ACM SIGMOD Record, 43(1):9–20, 2014.
I. Munro. Efficient determination of the transitive closure of a directed graph. Information Processing Letters, 1(2):56–58, 1971.
C. H. Papadimitriou. On selecting a satisfying truth assignment. In [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science, pages 163–169. IEEE Computer Society, 1991.
C. K. Poon, B. Zhu, and F. Chin. A polynomial time solution for labeling a rectilinear map. In Proceedings of the thirteenth annual symposium on Computational geometry, pages 451–453, 1997.
P. Purdom Jr. A transitive closure algorithm. BIT Numerical Mathematics, 10(1):76-94, 1970.
B. Randerath, I. Schiermeyer, and M. Tewes. Three-colourability and forbidden subgraphs. ii: polynomial algorithms. Discrete mathematics, 251(1-3):137–153, 2002.
J. H. Reif. Depth-first search is inherently sequential. Information Processing Letters, 20(5):229–234, 1985.
I. Roditty, M. Thorup, and U. Zwick. Roundtrip spanners and roundtrip routing in directed graphs. ACM Transactions on Algorithms (TALG), 4(3):1–17, 2008.
W. Schudy. Finding strongly connected components in parallel using o (log2n) reachability queries. In Proceedings of the twentieth annual symposium on Parallelism in algorithms and architectures, pages 146–151, 2008.
M. Sharir. A strong-connectivity algorithm and its applications in data flow analysis. Computers & Mathematics with Applications, 7(1):67–72, 1981.
R. Tarjan. Depth-first search and linear graph algorithms. SIAM journal on computing, 1(2):146–160, 1972.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91540-
dc.description.abstract串流模型下的演算法在近數十年內被廣泛地研究,主要的研究動機來自於巨量資料的產生使得傳統的計算模型不再適用。由於單一機器的儲存空間有限,無法將所有需要的資料都存取在同一台機器中再進行處理,因此需要在有限的可用空間中處理。在這篇論文中我們提出了第一個在僅考慮插入串流的模型中,可以在 $O(k)$ 次串流以及 $O(\frac{n^2\log{n}}{k})$ 空間中解出2-SAT問題的演算法。我們採取了將2-SAT轉換成有向圖再進行強連通元件分解的作法,因此對應的也提出了第一個在僅考慮插入串流的模型中,可以在 $O(k)$ 次串流以及 $O(\frac{n^2\log{n}}{k})$ 空間中計算出強連通元件分解的演算法。儘管關於2-SAT和強連通元件分解在串流模型下的複雜度仍未完整解出,因此我們不能完全保證這篇論文提出的演算法是最佳的,但我們提出了數個證據,包括不可能性結果、既有演算法不能有效的轉換到串流模型、簡化到其他問題,說明2-SAT和強連通元件分解在串流模型中不太可能有簡單的演算法。此外,我們提出的演算法具有容易描述和可以調整參數的性質,使得在不同應用情境下可以藉由改變參數以符合需求。強連通元件分解是處理許多有向圖上的問題的基礎,我們的強連通元件演算法可以作為在串流模型中研究有向圖問題的一個重要工具。zh_TW
dc.description.abstractAlgorithms in the streaming model have been extensively studied in recent decades, driven by the escalating demand to handle massive amounts of data efficiently. In this thesis, we introduce the first algorithm for 2-SAT in the insert-only model using $O(k)$ pass and $O(\frac{n^2\log{n}}{k})$ space. To serve our purpose, we also introduce the first algorithm for SCC-decomposition in the insert-only streaming model using $O(k)$ pass and $O(\frac{n^2\log{n}}{k})$ space, employing a novel approach that can be adapted and reutilized in other models. While a complete proof of the optimality of our algorithm is yet to be established, we offer convincing evidence such as impossibility results, the inefficiency of implementing existing approaches from other models, and reductions to other problems. Our algorithm exhibits desirable properties such as simplicity and flexibility, precisely, a smooth tradeoff between pass and space usage that might be useful in future applications. SCC-decomposition is the basis for studying many problems related to directed graphs, our algorithm for SCC-decomposition can be utilized as a crucial building block for tackling these problems, laying the foundation for exploring and addressing a wide range of problems in this evolving research direction.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-28T16:27:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-01-28T16:27:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 iii
Abstract v
Contents vii
Denotation ix
Chapter 1 Introduction 1
1.1 Streaming Model 1
1.1.1 Introduction to the Streaming Model 1
1.1.2 Measurement of Performance 3
1.1.3 Comparison to similar models 3
1.2 2-SAT 4
1.3 SCC-decomposition 6
1.4 Our contributions 9
Chapter 2 Deterministic SCC-decomposition in the Insert-Only Model 11
2.1 SCC-decomposition for graphs with restricted SCC order 11
2.2 Implementation in the Insert-Only Model 13
2.3 Complexity of the implementation in insert-only model 14
Chapter 3 Upper bound of the largest SCC 15
3.1 Our Preprocessing Algorithm 15
3.2 Implementation in the Insert-Only Model 16
3.3 Complexity of the overall algorithm in the Insert-Only Model 17
Chapter 4 Applications 19
4.1 3-coloring for special graph class 19
4.1.1 3-coloring of graphs with small dominating sets 20
4.1.2 3-coloring of P5-free graphs 21
4.2 Recognition of bisplit graph 23
4.3 Feasibility of Bounded 2-ILP 24
4.4 Some NL-complete problems 25
Chapter 5 Lower Bounds 27
Chapter 6 Conclusion 29
References 31
-
dc.language.isoen-
dc.subject強連通元件zh_TW
dc.subject2-SATzh_TW
dc.subject串流式圖論演算法zh_TW
dc.subjectSCC-decompositionen
dc.subjectgraph streaming algorithmen
dc.subject2-SATen
dc.title串流模型下的2-SAT演算法及其應用zh_TW
dc.titleStreaming Algorithm for 2-SAT and its Applicationsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.coadvisor蔡孟宗zh_TW
dc.contributor.coadvisorMeng-Tsung Tsaien
dc.contributor.oralexamcommittee呂學一;呂及人zh_TW
dc.contributor.oralexamcommitteeHsueh-I Lu;Chi-Jen Luen
dc.subject.keyword串流式圖論演算法,2-SAT,強連通元件,zh_TW
dc.subject.keywordgraph streaming algorithm,2-SAT,SCC-decomposition,en
dc.relation.page35-
dc.identifier.doi10.6342/NTU202304095-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-13-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
dc.date.embargo-lift2028-08-11-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
370.74 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved