Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91515
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鐘嘉德zh_TW
dc.contributor.advisorChar-Dir Chungen
dc.contributor.author徐旻志zh_TW
dc.contributor.authorMin-Zhi Xuen
dc.date.accessioned2024-01-28T16:20:40Z-
dc.date.available2024-01-29-
dc.date.copyright2024-01-27-
dc.date.issued2023-
dc.date.submitted2023-08-07-
dc.identifier.citationR. Hadani et al., “Orthogonal time frequency space modulation,” in Proc. IEEE Wireless Commun. Netw. Conf., San Francisco, CA, USA, Mar. 2017, pp. 1–6.
R. Hadani et al., “Orthogonal time frequency space modulation,” 2018, arXiv:1808.00519.
P. Raviteja et al., “Interference cancellation and iterative detection for orthogonal time frequency space modulation,” IEEE Trans. Wireless Commun., vol. 17, no. 10, pp. 6501-6515, Oct. 2018.
P. Raviteja, Y. Hong, E. Viterbo, and E. Biglieri, “Practical pulse-shaping waveforms for reduced-cyclic-prefix OTFS,” IEEE Trans. Veh. Tech., vol. 68, no. 1, pp. 957-961, Jan. 2019.
S. Tiwari, S. S. Das and V. R. Rangamgari, “Low complexity LMMSE receiver for OTFS,” IEEE Commun. Lett., vol. 23, no. 12, pp. 2205-2209, Dec. 2019.
P. Raviteja, K. T. Phan and Y. Hong, “Embedded pilot-aided channel estimation for OTFS in delay-Doppler channels,” IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 4906-4917, May 2019.
F. Liu, Z. Yuan, Q. Guo, Z. Wang, and P. Sun, “Message passing-based structured sparse signal recovery for estimation of OTFS channels with fractional Doppler shifts,” IEEE Trans. Commun., vol. 20, no. 12, pp. 7773-7785, Dec. 2021.
Z. Wei, W. Yuan, S. Li, J. Yuan, and D. W. K. Ng, “Off-grid channel estimation with sparse Bayesian learning for OTFS systems,” IEEE Trans. Wireless Commun., vol. 21, no. 9, pp. 7407-7426, Sep. 2022.
V. Khammammetti and S. K. Mohammed, “OTFS-based multiple-access in high Doppler and delay spread wireless channels,” IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 528-531, Apr. 2019.
A. Chatterjee, V. Rangamgari, S. Tiwari, and S. S. Das, “Nonorthogonal multiple access with orthogonal time-frequency space signal transmission,” IEEE Systems Journal, vol. 15, no. 1, pp. 383-394, Mar. 2021.
W. Shen, L. Dai, J. An, P. Fan, and R. W. Heath, Jr., “Channel estimation for orthogonal time frequency space (OTFS) massive MIMO,” IEEE Trans. Signal Process., vol. 67, no. 16, pp. 4204-4217, Aug. 2019.
Y. Liu, S. Zhang, F. Gao, J. Ma and X. Wang, “Uplink-aided high mobility downlink channel estimation over massive MIMO-OTFS system,” IEEE J. Sel. Areas Commun., vol. 38, no. 9, pp. 1994-2009, Sep. 2020.
G. D. Surabhi, R. M. Augustine, and A. Chockalingam, “Peak-to-average power ratio of OTFS modulation,” IEEE Commun. Lett., vol. 23, no. 6, pp. 999-1002, Jun. 2019.
G. D. Surabhi, R. M. Augustine, and A. Chockalingam, “On the diversity of uncoded OTFS modulation in doubly-dispersive channels,” IEEE Trans. Wireless Commun., vol. 18, no. 6, pp. 3049-3063, Jun. 2019.
P. Raviteja, Y. Hong, E. Viterbo, and E. Biglieri, “Effective diversity of OTFS modulation,” IEEE Wireless Commun. Lett., vol. 9, no. 2, pp. 249-253, Feb. 2020.
K. Sinha, S. K. Mohammed, P. Raviteja, Y. Hong, and E. Viterbo, “OTFS based random access preamble transmission for high mobility scenarios,” IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 15078-15094, Dec. 2020.
M. S. Khan, Y. J. Kim, Q. Sultan, J. Joung, and Y. S. Cho, “Downlink synchronization for OTFS-based cellular systems in high Doppler environments,” IEEE Access, vol. 9, pp. 73575-73589, May 2021.
M. Bayat and A. Farhang, “Time and frequency synchronization for OTFS,” IEEE Wireless Commun. Lett., vol. 11, no. 12, pp. 2670-2674, Dec. 2022.
A. Farhang, A. Rezazadeh-Reyhani, L. E. Doyle, and B. Farhang- Boroujeny, “Low complexity modem structure for OFDM-based orthogonal time frequency space modulation,” IEEE Wireless Commun. Lett., vol. 7, no. 3, pp. 344-347, Jun. 2018.
T. M. Schmidl, D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun., vol. 45, no. 12, pp. 1613-1621, Dec. 1997.
H. Abdzadeh-Ziabari, W. P. Zhu, and M. N. S. Swamy, “Improved coarse timing estimation in OFDM systems using high-order statistics,” IEEE Trans. Commun., vol. 64, no. 12, pp. 5239-5253, Dec. 2016.
H. Minn, V. K. Bhargava, and K. B. Letaief, “A robust timing and frequency synchronization for OFDM systems,” IEEE Trans. Wireless Commun., vol. 2, no. 4, pp. 822-839, Jul. 2003.
H. Minn, V. K. Bhargava, and K. B. Letaief, “A combined timing and frequency synchronization and channel estimation for OFDM,” IEEE Trans. Commun., vol. 54, no. 3, pp. 416-422, Mar. 2006.
H. Abdzadeh-Ziabari and M. G. Shayesteh, “Robust timing and frequency synchronization for OFDM systems,” IEEE Trans. Veh. Technol., vol. 60, no. 8, pp. 3646-3656, Oct. 2011.
M. M. U. Gul, X. Ma, and S. Lee, “Timing and frequency synchronization for OFDM downlink transmissions using Zadoff-Chu sequences,” IEEE Trans. Wireless Commun., vol. 14, no. 3, pp. 1716-1729, Mar. 2015.
C.-D. Chung and W.-C. Chen, “Preamble sequence design for spectral compactness and initial synchronization in OFDM,” IEEE Trans. Veh. Technol., vol. 67, no. 2, pp. 1428-1443, Feb. 2018.
M. Hsieh and C. Wei, “Channel estimation for OFDM systems based on comb-type pilot arrangement in frequency selective fading channels,” IEEE Trans. Consum. Electron., vol. 44, no. 1, pp. 217-225, Feb. 1998.
S. Coleri, M. Ergen, A. Puri, and A. Bahai, “Channel estimation techniques based on pilot arrangement in OFDM systems,” IEEE Trans. Broadcast., vol. 48, no. 3, pp. 223-229, Sep. 2002.
J. G. Proakis and M. Salehi, Digital Communications, 5th ed. New York: McGraw-Hill, 2008.
D. A. Shnidmen, “The calculation of the probability of detection and the generalized Marcum Q-function,” IEEE Trans Inform. Theory, vol. 35, pp. 389-400, Mar. 1989.
D. Chu, “Polyphase codes with good periodic correlation properties,” IEEE Trans. Inf. Theory, vol. 18, no. 4, pp. 531-532, 1972.
B. R. Mahafza, Radar Systems Analysis and Design Using MATLAB. Boca Raton, FL, USA: CRC Press, 2013.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91515-
dc.description.abstract正交時頻間距(orthogonal time frequency space; OTFS)調變是一種新型的多載波調變技術,適用於具有稀疏延遲和都卜勒擴散性質的雙重選擇性通道。由於OTFS系統考慮的是線性時變(linear time-varying; LTV)多路徑通道,與以往多載波調變的靜態多路徑通道之性質不盡相同。因此,在OTFS系統中的初始時間同步(initial time synchronization; ITS),需要針對LTV多路徑通道的特性進行設計和優化,以確保能準確地估計出訊號在傳送過程中的偏移,使後續通道估計與解調等工作能夠順利進行。
本論文採用離散傅立葉轉換序列的梳狀前導波形,透過計算接收訊號和本地離散頻率偏移梳狀前導波形之間的相關性,提出一套適用於離散時間偏移上的基於梳狀ITS (comb-based ITS)方法,以順序識別和選擇最大識別來估計前導幀的起始時間點,進而實現OTFS系統的ITS。Comb-based ITS包含具有寬時間採集範圍(timing acquisition range; TAR)但存在資料自干擾(data self-interference; DSI)的粗略ITS (coarse ITS; CITS),以及可調整的窄TAR且無DSI的精細ITS (fine ITS; FITS)。
透過對提出的方法進行平均偏差和均方根誤差的性能分析,並檢視在CITS和FITS系統中的模擬結果,發現其估計準確度和穩定性在多種的通道環境中皆表現出色,特別是當通道存在直視路徑與都卜勒偏移較大時,有更為顯著的優勢。
zh_TW
dc.description.abstractInitial time synchronization (ITS) is investigated for orthogonal time frequency space systems operating over the linear time-varying multipath channels exhibiting real-valued delay and Doppler shifts on the delay-Doppler grid. Particularly, a comb-type preamble waveform carrying discrete-Fourier-transform sequence is designed to meet the constraint of zero discrete-ambiguity-function and thereby facilitate accurate ITS. By taking the cross-ambiguity measures between the received signal and local discrete-frequency-shifted comb-type preamble signals for discrete-time shifts sequentially, the comb-based ITS approaches using sequential identification and select-the-largest identification rules are developed to estimate the start time of a received preamble frame on the leading channel path. Comb-based coarse and fine ITS systems are investigated to operate over a wide timing acquisition range (TAR) under the disturbance of data self-interference (DSI) and over an adjustable narrow DSI-free TAR, respectively. When the channel exhibits a strong leading path and wide ranges of Doppler shifts, the comb-based ITS systems are shown to outperform the conventional ITS systems acquiring linear frequency modulated preamble waveforms and hybrid data/preamble frames, significantly in estimation robustness and in estimation accuracy for sufficiently high preamble signal-to-noise power ratios.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-28T16:20:40Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-01-28T16:20:40Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 vii
符號 viii
第一章 緒論 1
1.1 正交時頻間距調變簡介 1
1.2 初始時間同步簡介 2
1.2.1 粗略與精細同步 3
1.2.2 OFDM系統時間同步 3
1.2.3 OTFS系統時間同步 4
1.3 動機與貢獻 5
第二章 系統與訊號模型 7
2.1 傳送訊號模型 7
2.1.1 梳狀前導波形 7
2.1.2 限制條件 8
2.1.3 前導波形與系統之性質 9
2.2 離散時間模稜函數 9
2.2.1 模稜函數之性質 10
2.2.2 離散傅立葉轉換序列 10
2.3 接收訊號模型 11
2.3.1 精細初始時間同步 11
2.3.2 粗略初始時間同步 13
第三章 初始時間同步 15
3.1 離散交互模稜度量 15
3.2 Comb-based初始時間同步方法 16
3.2.1 CAM功率分佈 16
3.2.2 順序識別方法 18
3.2.3 選擇最大識別方法 19
3.3 性能分析 19
3.3.1 順序識別之機率 20
3.3.2 閾值設定 20
3.3.3 選擇最大識別之機率 22
3.4 分析結果 23
第四章 性能結果 24
4.1 隨機通道參數設定 24
4.2 模擬結果 26
4.3 精細初始時間同步系統之比較 28
4.3.1 Comb-based系統 28
4.3.2 LFM-based系統 28
4.3.3 精細初始時間同步方法 28
4.3.4 精細初始時間同步之性能 29
4.4 粗略初始時間同步系統之比較 30
4.4.1 CPF系統 30
4.4.2 LPF系統 31
4.4.3 HPF系統 31
4.4.4 粗略初始時間同步方法 31
4.4.5 計算複雜度 33
4.4.6 粗略初始時間同步之性能 34
第五章 結論 35
參考文獻 36
附錄 39
中英對照表 42
-
dc.language.isozh_TW-
dc.subject正交時頻間距zh_TW
dc.subject梳狀前導波形zh_TW
dc.subject初始時間同步zh_TW
dc.subject線性時變多路徑通道zh_TW
dc.subject都卜勒偏移zh_TW
dc.subjectDoppler shiften
dc.subjectorthogonal time frequency spaceen
dc.subjectcomb-type preamble waveformen
dc.subjectinitial time synchronizationen
dc.subjectlinear time-varying multipath channelen
dc.title正交時頻間距調變系統之初始時間同步zh_TW
dc.titleInitial Time Synchronization for Orthogonal Time Frequency Space Systemsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.coadvisor陳維昌zh_TW
dc.contributor.coadvisorWei-Chang Chenen
dc.contributor.oralexamcommittee林茂昭;王晉良;蘇育德zh_TW
dc.contributor.oralexamcommitteeMao-Chao Lin;Chin-Liang Wang;Yu-Ted Suen
dc.subject.keyword正交時頻間距,梳狀前導波形,初始時間同步,線性時變多路徑通道,都卜勒偏移,zh_TW
dc.subject.keywordorthogonal time frequency space,comb-type preamble waveform,initial time synchronization,linear time-varying multipath channel,Doppler shift,en
dc.relation.page44-
dc.identifier.doi10.6342/NTU202303158-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
1.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved