Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91535
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳示國zh_TW
dc.contributor.advisorShih-Kuo Chenen
dc.contributor.author梁庭瑄zh_TW
dc.contributor.authorTing-Hsuan Liangen
dc.date.accessioned2024-01-28T16:25:51Z-
dc.date.available2024-01-29-
dc.date.copyright2024-01-28-
dc.date.issued2023-
dc.date.submitted2023-08-12-
dc.identifier.citationAdamczewsk, A.M. and Morris, S. (2001) “Ecology and behavior of Gecarcoidea natalis, the Christmas Island red crab, during the annual breeding migration.,” The Biological Bulletin, 200(3), pp. 305–320. doi:10.2307/1543512.
Andreatta, G. and Tessmar-Raible, K. (2020) “The Still Dark Side of the Moon: Molecular Mechanisms of Lunar-Controlled Rhythms and Clocks.,” Journal of Molecular Biology, 432(12), pp. 3525–3546. doi:10.1016/j.jmb.2020.03.009.
Babcock, R.C. et al. (1986) “Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef,” Marine Biology, 90(3), pp. 379–394. doi:10.1007/BF00428562.
Cahill, G.M. (2002) “Clock mechanisms in zebrafish.,” Cell and Tissue Research, 309(1), pp. 27–34. doi:10.1007/s00441-002-0570-7.
Cavallari, N. et al. (2011) “A blind circadian clock in cavefish reveals that opsins mediate peripheral clock photoreception.,” PLoS Biology, 9(9), p. e1001142. doi:10.1371/journal.pbio.1001142.
Cermakian, N. et al. (2000) “Asynchronous oscillations of two zebrafish CLOCK partners reveal differential clock control and function.,” Proceedings of the National Academy of Sciences of the United States of America, 97(8), pp. 4339–4344. doi:10.1073/pnas.97.8.4339.
Chabot, C.C. and Ramberg-Pihl, N.C. (2016) “Circalunidian clocks control tidal rhythms of locomotion in the American horseshoe crab, Limulus polyphemus." ,” Marine and freshwater …, pp. 75–91.
Connor, K.M. and Gracey, A.Y. (2011) “Circadian cycles are the dominant transcriptional rhythm in the intertidal mussel Mytilus californianus.,” Proceedings of the National Academy of Sciences of the United States of America, 108(38), pp. 16110–16115. doi:10.1073/pnas.1111076108.
Corbet, P.S. (1958) “Lunar periodicity of aquatic insects in lake victoria,” Nature, 182(4631), pp. 330–331. doi:10.1038/182330a0.
Delaunay, F. et al. (2003) “Differential regulation of Period 2 and Period 3 expression during development of the zebrafish circadian clock.,” Gene Expression Patterns, 3(3), pp. 319–324. doi:10.1016/s1567-133x(03)00050-4.
Dunlap, J.C., Loros, J.J. and DeCoursey, P.J. (2004) “Chronobiology: biological timekeeping.,” Chronobiology: biological timekeeping [Preprint].
Dunlap, J.C. (1999) “Molecular bases for circadian clocks.,” Cell, 96(2), pp. 271–290. doi:10.1016/s0092-8674(00)80566-8.
Fischer, A. and Fischer, U. (1995) “On the Life-Style and Life-Cycle of the Luminescent Polychaete Odontosyllis enopla (Annelida: Polychaeta),” Invertebrate Biology, 114(3), p. 236. doi:10.2307/3226878.
Fleissner, Gerta et al. (2008) “A lunar clock changes shielding pigment transparency in larval ocelli of Clunio marinus.,” Chronobiology International, 25(1), pp. 17–30. doi:10.1080/07420520801904008.
Franke, R. and Hoerstgen-Schwark, G. (2013) “Lunar-rhythmic molting in laboratory populations of the noble crayfish Astacus astacus (Crustacea, Astacidea): an experimental analysis.,” Plos One, 8(7), p. e68653. doi:10.1371/journal.pone.0068653.
Gibson-Hill, C.A. (1947) “Field notes on the terrestrial crabs.,” Bulletin of the Raffles Museum, 18, pp. 43–52.
Gracey, A.Y. et al. (2008) “Rhythms of gene expression in a fluctuating intertidal environment.,” Current Biology, 18(19), pp. 1501–1507. doi:10.1016/j.cub.2008.08.049.
Ishikawa, T. et al. (2002) “Zebrafish CRY represses transcription mediated by CLOCK-BMAL heterodimer without inhibiting its binding to DNA.,” Genes To Cells, 7(10), pp. 1073–1086. doi:10.1046/j.1365-2443.2002.00579.x.
Johnson, C.H. (2004) “Chronobiology: biological timekeeping.,” (No Title) [Preprint].
Klein, D.C., Moore, R.Y. and Reppert, S.M. (1991) “Suprachiasmatic nucleus: the mind’s clock,” Suprachiasmatic nucleus: the mind’s clock [Preprint].
Kobayashi, Y. et al. (2000) “Molecular analysis of zebrafish photolyase/cryptochrome family: two types of cryptochromes present in zebrafish.,” Genes To Cells, 5(9), pp. 725–738. doi:10.1046/j.1365-2443.2000.00364.x.
Last, K.S. et al. (2016) “Moonlight Drives Ocean-Scale Mass Vertical Migration of Zooplankton during the Arctic Winter.,” Current Biology, 26(2), pp. 244–251. doi:10.1016/j.cub.2015.11.038.
López-Olmeda, J.F. et al. (2010) “Feeding entrainment of food-anticipatory activity and per1 expression in the brain and liver of zebrafish under different lighting and feeding conditions.,” Chronobiology International, 27(7), pp. 1380–1400. doi:10.3109/07420528.2010.501926.
Mehta, T.S. and Lewis, R.D. (2000) “Quantitative tests of a dual circalunidian clock model for tidal rhythmicity in the sand beach isopod Cirolana cookii.,” Chronobiology International, 17(1), pp. 29–41. doi:10.1081/cbi-100101029.
Neumann, D. (1995) “Physiologische Uhren von Insekten Zur kophysiologie lunarperiodisch kontrollierter Fortpflanzungszeiten.,” The Science of Nature, 7(82), pp. 310–320.
Oishi, K. et al. (1998) “Antiphase circadian expression between BMAL1 and period homologue mRNA in the suprachiasmatic nucleus and peripheral tissues of rats.,” Biochemical and Biophysical Research Communications, 253(2), pp. 199–203. doi:10.1006/bbrc.1998.9779.
Palmer, J.D. (1997) “Dueling hypotheses: circatidal versus circalunidian battle basics.,” Chronobiology International, 14(4), pp. 337–346. doi:10.3109/07420529709001455.
Palmer, J.D. (2000) “The clocks controlling the tide-associated rhythms of intertidal animals.,” Bioessays: News and Reviews in Molecular, Cellular and Developmental Biology, 22(1), pp. 32–37. doi:10.1002/(SICI)1521-1878(200001)22:1<32::AID-BIES7>3.0.CO;2-U.
Patke, A., Young, M.W. and Axelrod, S. (2020) “Molecular mechanisms and physiological importance of circadian rhythms.,” Nature Reviews. Molecular Cell Biology, 21(2), pp. 67–84. doi:10.1038/s41580-019-0179-2.
Payton, L. and Tran, D. (2019) “Moonlight cycles synchronize oyster behaviour.,” Biology Letters, 15(1), p. 20180299. doi:10.1098/rsbl.2018.0299.
Perrigault, M. and Tran, D. (2017) “Identification of the Molecular Clockwork of the Oyster Crassostrea gigas.,” Plos One, 12(1), p. e0169790. doi:10.1371/journal.pone.0169790.
Pittendrigh, C.S. and Daan, S. (1976) “A functional analysis of circadian pacemakers in nocturnal rodents,” Journal of Comparative Physiology A, 106(3), pp. 291–331. doi:10.1007/BF01417859.
Pittendrigh, C.S. (1993) “Temporal organization: reflections of a Darwinian clock-watcher.,” Annual Review of Physiology, 55, pp. 16–54. doi:10.1146/annurev.ph.55.030193.000313.
Raible, F., Takekata, H. and Tessmar-Raible, K. (2017) “An overview of monthly rhythms and clocks.,” Frontiers in neurology, 8, p. 189. doi:10.3389/fneur.2017.00189.
Reebs, S.G. (2002) “Plasticity of diel and circadian activity rhythms in fishes,” Reviews in Fish Biology and Fisheries, 12, pp. 349–371. doi:10.1023/a:1025371804611.
Reppert, S.M. and Weaver, D.R. (1997) “Forward genetic approach strikes gold: cloning of a mammalian clock gene.,” Cell, 89(4), pp. 487–490. doi:10.1016/s0092-8674(00)80229-9.
Shearman, L.P. et al. (2000) “Interacting molecular loops in the mammalian circadian clock.,” Science, 288(5468), pp. 1013–1019. doi:10.1126/science.288.5468.1013.
Takahashi, J.S. (2017) “Transcriptional architecture of the mammalian circadian clock.,” Nature Reviews. Genetics, 18(3), pp. 164–179. doi:10.1038/nrg.2016.150.
Tessmar-Raible, K., Raible, F. and Arboleda, E. (2011) “Another place, another timer: Marine species and the rhythms of life.,” Bioessays: News and Reviews in Molecular, Cellular and Developmental Biology, 33(3), pp. 165–172. doi:10.1002/bies.201000096.
Thakurdas, P. et al. (2009) “Light at night alters the parameters of the eclosion rhythm in a tropical fruit fly, Drosophila jambulina.,” Chronobiology International, 26(8), pp. 1575–1586. doi:10.3109/07420520903529765.
Turek, F.W. (1998) “Circadian rhythms.,” Hormone Research, 49(3–4), pp. 109–113. doi:10.1159/000023155.
Whitmore, D. et al. (1998) “Zebrafish Clock rhythmic expression reveals independent peripheral circadian oscillators.,” Nature Neuroscience, 1(8), pp. 701–707. doi:10.1038/3703.
Williams, B.G. (1998) “The lack of circadian timing in two intertidal invertebrates and its significance in the circatidal/circalunidian debate.,” Chronobiology International, 15(3), pp. 205–218. doi:10.3109/07420529808998684.
Zhang, L. et al. (2013) “Dissociation of circadian and circatidal timekeeping in the marine crustacean Eurydice pulchra.,” Current Biology, 23(19), pp. 1863–1873. doi:10.1016/j.cub.2013.08.038.
Zhdanova, I.V. and Reebs, S.G. (2005) “Circadian rhythms in fish,” in Behaviour and physiology of fish. Elsevier (Fish Physiology), pp. 197–238. doi:10.1016/S1546-5098(05)24006-2.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91535-
dc.description.abstract棲息在潮間帶的生物,不僅需要應對每天24小時的亮暗變化,還需適應潮汐的漲落。潮汐使鹽度、水位、溫度等多種環境條件的變化有12.4小時的週期性波動。因此,對於這些生物而言,擁有內生性潮汐時鐘可能有助於它們適應外界環境的節律性變化,從而增強其適應能力和生存機會。目前,關於潮汐節律的研究主要集中在無脊椎動物,如甲殼類動物、軟體動物和昆蟲。然而,脊椎動物是否也具備潮汐節律,以及潮汐節律在脊椎動物中的組成尚不明確。因此,我們選用廣東彈塗魚(Periophthalmus modestus)作為實驗動物,在實驗室中模擬不同的人工亮暗和潮汐週期,以研究脊椎動物在潮汐環境下的行為表現。研究發現,在沒有光線的情況下,彈塗魚的活動時間和停留的位置遵循13小時的潮汐週期。然而,在沒有潮汐線索的條件下,彈塗魚的活動時間遵循24小時的亮暗週期,而其對於停留位置的選擇則呈現出接近13小時的節律性。此外,當沒有光線及潮汐刺激時,彈塗魚同時表現出近似日夜及潮汐的週期性行為。我們的結果指出,內生性生理時鐘能調控彈塗魚的行為,促使其能同時適應外界的24小時和13小時週期性刺激。因此,我們提出彈塗魚可能擁有兩個內生性生理時鐘:一個隨亮暗週期表現晝夜節律,另一表現潮汐週期的時鐘為一組兩個的時鐘,兩個時鐘產生兩個反相的節律以此生成潮汐週期。同時,彈塗魚的晝夜節律基因呈現出約24小時的晝夜節律。這些晝夜節律基因並未產生潮汐節律。因此,我們推測有另一套不同於晝夜節律基因的系統負責潮汐時鐘的運作。zh_TW
dc.description.abstractIntertidal organisms face not only exposure to 24 hours light-dark cycle but also changes in tide, which generates a 12.4-hour cycle fluctuation of salinity, water level, temperature, and many additional environmental conditions. Thus, for organisms living in the tidal zone, having a tidally endogenous clock may help an individual face the rhythmic changes in external conditions and enhance it fitness and survival. Current research of the circatidal rhythm primarily focuses on invertebrates such as crustaceans, mollusks, and insects. However, whether circatidal rhythm also exists in intertidal vertebrates and the genetic components of the tidal clock in vertebrates remains unclear. Thus, we used mudskipper Periophthalmus modestus as a model to study the tidally affected behaviors of vertebrate animals in the lab with different artificial light-dark and tidal cycles. We found that under the tidal cycle without light cues, the locomotor activity and preference of habituation location of P. modestus followed a 13-hour tidal cycle. However, without tidal cues, the locomotor activity of P. modestus followed a 24-hour light-dark cycle, while their preference of habituation location showed a rhythmicity of close to 13 hours. In addition, in the absence of light and tidal cues, mudskippers exhibit behaviors with both approximately circadian and circatidal rhythms. Together, our results suggest that the endogenous clock could control the behaviors of P. modestus to follow both the external 24-hour and 13-hour cyclic cues. Therefore, we proposed that P. modestus may have two endogenous clocks: one is a circadian clock to track light cycles, the other one is two circatidal clocks in anti-phase to track tidal cycles. Meanwhile, circadian genes exhibit a circadian period in P. modestus. In fact, these circadian genes did not show a tidal period. Therefore, we guess that a different system from circadian genes is responsible for the circatidal clock.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-28T16:25:51Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-01-28T16:25:51Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 II
Abstract III
Contents IV
List of Figures VI
Chapter I Introduction 1
1.1. Biological clock 1
1.1.1. Solar rhythm and lunar rhythm 1
1.1.2. Circadian rhythm 2
1.1.3. Circatidal rhythm 4
1.2. Three tidal clock hypotheses 5
1.2.1. Tidal clock hypothesis 5
1.2.2. Circalunidian clock hypothesis 5
1.2.3. Circadian hypothesis 6
1.2.4. Molecular mechanisms of circatidal clocks 6
Statement of purpose 7
Chapter II Materials and methods 8
2.1. Animals 8
2.2. Behavioral test 8
2.2.1. Tank of entrainment 8
2.2.2. Behavioral recording 9
2.2.3. Experimental condition settings 10
2.3. Gene expression 10
2.3.1. Sample collection 10
2.3.2. Transcriptome analysis 11
2.4. Statistical analysis 11
2.4.1. Behavioral analysis 11
2.4.2. Gene expression analysis 13
Chapter III Results 14
3.1. Periophthalmus modestus has the endogenous circatidal clock 14
3.1.1. Periophthalmus modestus is entrainable. 14
3.1.2. Periophthalmus modestus loses its circadian rhythmic behavior under constant dark condition & 6.5:6.5 high-low tide cycle. 14
3.1.3. Periophthalmus modestus has an endogenous circatidal clock regulating the zone where mudskippers stayed. 15
3.1.4. Periophthalmus modestus also has an endogenous circadian clock. 15
3.2. Different groups of genes are expressed during high tide and low tide conditions. 16
3.2.1. The tidal clock in mudskippers is not a bi-model clock. 16
3.2.2. Different groups of genes are expressed during high tide and low tide. 16
Significance of work 18
Chapter IV Discussion 19
4.1. The model of the tidal clock in mudskippers 19
4.2. Some mudskippers are diurnal, while others are nocturnal. 20
4.3. 8-hour rhythmicity of mudskippers 21
References 120
Appendix 124
The code that controls the variation of high and low water levels. 124
The code for behavioral analysis 126
-
dc.language.isoen-
dc.title通過轉錄組和行為分析 研究Periophthalmus modestus(廣東彈塗魚)的潮汐振盪zh_TW
dc.titleInvestigate the circatidal oscillation in Periophthalmus modestus with transcriptome and behavioral analysis.en
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee周銘翊;郭典翰;蔡皇龍;廖柏凱zh_TW
dc.contributor.oralexamcommitteeMing-Yi Chou;Dian-Han Kuo;Huang-Lung Tsai;Bo-Kai Liaoen
dc.subject.keyword潮汐時鐘,潮汐節律,晝夜節律,彈塗魚,潮間帶,zh_TW
dc.subject.keywordcircatidal clock,circatidal rhythm,circadian rhythm,mudskipper,intertidal zone,en
dc.relation.page135-
dc.identifier.doi10.6342/NTU202304109-
dc.rights.note未授權-
dc.date.accepted2023-08-13-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生命科學系-
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
12.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved