請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91530完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張惠雯 | zh_TW |
| dc.contributor.advisor | Hui-Wen Chang | en |
| dc.contributor.author | 黃娜雅 | zh_TW |
| dc.contributor.author | Danaya Nammuang | en |
| dc.date.accessioned | 2024-01-28T16:24:36Z | - |
| dc.date.available | 2024-01-29 | - |
| dc.date.copyright | 2024-01-27 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-19 | - |
| dc.identifier.citation | Adhikari, S., Manthena, P. V., Sajwan, K., Kota, K. K., & Roy, R. (2010). A unified method for purification of basic proteins. Analytical Biochemistry, 400(2), 203-206.
Amezcua, R., Friendship, R. M., Dewey, C. E., Gyles, C., & Fairbrother, J. M. (2002). Presentation of postweaning Escherichia coli diarrhea in southern Ontario, prevalence of hemolytic E. coli serogroups involved, and their antimicrobial resistance patterns. Canadian Journal of Veterinary Research, 66(2), 73. Bai, X., Zhang, J., Ambikan, A., Jernberg, C., Ehricht, R., Scheutz, F., Xiong, Y., & Matussek, A. (2019). Molecular characterization and comparative genomics of clinical hybrid Shiga toxin-producing and enterotoxigenic Escherichia coli (STEC/ETEC) strains in Sweden. Scientific Reports, 9(1), 1-9. Baldo, V., Salogni, C., Giovannini, S., D'Incau, M., Boniotti, M. B., Birbes, L., Pitozzi, A., Formenti, N., Grassi, A., & Pasquali, P. (2020). Pathogenicity of Shiga toxin type 2e Escherichia coli in pig colibacillosis. Frontiers in Veterinary Science, 7, 545818. Baranzoni, G. M., Fratamico, P. M., Gangiredla, J., Patel, I., Bagi, L. K., Delannoy, S., Fach, P., Boccia, F., Anastasio, A., & Pepe, T. (2016). Characterization of Shiga toxin subtypes and virulence genes in porcine Shiga toxin-producing Escherichia coli. Frontiers in Microbiology, 7, 574. Barth, S., Schwanitz, A., & Bauerfeind, R. (2011). Polymerase chain reaction–based method for the typing of F18 fimbriae and distribution of F18 fimbrial subtypes among porcine Shiga toxin–encoding Escherichia coli in Germany. Journal of Veterinary Diagnostic Investigation, 23(3), 454-464. Barth, S., Tscholshiew, A., Menge, C., Weiss, R., Baljer, G., & Bauerfeind, R. (2007). Virulence and fitness gene patterns of Shiga toxin-encoding Escherichia coli isolated from pigs with edema disease or diarrhea in Germany. Berliner und Munchener Tierarztliche Wochenschrift, 120(7-8), 307-316. Bassitta, R., Kronfeld, H., Bauer, J., Schwaiger, K., & Hölzel, C. (2022). Tracking Antimicrobial Resistant E. coli from Pigs on Farm to Pork at Slaughter. Microorganisms, 10(8), 1485. Bertschinger, H. (1994). Oedema disease of pigs. Escherichia coli in Domestic Animals. Beutin, L., Krüger, U., Krause, G., Miko, A., Martin, A., & Strauch, E. (2008). Evaluation of major types of Shiga toxin 2E-producing Escherichia coli bacteria present in food, pigs, and the environment as potential pathogens for humans. Applied and Environmental Microbiology, 74(15), 4806-4816. Beutin, L., Montenegro, M., Zimmermann, S., & Stephan, R. (1986). Characterization of hemolytic strains of Escherichia coli belonging to classical enteropathogenic O-serogroups. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene. Series A: Medical Microbiology, Infectious Diseases, Virology, Parasitology, 261(3), 266-279. Bielaszewska, M., Mellmann, A., Zhang, W., Köck, R., Fruth, A., Bauwens, A., Peters, G., & Karch, H. (2011). Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: a microbiological study. The Lancet Infectious Diseases, 11(9), 671-676. Boeckman, J. X., Sprayberry, S., Korn, A. M., Suchodolski, J. S., Paulk, C., Genovese, K., Rech, R. R., Giaretta, P. R., Blick, A. K., & Callaway, T. (2022). Effect of chronic and acute enterotoxigenic E. coli challenge on growth performance, intestinal inflammation, microbiome, and metabolome of weaned piglets. Scientific Reports, 12(1), 1-14. Bolukaoto, J. Y., Singh, A., Alfinete, N., & Barnard, T. G. (2021). Occurrence of hybrid diarrhoeagenic Escherichia coli associated with multidrug resistance in environmental water, Johannesburg, South Africa. Microorganisms, 9(10), 2163. Botteldoorn, N., Heyndrickx, M., Rijpens, N., & Herman, L. (2003). Detection and characterization of verotoxigenic Escherichia coli by a VTEC/EHEC multiplex PCR in porcine faeces and pig carcass swabs. Research in Microbiology, 154(2), 97-104. Boyd, B., Tyrrell, G., Maloney, M., Gyles, C., Brunton, J., & Lingwood, C. (1993). Alteration of the glycolipid binding specificity of the pig edema toxin from globotetraosyl to globotriaosyl ceramide alters in vivo tissue targetting and results in a verotoxin 1-like disease in pigs. The Journal of Experimental Medicine, 177(6), 1745-1753. Božić, F., Lacković, G., Stokes, C. R., & Valpotić, I. (2002). Recruitment of intestinal CD45RA+ and CD45RC+ cells induced by a candidate oral vaccine against porcine post-weaning colibacillosis. Veterinary Immunology and Immunopathology, 86(3-4), 137-146. Brand, P. A., Gobeli, S., & Perreten, V. (2017). Pathotyping and Antibiotic Resistance of Porcine Enterovirulent Escherichia coli Strains from Switzerland (2014-2015) Vetsuisse-Fakultät Universität Bern. Brenner, D. J., & Farmer Iii, J. (2015). Enterobacteriaceae. Bergey's Manual of Systematics of Archaea and Bacteria, 1-24. Brilhante, M., Perreten, V., & Donà, V. (2019). Multidrug resistance and multivirulence plasmids in enterotoxigenic and hybrid Shiga toxin-producing/enterotoxigenic Escherichia coli isolated from diarrheic pigs in Switzerland. The Veterinary Journal, 244, 60-68. Burger, R., & US, I. o. M. (2012). A1 EHEC O104: H4 in Germany 2011: Large outbreak of bloody diarrhea and haemolytic uraemic syndrome by shiga toxin—Producing E. coli via contaminated food. Improving Food Safety Through a One Health Approach; Institute of Medicine US, Ed, 115-130. Byrd, W., & Boedeker, E. C. (2013). Attenuated Escherichia coli strains expressing the colonization factor antigen I (CFA/I) and a detoxified heat-labile enterotoxin (LThK63) enhance clearance of ETEC from the lungs of mice and protect mice from intestinal ETEC colonization and LT-induced fluid accumulation. Veterinary Immunology and Immunopathology, 152(1-2), 57-67. Byun, J.-W., Jung, B. Y., Kim, H.-Y., Fairbrother, J. M., Lee, M.-H., & Lee, W.-K. (2013). Real-time PCR for differentiation of F18 variants among enterotoxigenic and Shiga toxin-producing Escherichia coli from piglets with diarrhoea and oedema disease. The Veterinary Journal, 198(2), 538-540. Canibe, N., Højberg, O., Kongsted, H., Vodolazska, D., Lauridsen, C., Nielsen, T. S., & Schönherz, A. A. (2022). Review on preventive measures to reduce post-weaning diarrhoea in piglets. Animals, 12(19), 2585. Casanova, N. A., Redondo, L. M., Dailoff, G. C., Arenas, D., & Miyakawa, M. E. F. (2018). Overview of the role of Shiga toxins in porcine edema disease pathogenesis. Toxicon, 148, 149-154. Casewell, M., Friis, C., Marco, E., McMullin, P., & Phillips, I. (2003). The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. Journal of Antimicrobial Chemotherapy, 52(2), 159-161. Cheng, D., Sun, H., Xu, J., & Gao, S. (2006). PCR detection of virulence factor genes in Escherichia coli isolates from weaned piglets with edema disease and/or diarrhea in China. Veterinary Microbiology, 115(4), 320-328. Choi, Y. H., Moon, J. Y., Seo, B. J., Kim, W. K., Cho, J. S., Choi, M. S., Lim, J. S., Kim, S. B., Kim, W. I., & Hur, J. (2017). The protective efficacy of the enterotoxigenic Escherichia coli vaccine candidate by GI24 against neonatal piglet colibacillosis. Korean Journal of Veterinary Service, 40(4), 235-244. Clark, E. D. B. (1998). Refolding of recombinant proteins. Current Opinion in Biotechnology, 9(2), 157-163. Clements, J. D. (1990). Construction of a nontoxic fusion peptide for immunization against Escherichia coli strains that produce heat-labile and heat-stable enterotoxins. Infection and Immunity, 58(5), 1159-1166. Clements, J. D., & Norton, E. B. (2018). The mucosal vaccine adjuvant LT (R192G/L211A) or dmLT. MSphere, 3(4), e00215-00218. Clugston, R. E., Nielsen, N., & Smith, D. (1974). Experimental edema disease of swine (E. coli enterotoxemia) III. Pathology and pathogenesis. Canadian Journal of Comparative Medicine, 38(1), 34. Coddens, A., Verdonck, F., Tiels, P., Rasschaert, K., Goddeeris, B., & Cox, E. (2007). The age-dependent expression of the F18+ E. coli receptor on porcine gut epithelial cells is positively correlated with the presence of histo-blood group antigens. Veterinary Microbiology, 122(3-4), 332-341. Costa, S., Almeida, A., Castro, A., & Domingues, L. (2014). Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Frontiers in Microbiology, 5, 63. Dimitrova, A., Yordanov, S., & Petkova, K. (2021). Characterization of Escherichia coli strains isolated from pigs in semi-industrial swine farm importing gilts pigs from western European country. Bulgarian Journal of Agricultural Science, 27(3), 608-614. Doyle, M. P., & Schoeni, J. L. (1984). Survival and growth characteristics of Escherichia coli associated with hemorrhagic colitis. Applied and Environmental Microbiology, 48(4), 855-856. Dreyfus, L., Frantz, J., & Robertson, D. (1983). Chemical properties of heat-stable enterotoxins produced by enterotoxigenic Escherichia coli of different host origins. Infection and Immunity, 42(2), 539-548. Du, F., Liu, Y.-Q., Xu, Y.-S., Li, Z.-J., Wang, Y.-Z., Zhang, Z.-X., & Sun, X.-M. (2021). Regulating the T7 RNA polymerase expression in E. coli BL21 (DE3) to provide more host options for recombinant protein production. Microbial Cell Factories, 20(1), 1-10. Duan, Q., Huang, J., Xiao, N., Seo, H., & Zhang, W. (2018). Neutralizing anti-heat-stable toxin (STa) antibodies derived from enterotoxigenic Escherichia coli toxoid fusions with STa proteins containing N12S, L9A/N12S, or N12S/A14T mutations show little cross-reactivity with guanylin or uroguanylin. Applied and Environmental Microbiology, 84(2), e01737-01717. Duan, Q., Pang, S., Feng, L., Li, B., Lv, L., Liang, Y., & Zhu, G. (2023). Both LTA and LTB Subunits Are Equally Important to Heat-Labile Enterotoxin (LT)-Enhanced Bacterial Adherence. International Journal of Molecular Sciences, 24(2), 1245. Duan, Q., Pang, S., Wu, W., Jiang, B., Zhang, W., Liu, S., Wang, X., Pan, Z., & Zhu, G. (2020). A multivalent vaccine candidate targeting enterotoxigenic Escherichia coli fimbriae for broadly protecting against porcine post-weaning diarrhea. Veterinary Research, 51(1), 1-11. Duan, Q., Wu, W., Pang, S., Pan, Z., Zhang, W., & Zhu, G. (2020). Coimmunization with two enterotoxigenic Escherichia coli (ETEC) fimbrial multiepitope fusion antigens induces the production of neutralizing antibodies against five ETEC fimbriae (F4, F5, F6, F18, and F41). Applied and Environmental Microbiology, 86(24), e00217-00220. Duan, Q., Xia, P., Nandre, R., Zhang, W., & Zhu, G. (2019). Review of newly identified functions associated with the heat-labile toxin of enterotoxigenic Escherichia coli. Frontiers in Cellular and Infection Microbiology, 9, 292. Dubreuil, J. D. (2008). Escherichia coli STb toxin and colibacillosis: knowing is half the battle. FEMS Microbiology Letters, 278(2), 137-145. Dubreuil, J. D. (2021). Pig vaccination strategies based on enterotoxigenic Escherichia coli toxins. Brazilian Journal of Microbiology, 52, 2499-2509. Dubreuil, J. D., Letellier, A., & Harel, J. (1996). A recombinant Escherichia coli heat-stable enterotoxin b (STb) fusion protein eliciting neutralizing antibodies. FEMS Immunology & Medical Microbiology, 13(4), 317-323. Fairbrother, J. M., & Nadeau, É. (2019). Colibacillosis. In Diseases of Swine (pp. 807-834). https://doi.org/https://doi.org/10.1002/9781119350927.ch52 Fairbrother, J. M., Nadeau, É., & Gyles, C. L. (2005). Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Animal Health Research Reviews, 6(1), 17-39. Farmer III, J., Boatwright, K., & Janda, J. (2007). Enterobacteriaceae: introduction and identification, p 649–669. Manual of Clinical Microbiology, 9th ed. ASM Press, Washington, DC. Fleckenstein, J. M., Hardwidge, P. R., Munson, G. P., Rasko, D. A., Sommerfelt, H., & Steinsland, H. (2010). Molecular mechanisms of enterotoxigenic Escherichia coli infection. Microbes and Infection, 12(2), 89-98. Frantz, J. C., & Robertson, D. C. (1981). Immunological properties of Escherichia coli heat-stable enterotoxins: development of a radioimmunoassay specific for heat-stable enterotoxins with suckling mouse activity. Infection and Immunity, 33(1), 193-198. Fratamico, P. M., DebRoy, C., Liu, Y., Needleman, D. S., Baranzoni, G. M., & Feng, P. (2016). Advances in molecular serotyping and subtyping of Escherichia coli. Frontiers in Microbiology, 7, 644. Frydendahl, K. (2002). Prevalence of serogroups and virulence genes in Escherichia coli associated with postweaning diarrhoea and edema disease in pigs and a comparison of diagnostic approaches. Veterinary Microbiology, 85(2), 169-182. Gao, Y., Han, F., Huang, X., Rong, Y., Yi, H., & Wang, Y. (2013). Changes in gut microbial populations, intestinal morphology, expression of tight junction proteins, and cytokine production between two pig breeds after challenge with Escherichia coli K88: a comparative study. Journal of Animal Science, 91(12), 5614-5625. García, V., Gambino, M., Pedersen, K., Haugegaard, S., Olsen, J. E., & Herrero-Fresno, A. (2020). F4-and F18-positive enterotoxigenic Escherichia coli isolates from diarrhea of postweaning pigs: genomic characterization. Applied and Environmental Microbiology, 86(23), e01913-01920. García-Meniño, I., García, V., Alonso, M. P., Blanco, J. E., Blanco, J., & Mora, A. (2021). Clones of enterotoxigenic and Shiga toxin-producing Escherichia coli implicated in swine enteric colibacillosis in Spain and rates of antibiotic resistance. Veterinary Microbiology, 252, 108924. Gelberg, H. (2017). Chapter 7—Alimentary System and the Peritoneum, Omentum, Mesentery, and Peritoneal Cavity1. Pathologic Basis of Veterinary Disease, 6th ed.; Zachary, JF, Ed, 324-411. Gonçalves, C., Berthiaume, F., Mourez, M., & Dubreuil, J. D. (2008). Escherichia coli STb toxin binding to sulfatide and its inhibition by carragenan. FEMS Microbiology Letters, 281(1), 30-35. Govasli, M. L., Diaz, Y., Zegeye, E. D., Darbakk, C., Taxt, A. M., & Puntervoll, P. (2018). Purification and characterization of native and vaccine candidate mutant enterotoxigenic Escherichia coli heat-stable toxins. Toxins, 10(7), 274. Hasegawa, H., Suzuki, E., & Maeda, S. (2018). Horizontal plasmid transfer by transformation in Escherichia coli: environmental factors and possible mechanisms. Frontiers in Microbiology, 9, 2365. Hasman, H., Schembri, M. A., & Klemm, P. (2000). Antigen 43 and type 1 fimbriae determine colony morphology of Escherichia coli K-12. Journal of Bacteriology, 182(4), 1089-1095. Hayat, S. M., Farahani, N., Golichenari, B., & Sahebkar, A. (2018). Recombinant protein expression in Escherichia coli (E. coli): what we need to know. Current Pharmaceutical Design, 24(6), 718-725. Heinzl, I., & Barbosa, F. F. The Zinc Oxide ban: What led to it, what are the alternatives? Helie, P., Morin, M., Jacques, M., & Fairbrother, J. (1991). Experimental infection of newborn pigs with an attaching and effacing Escherichia coli O45: K" E65" strain. Infection and Immunity, 59(3), 814-821. Huang, J., Duan, Q., & Zhang, W. (2018). Significance of enterotoxigenic Escherichia coli (ETEC) heat-labile toxin (LT) enzymatic subunit epitopes in LT enterotoxicity and immunogenicity. Applied and Environmental Microbiology, 84(15), e00849-00818. Huang, X., Chen, J., Yao, G., Guo, Q., Wang, J., & Liu, G. (2019). A TaqMan-probe-based multiplex real-time RT-qPCR for simultaneous detection of porcine enteric coronaviruses. Applied Microbiology and Biotechnology, 103(12), 4943-4952. Jackson, M. P., Newland, J. W., Holmes, R. K., & O'Brien, A. D. (1987). Nucleotide sequence analysis of the structural genes for Shiga-like toxin I encoded by bacteriophage 933J from Escherichia coli. Microbial Pathogenesis, 2(2), 147-153. Jacobson, M. (2022). On the Infectious Causes of Neonatal Piglet Diarrhoea—A Review. Veterinary Sciences, 9(8), 422. Ji, X., Liang, B., Sun, Y., Zhu, L., Zhou, B., Guo, X., & Liu, J. (2020). An Extended-spectrum beta-lactamase-producing hybrid Shiga-toxigenic and enterotoxigenic Escherichia coli strain isolated from a piglet with diarrheal disease in northeast China. Foodborne Pathogens and Disease, 17(6), 382-387. Jiang, X., Morgan, J., & Doyle, M. P. (2002). Fate of Escherichia coli O157: H7 in manure-amended soil. Applied and Environmental Microbiology, 68(5), 2605-2609. Johura, F.-T., Parveen, R., Islam, A., Sadique, A., Rahim, M. N., Monira, S., Khan, A. R., Ahsan, S., Ohnishi, M., & Watanabe, H. (2017). Occurrence of hybrid Escherichia coli strains carrying Shiga toxin and heat-stable toxin in livestock of Bangladesh. Frontiers in Public Health, 4, 287. Kim, K., Song, M., Liu, Y., & Ji, P. (2022). Enterotoxigenic Escherichia coli infection of weaned pigs: Intestinal challenges and nutritional intervention to enhance disease resistance. Frontiers in Immunology, 4370. Kim, Y. J., Kim, J. H., Hur, J., & Lee, J. H. (2010). Isolation of Escherichia coli from piglets in South Korea with diarrhea and characteristics of the virulence genes. Canadian Journal of Veterinary Research, 74(1), 59-64. Kuczius, T., Bielaszewska, M., Friedrich, A. W., & Zhang, W. (2004). A rapid method for the discrimination of genes encoding classical Shiga toxin (Stx) 1 and its variants, Stx1c and Stx1d, in Escherichia coli. Molecular Nutrition & Food Research, 48(7), 515-521. Kudva, I. T., Blanch, K., & Hovde, C. J. (1998). Analysis of Escherichia coli O157: H7 survival in ovine or bovine manure and manure slurry. Applied and Environmental Microbiology, 64(9), 3166-3174. Kusumoto, M., Hikoda, Y., Fujii, Y., Murata, M., Miyoshi, H., Ogura, Y., Gotoh, Y., Iwata, T., Hayashi, T., & Akiba, M. (2016). Emergence of a multidrug-resistant Shiga toxin-producing enterotoxigenic Escherichia coli lineage in diseased swine in Japan. Journal of Clinical Microbiology, 54(4), 1074-1081. Kylla, H., Dutta, T. K., Roychoudhury, P., Subudhi, P. K., Lalsiamthara, J., & Mandakini, R. (2020). Characterisation of porcine enteropathogenic isolated in northeastern India. Journal of Veterinary Research, 64(3), 391-397. Lee, C.-R., Park, Y.-H., Kim, Y.-R., Peterkofsky, A., & Seok, Y.-J. (2013). Phosphorylation-dependent mobility shift of proteins on SDS-PAGE is due to decreased binding of SDS. Bulletin of the Korean Chemical Society, 34(7), 2063-2066. Li, S., Wang, L., Zhou, Y., & Miao, Z. (2020). Prevalence and characterization of virulence genes in Escherichia coli isolated from piglets suffering post‐weaning diarrhoea in Shandong Province, China. Veterinary Medicine and Science, 6(1), 69-75. Liu, W., Li, J., Bao, J., Li, X., Guan, W., Yuan, C., Tang, J., Zhao, Z., & Shi, D. (2015). Simultaneous oral immunization of mice with live attenuated Escherichia coli expressing LT 192-STa 13 and LT 192-STb fusion immunogen, respectively, for polyvalent vaccine candidate. Applied Microbiology and Biotechnology, 99, 3981-3992. Loc, N. H., Bach, N. H., Kim, T.-G., & Yang, M.-S. (2010). Tissue culture and expression of Escherichia coli heat-labile enterotoxin B subunit in transgenic Peperomia pellucida. Protein Expression and Purification, 72(1), 82-86. Lothigius, Å., Janzon, A., Begum, Y., Sjöling, Å., Qadri, F., Svennerholm, A. M., & Bölin, I. (2008). Enterotoxigenic Escherichia coli is detectable in water samples from an endemic area by real‐time PCR. Journal of Applied Microbiology, 104(4), 1128-1136. Luise, D., Lauridsen, C., Bosi, P., & Trevisi, P. (2019). Methodology and application of Escherichia coli F4 and F18 encoding infection models in post-weaning pigs. Journal of Animal Science and Biotechnology, 10, 1-20. Luppi, A. (2017). Swine enteric colibacillosis: diagnosis, therapy and antimicrobial resistance. Porcine Health Management, 3(1), 1-18. Madoroba, E., Van Driessche, E., De Greve, H., Mast, J., Ncube, I., Read, J., & Beeckmans, S. (2009). Prevalence of enterotoxigenic Escherichia coli virulence genes from scouring piglets in Zimbabwe. Trop Anim Health Prod, 41(7), 1539-1547. https://doi.org/10.1007/s11250-009-9345-4 McCracken, B. A., Spurlock, M. E., Roos, M. A., Zuckermann, F. A., & Gaskins, H. R. (1999). Weaning anorexia may contribute to local inflammation in the piglet small intestine. The Journal of Nutrition, 129(3), 613-619. Melkebeek, V., Goddeeris, B. M., & Cox, E. (2013). ETEC vaccination in pigs. Veterinary Immunology and Immunopathology, 152(1-2), 37-42. Mellmann, A., Harmsen, D., Cummings, C. A., Zentz, E. B., Leopold, S. R., Rico, A., Prior, K., Szczepanowski, R., Ji, Y., & Zhang, W. (2011). Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104: H4 outbreak by rapid next generation sequencing technology. PloS one, 6(7), e22751. Melton-Celsa, A. R. (2014). Shiga toxin (Stx) classification, structure, and function. Microbiology Spectrum, 2(4), 2.4. 06. Michelacci, V., Maugliani, A., Tozzoli, R., Corteselli, G., Chiani, P., Minelli, F., Gigliucci, F., Arancia, S., Conedera, G., & Targhetta, C. (2018). Characterization of a novel plasmid encoding F4-like fimbriae present in a Shiga-toxin producing enterotoxigenic Escherichia coli isolated during the investigation on a case of hemolytic-uremic syndrome. International Journal of Medical Microbiology, 308(7), 947-955. Mirhoseini, A., Amani, J., & Nazarian, S. (2018). Review on pathogenicity mechanism of enterotoxigenic Escherichia coli and vaccines against it. Microbial Pathogenesis, 117, 162-169. Monday, S. R., Keys, C., Hanson, P., Shen, Y., Whittam, T. S., & Feng, P. (2006). Produce isolates of the Escherichia coli Ont: H52 serotype that carry both Shiga toxin 1 and stable toxin genes. Applied and Environmental Microbiology, 72(4), 3062-3065. Nagy, B., & Fekete, P. Z. (2005). Enterotoxigenic Escherichia coli in veterinary medicine. International Journal of Medical Microbiology, 295(6-7), 443-454. Nandre, R. M., Duan, Q., Wang, Y., & Zhang, W. (2017). Passive antibodies derived from intramuscularly immunized toxoid fusion 3xSTaN12S-dmLT protect against STa+ enterotoxigenic Escherichia coli (ETEC) diarrhea in a pig model. Vaccine, 35(4), 552-556. Nataro, J. P., & Kaper, J. B. (1998). Diarrheagenic Escherichia coli. Clinical Microbiology Reviews, 11(1), 142-201. Navarro‐Garcia, F. (2015). Escherichia coli O104: H4 pathogenesis: an enteroaggregative E. coli/Shiga toxin‐producing E. coli explosive cocktail of high virulence. Enterohemorrhagic Escherichia coli and Other Shiga Toxin‐Producing E. coli, 503-529. Nyholm, O., Heinikainen, S., Pelkonen, S., Hallanvuo, S., Haukka, K., & Siitonen, A. (2015). Hybrids of Shigatoxigenic and enterotoxigenic Escherichia coli (STEC/ETEC) among human and animal isolates in Finland. Zoonoses and Public Health, 62(7), 518-524. Pacheco, A. R., & Sperandio, V. (2012). Shiga toxin in enterohemorrhagic E. coli: regulation and novel anti-virulence strategies. Frontiers in Cellular and Infection Microbiology, 2, 81. Pakbin, B., Brück, W. M., & Rossen, J. W. (2021). Virulence factors of enteric pathogenic Escherichia coli: A review. International Journal of Molecular Sciences, 22(18), 9922. Perrat, A., Branchu, P., Decors, A., Turci, S., Bayon-Auboyer, M.-H., Petit, G., Grosbois, V., Brugère, H., Auvray, F., & Oswald, E. (2022). Wild Boars as Reservoir of Highly Virulent Clone of Hybrid Shiga Toxigenic and Enterotoxigenic Escherichia coli Responsible for Edema Disease, France. Emerging Infectious Diseases, 28(2), 382. Perrat, A., Branchu, P., Decors, A., Turci, S., Bayon-Auboyer, M.-H., Petit, G., Grosbois, V., Brugère, H., Auvray, F., & Oswald, E. (2022). Wild Boars as Reservoir of Highly Virulent Clone of Hybrid Shiga Toxigenic and Enterotoxigenic Escherichia coli Responsible for Edema Disease, France. Emerging Infectious Diseases, 28(2), 382. Peterson, J. W., & Whipp, S. C. (1995). Comparison of the mechanisms of action of cholera toxin and the heat-stable enterotoxins of Escherichia coli. Infection and Immunity, 63(4), 1452-1461. Prescott, J. F., MacInnes, J. I., Van Immerseel, F., Boyce, J. D., Rycroft, A. N., & Vázquez-Boland, J. A. (2022). Pathogenesis of Bacterial Infections in Animals. Wiley Online Library. Qi, M., Wang, Q., Tong, S., Zhao, G., Hu, C., Chen, Y., Li, X., Yang, W., Zhao, Y., & Platto, S. (2017). Identification of atypical enteropathogenic Escherichia coli O98 from golden snub-nosed monkeys with diarrhea in China. Frontiers in Veterinary Science, 4, 217. Rahbi, H., Narayan, H., Jones, D. J., & Ng, L. L. (2012). The uroguanylin system and human disease. Clinical Science, 123(12), 659-668. Rhinesmith, T., Killinger, B. A., Sharma, A., & Moszczynska, A. (2017). Multimer-PAGE: A Method for Capturing and Resolving Protein Complexes in Biological Samples. JoVE (Journal of Visualized Experiments)(123), e55341. Rhouma, M., Fairbrother, J. M., Beaudry, F., & Letellier, A. (2017). Post weaning diarrhea in pigs: risk factors and non-colistin-based control strategies. Acta Veterinaria Scandinavica, 59, 1-19. Rodighiero, C., Aman, A. T., Kenny, M. J., Moss, J., Lencer, W. I., & Hirst, T. R. (1999). Structural basis for the differential toxicity of cholera toxin and Escherichia coli heat-labile enterotoxin: construction of hybrid toxins identifies the A2-domain as the determinant of differential toxicity. Journal of Biological Chemistry, 274(7), 3962-3969. Ruan, X., & Zhang, W. (2013). Oral immunization of a live attenuated Escherichia coli strain expressing a holotoxin-structured adhesin–toxoid fusion (1FaeG-FedF-LTA2: 5LTB) protected young pigs against enterotoxigenic E. coli (ETEC) infection. Vaccine, 31(11), 1458-1463. Ruan, X., Liu, M., Casey, T. A., & Zhang, W. (2011). A tripartite fusion, FaeG-FedF-LT192A2: B, of enterotoxigenic Escherichia coli (ETEC) elicits antibodies that neutralize cholera toxin, inhibit adherence of K88 (F4) and F18 fimbriae, and protect pigs against K88ac/heat-labile toxin infection. Clinical and Vaccine Immunology, 18(10), 1593-1599. Ruan, X., Sack, D. A., & Zhang, W. (2015). Genetic fusions of a CFA/I/II/IV MEFA (multiepitope fusion antigen) and a toxoid fusion of heat-stable toxin (STa) and heat-labile toxin (LT) of enterotoxigenic Escherichia coli (ETEC) retain broad anti-CFA and antitoxin antigenicity. PloS one, 10(3), e0121623. Sánchez, J., & Holmgren, J. (2005). Virulence factors, pathogenesis and vaccine protection in cholera and ETEC diarrhea. Current Opinion in Immunology, 17(4), 388-398. Santos, A. C. D. M., Santos, F. F., Silva, R. M., & Gomes, T. A. T. (2020). Diversity of hybrid-and hetero-pathogenic Escherichia coli and their potential implication in more severe diseases. Frontiers in Cellular and Infection Microbiology, 10, 339. Santos, A. C. D. M., Santos, F. F., Silva, R. M., & Gomes, T. A. T. (2020). Diversity of hybrid-and hetero-pathogenic Escherichia coli and their potential implication in more severe diseases. Frontiers in Cellular and Infection Microbiology, 10, 339. Seo, H., Lu, T., Nandre, R. M., Duan, Q., & Zhang, W. (2019). Immunogenicity characterization of genetically fused or chemically conjugated heat-stable toxin toxoids of enterotoxigenic Escherichia coli in mice and pigs. FEMS Microbiology Letters, 366(4), fnz037. Sevastsyanovich, Y. R., Alfasi, S. N., & Cole, J. A. (2010). Sense and nonsense from a systems biology approach to microbial recombinant protein production. Biotechnology and Applied Biochemistry, 55(1), 9-28. Shaw, R. K., Daniell, S., Frankel, G., & Knutton, S. (2002). Enteropathogenic Escherichia coli translocate Tir and form an intimin–Tir intimate attachment to red blood cell membranes. Microbiology, 148(5), 1355-1365. Shen, J., Zhi, S., Guo, D., Jiang, Y., Xu, X., Zhao, L., & Lv, J. (2022). Prevalence, antimicrobial resistance, and whole genome sequencing analysis of Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic Escherichia coli (EPEC) from imported foods in China during 2015–2021. Toxins, 14(2), 68. Shulman, S. T., Friedmann, H. C., & Sims, R. H. (2007). Theodor Escherich: the first pediatric infectious diseases physician? Clinical Infectious Diseases, 45(8), 1025-1029. Singh, A., Upadhyay, V., Upadhyay, A. K., Singh, S. M., & Panda, A. K. (2015). Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microbial Cell Factories, 14(1), 1-10. Sjölund, M., Zoric, M., & Wallgren, P. (2014). Financial impact of disease on pig production. Part III. Gastrointestinal disorders. Proceedings of the 6th European symposium of porcine health management. Italy: Edited by University of Parma (Italy). Printed by Litografia La Ducale srl Parma, Smith, H. W., & Halls, S. (1968). The production of oedema disease and diarrhoea in weaned pigs by the oral administration of Escherichia coli: factors that influence the course of the experimental disease (Plate III). Journal of Medical Microbiology, 1(1), 45-59. Taxt, A. M., Diaz, Y., Bacle, A., Grauffel, C., Reuter, N., Aasland, R., Sommerfelt, H., & Puntervoll, P. (2014). Characterization of immunological cross-reactivity between enterotoxigenic Escherichia coli heat-stable toxin and human guanylin and uroguanylin. Infection and Immunity, 82(7), 2913-2922. Valdivieso-Garcia, A., MacLeod, D., Clarke, R., Gyles, C., Lingwood, C., Boyd, B., & Durette, A. (1996). Comparative cytotoxicity of purified Shiga-like toxin-lle on porcine and bovine aortic endothelial and human colonic adenocarcinoma cells. Journal of Medical Microbiology, 45(5), 331-337. Van Elsas, J. D., Semenov, A. V., Costa, R., & Trevors, J. T. (2011). Survival of Escherichia coli in the environment: fundamental and public health aspects. The ISME Journal, 5(2), 173-183. Verdonck, F., De Hauwere, V., Bouckaert, J., Goddeeris, B., & Cox, E. (2005). Fimbriae of enterotoxigenic Escherichia coli function as a mucosal carrier for a coupled heterologous antigen. Journal of Controlled Release, 104(2), 243-258. Waddell, T. E., & Gyles, C. L. (1995). Sodium deoxycholate facilitates systemic absorption of verotoxin 2e from pig intestine. Infection and Immunity, 63(12), 4953-4956. Waddell, T. E., Lingwood, C. A., & Gyles, C. L. (1996). Interaction of verotoxin 2e with pig intestine. Infection and Immunity, 64(5), 1714-1719. Wang, G., de Jong, R. N., van den Bremer, E. T., Parren, P. W., & Heck, A. J. (2017). Enhancing accuracy in molecular weight determination of highly heterogeneously glycosylated proteins by native tandem mass spectrometry. Analytical Chemistry, 89(9), 4793-4797. Wang, J., Jiang, S., Chen, X., Liu, Z., & Peng, J. (2006). Prevalence of fimbrial antigen (K88 variants, K99 and 987P) of enterotoxigenic Escherichia coli from neonatal and post-weaning piglets with diarrhea in central China. Asian-Australasian Journal of Animal Sciences, 19(9), 1342-1346. You, J., Xu, Y., He, M., McAllister, T. A., Thacker, P. A., Li, X., Wang, T., & Jin, L. (2011). Protection of mice against enterotoxigenic E. coli by immunization with a polyvalent enterotoxin comprising a combination of LTB, STa, and STb. Applied Microbiology and Biotechnology, 89, 1885-1893. Zhang, C., Knudsen, D. E., Liu, M., Robertson, D. C., Zhang, W., & Group, S. T. V. C. (2013). Toxicity and immunogenicity of enterotoxigenic Escherichia coli heat-labile and heat-stable toxoid fusion 3xSTaA14Q-LTS63K/R192G/L211A in a murine model. PloS one, 8(10), e77386. Zhang, H., Xu, Y., Zhang, Z., You, J., Yang, Y., & Li, X. (2018). Protective immunity of a multivalent vaccine candidate against piglet diarrhea caused by enterotoxigenic Escherichia coli (ETEC) in a pig model. Vaccine, 36(5), 723-728. Zhang, W., & Francis, D. H. (2010). Genetic fusions of heat-labile toxoid (LT) and heat-stable toxin b (STb) of porcine enterotoxigenic Escherichia coli elicit protective anti-LT and anti-STb antibodies. Clinical and Vaccine Immunology, 17(8), 1223-1231. Zhang, W., Berberov, E. M., Freeling, J., He, D., Moxley, R. A., & Francis, D. H. (2006). Significance of heat-stable and heat-labile enterotoxins in porcine colibacillosis in an additive model for pathogenicity studies. Infection and Immunity, 74(6), 3107-3114. Zhang, W., Zhang, C., Francis, D. H., Fang, Y., Knudsen, D., Nataro, J. P., & Robertson, D. C. (2010). Genetic fusions of heat-labile (LT) and heat-stable (ST) toxoids of porcine enterotoxigenic Escherichia coli elicit neutralizing anti-LT and anti-STa antibodies. Infection and Immunity, 78(1), 316-325. Zhang, W., Zhao, M., Ruesch, L., Omot, A., & Francis, D. (2007). Prevalence of virulence genes in Escherichia coli strains recently isolated from young pigs with diarrhea in the US. Veterinary Microbiology, 123(1-3), 145-152. Zhang, Z., Kuipers, G., Niemiec, Ł., Baumgarten, T., Slotboom, D. J., de Gier, J.-W., & Hjelm, A. (2015). High-level production of membrane proteins in E. coli BL21 (DE3) by omitting the inducer IPTG. Microbial Cell Factories, 14, 1-11. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91530 | - |
| dc.description.abstract | 大腸桿菌(Escherichia coli,E. coli)引起豬隻下痢是全球豬業面臨的重要問題,導致豬場經濟困難。現今,具病原性的大腸桿菌主要依據其毒力因子進行分類,包括黏附素、毒素、脂多醣和莢膜多醣等。在病原性大腸桿菌中,腸毒性大腸桿菌(Enterotoxigenic E. coli,ETEC)、志賀毒素大腸桿菌(Shiga toxin-producing E. coli,STEC)和腸致病性大腸桿菌(Enteropathogenic E. coli,EPEC)對新生豬和離乳後仔豬侵襲性非常高。在新生與離乳仔豬中,ETEC和EPEC與水樣下痢有關。ETEC通常產生耐熱毒素(ST)和不耐熱毒素(LT),而EPEC中則檢測到Intimin。另一方面,帶有志賀毒素2e型(Shiga toxin type 2e,Stx2e)的STEC會破壞離乳豬的全身性內皮細胞造成水腫性疾病。
在第二章中,使用傳統多重PCR分析2017年至2023年間在台灣收集到的病原性大腸桿菌的毒力因子。在十株溶血性大腸桿菌中,有五株(50%)被鑑定為ETEC,一株為STEC,一株為EPEC。有趣的是,其中有三株(30%)大腸桿菌菌株同時攜帶ST、LT和Stx2e基因並認為是混合型STEC/ETEC菌株。為了評估混合型STEC/ETEC的致病性,將一株野外分離菌株口服接種到離乳豬上,在研究期間,控制組的所有豬隻糞便評分正常,並保持健康,而STEC/ETEC接種組中的大部分豬隻出現水樣性腹瀉,但沒有水腫病相關症狀。與ETEC的發現相似,接種STEC/ETEC的豬隻沒有明顯的組織學病變。鑒於觀察到的混合型STEC/ETEC的高盛行率和致病性,應將其視為新興的病原體。 為了控制病原性大腸桿菌,目前常用的方法是在新生豬和離乳豬中使用黏菌素(colistin)和其他抗菌劑。然而,許多國家目前禁止將抗生素用作生長促進劑、或在豬使用氧化鋅治療。此外,目前商業化的ETEC疫苗只對預防新生仔豬下痢有效,對離乳豬的下痢無效。因此替代性抗菌劑及對混合型STEC/ETEC和ETEC都有效的高效疫苗的研發有其迫切需求。在第三章中,我們構築及合成包括野生型STaLTB及LTASTb及減毒突變型STaN11SLTB和LTAR192G/L211ASTb的ST和LT合成毒素。帶有毒素蛋白基因的重組質體被轉染到BL21(DE3)細胞中,並在大腸桿菌表達系統中成功表現毒素。 本研究中分離病原性大腸桿菌分離株和合成類毒素可作為抗病原性大腸桿菌的死毒和次單位蛋白疫苗候選物。建立的混合型STEC/ETEC豬攻毒模式將可用於未來評估對病原性大腸桿菌感染的保護確效指標。 | zh_TW |
| dc.description.abstract | Porcine diarrhea caused by Escherichia coli (E. coli) has been a major problem in the global swine industry, leading to the financial issues of swine farms. Nowadays, pathogenic E. coli is usually classified based on their virulence factors, including adhesins, toxins, lipopolysaccharides, and polysaccharide capsules. Among pathogenic E. coli, the enterotoxigenic E. coli (ETEC), Shiga toxin-producing E. coli (STEC), and enteropathogenic E. coli (EPEC) attacking neonatal and post-weaning pigs are important. In neonatal and post-weaning piglets, ETEC and EPEC are associated with watery diarrhea. The heat-stable toxin (ST) and heat-labile toxin (LT) are usually found in ETEC, while intimin is detected in EPEC. The STEC, on the other hand, carrying Shiga toxin type 2e (Stx2e) causes systemic endothelial cell destruction and edema illness in weaned pigs.
In the chapter II, conventional multiplex PCR were used to analyze the virulence factors of pathogenic E. coli collected in Taiwan from 2017 to 2023. While five of the ten (50%) hemolytic E. coli were ETEC, one isolate was STEC, and one was EPEC, interestingly, concurrently carrying ST, LT, and Stx2e genes, namely the hybrid STEC/ETEC strains, were noted in three of the ten (30%) E. coli isolates. In order to evaluate pathogenicity of hybrid STEC/ETEC, a field isolated strain was orally inoculated in post-weaning pigs. While all pigs in the mock-inoculated group had normal fecal consistency score and were healthy during the study, the majority of piglets in the STEC/ETEC-inoculated group had watery diarrhea without signs of edema disease. Similar to ETEC, histological examination of STEC/ETEC-inoculated pigs reveals no apparent lesion. Due to the high prevalence and pathogenicity of hybrid STEC/ETEC observed, hybrid STEC/ETEC should be considered a new emerging pathogen. For controlling pathogenic E coli, colistin and other antimicrobials were commonly used in neonatal and post-weaning pigs. However, many countries currently prohibit the usage of antibiotics as growth promoters or therapeutic usage of zinc oxide in pigs. Furthermore, the current commercial ETEC vaccination is only useful in preventing neonatal diarrhea not for post-weaning diarrhea. These findings suggest that alternative antimicrobials are urgently needed and an efficient vaccine against both hybrid STEC/ETEC and ETEC is required. In the Chapter III, chimeric toxoids, including wild typed STaLTB and LTASTb and attenuation mutants of STaN11SLTB and LTAR192G/L211ASTb, were generated. All of recombinant plasmids were transformed into BL21 (DE3) competent cells and successfully expressed in the E. coli expression system. The pathogenic E. coli isolates and chimeric toxoids generated in the present study could be potential inactivate and toxoid subunit vaccine candidates against pathogenic E. coli, respectively. The established hybrid STEC/ETEC porcine challenge model could be used to evaluate the vaccine efficacy and protectivity against pathogenic colibacteriosis. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-28T16:24:36Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-01-28T16:24:36Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Table of Contents
Certificate of Thesis……………………………………..……………………………….i Acknowledgement………………………………………………………………….……ii 摘要………………...………………………………………………………….………..iii Abstract……………………………………………………………………………….….v Table of Contents………………………..……………………………………...………vii List of tables………………………………………………………………………….......x List of figures…………………………………………………………………………....xi Chapter I Introduction 1. Importance of E. coli infection in swine industry…………………………...2 2. Taxonomy and general information of Escherichia coli……….…………....2 3. Classification and virulence factors of E. coli……………………………….4 3.1 Enterotoxigenic E. coli (ETEC) …………………………………………....4 3.2 Shiga Toxin-Producing E. coli (STEC)……………………………….…....8 3.3 Enteropathogenic E. coli (EPEC).…………………………….…..............10 4. Hybrid E. coli and hybrid STEC/ETEC…..…………………….…..............12 4.1 Hybrid STEC/ETEC in human, environment, food, and animals……...…13 4.2 Hybrid STEC/ETEC in pigs…..…………………….….............................14 4.3 Antibiotics resistance of hybrid STEC/ETEC……………….…................15 5. Toxoids..…………………….…...................................................................16 5.1 Heat-Labile toxin (LT)……………….…....................................................16 5.2 Heat-Stable toxin (ST)……………….….....................................................18 6. Current vaccines against porcine pathogenic E. coli….................................19 7. Aim of the study.............................................................................................20 References...................................................................................................................21 Tables..........................................................................................................................37 Figures.........................................................................................................................43 Chapter II Isolation and Evaluation of the Pathogenicity of a Hybrid Shiga Toxin-Producing and Enterotoxigenic Escherichia coli in Pigs 1. Introduction……………………………………..…………………………..49 2. Material and methods……………………………..…………….…..............51 2.1 Isolation and characterization of pathogenic E. coli from pigs in Taiwan...51 2.2 Hybrid STEC/ETEC strains inoculation in a post-weaning piglet model…52 3. Results……………………...…………...……….…....................................54 3.1 Characterization of pathogenic E. coli isolates………………………...….54 3.2 Pathogenicity evaluation of a hybrid STEC/ETEC isolate………………..55 3.3 Detection of hybrid STEC/ETEC………………………………………….56 4. Discussion………………………………………………………………….56 References...................................................................................................................60 Tables..........................................................................................................................65 Figures.........................................................................................................................68 Chapter III Toxoid generation and construction of a porcine hybrid Shiga toxin-producing and enterotoxigenic Escherichia coli 1. Introduction……………………………………..…………………………..71 2. Material and methods……………………………..…………….…..............73 2.1 Construction of recombinant plasmids encoding ETEC toxoids……….....73 2.2 Construction of the chimeric recombinant plasmids…………...………….75 2.3 Site-directed mutagenesis to attenuated toxoids……………….………….77 2.4 Small scale expression of wildtype and recombinant proteins ……………78 2.5 Western blot detection of protein expressions…………………………….80 2.6 Mass protein expression and purification………………………………….82 3. Results………………………...………...……….…....................................83 3.1 Wildtype and chimeric recombinant plasmid construction…...……….......83 3.2 Construction of mutants…...……….......…...……….......…...………........84 3.3 Detection of protein expression………………..………………………….84 4. Discussion………………………………………………………………….85 References...................................................................................................................89 Tables..........................................................................................................................94 Figures.........................................................................................................................97 Chapter IV Conclusions References.................................................................................................................111 List of Tables Chapter I Introduction Table 1 The list of amino acid position and sequence of epitopes of heat-labile toxin A (LTA)……...…..…………….....……………..……………………………………..37 Table 2 Summary of chimeric toxoids of enterotoxigenic Escherichia coli generated in other studies..…...…..….……….… …..…………….....……………..……….….....38 Table 3 The list of porcine commercial vaccines against Enterotoxigenic E. coli…………….39 Table 4 The list of porcine commercial vaccines against Shiga toxin-producing E. coli….….42 Chapter II Isolation and Evaluation of the Pathogenicity of a Hybrid Shiga Toxin-Producing and Enterotoxigenic Escherichia coli in Pigs Table 1 History and virulence genes of hemolytic E. coli isolated from 2017 to 2023…..…..65 Table 2 The list of primers to detect genes of E. coli virulence factors using multiplex and conventional PCR in this study……………..…………………………...………...…66 Table 3 Protocol used in multiplex and conventional PCR for detecting genes of E. coli virulence factors in this study……..…………………………...………...………….67 Table 4 Daily fecal shedding of hybrid ETEC/STEC isolates in pigs.……………...……….67 Chapter III Toxoid generation and construction of a porcine hybrid Shiga toxin-producing and enterotoxigenic Escherichia coli Table 1 Primers used in this study…......…..…………….....…………………….…………..94 Table 2 Bacterial strains, competent cells, and plasmids constructed in this study…….....…95 Table 3 Recombinant proteins produced in this study ……..………………………….…….96 List of Figures Chapter I Introduction Figure 1 Sequence alignment of amino acid of pSTa, hSTa, porcine uroguanylin, and porcine guanylin toxicity domain…………………………….….…..………………43 Figure 2 The overall flowchart of this study.…..………………………..…………………….44 Chapter II Isolation and Evaluation of the Pathogenicity of a Hybrid Shiga Toxin-Producing and Enterotoxigenic Escherichia coli in Pigs Figure 1 Daily fecal scores.………………….………………………………………………68 Chapter III Toxoid generation and construction of a porcine hybrid Shiga toxin-producing and enterotoxigenic Escherichia coli Figure 1 Maps of plasmids of pET101-STaLTB-6xHistag, and pET101-LTASTb-V5-6xHistag.…..……………………….…………….…..………………...…….…..….97 Figure 2 Nucleic acid and deduced amino acid sequences of toxoid used in this study……...98 Figure 3 Detection of wildtype, chimeric wildtype, and chimeric mutated toxins…….….....101 Figure 4 Detection of wild type heat-labile enterotoxin subunit A (LTA) and heat-stable enterotoxin type a (STa).…………………………………………..…………….....105 Figure 5 Detection of wild type heat-labile enterotoxin subunit A (LTA) expression.…...….106 | - |
| dc.language.iso | en | - |
| dc.subject | 混合型STEC/ETEC | zh_TW |
| dc.subject | 腸毒性大腸桿菌 | zh_TW |
| dc.subject | 離乳後下痢 | zh_TW |
| dc.subject | 減毒毒素 | zh_TW |
| dc.subject | attenuated toxoid | en |
| dc.subject | hybrid STEC/ETEC | en |
| dc.subject | Enterotoxigenic E. coli | en |
| dc.subject | post-weaning diarrhea | en |
| dc.title | 豬致病性大腸桿菌分離、致病力評估及類毒素產製 | zh_TW |
| dc.title | Isolation, Pathogenicity Evaluation, and Toxoid Generation of Pathogenic Escherichia coli in Pigs | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 葉光勝;張晏禎 ;邱慧英;張佳瑜 | zh_TW |
| dc.contributor.oralexamcommittee | Kuang-Shen Yeh;Yen-Chen Chang;Hue-Ying Chiou;Chia-Yu Chang | en |
| dc.subject.keyword | 混合型STEC/ETEC,腸毒性大腸桿菌,離乳後下痢,減毒毒素, | zh_TW |
| dc.subject.keyword | hybrid STEC/ETEC,Enterotoxigenic E. coli,post-weaning diarrhea,attenuated toxoid, | en |
| dc.relation.page | 113 | - |
| dc.identifier.doi | 10.6342/NTU202301688 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-07-19 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 分子暨比較病理生物學研究所 | - |
| 顯示於系所單位: | 分子暨比較病理生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 3.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
