Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91507
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李家岩zh_TW
dc.contributor.advisorChia-Yen Leeen
dc.contributor.author陳柏儒zh_TW
dc.contributor.authorBo-Ru Chenen
dc.date.accessioned2024-01-28T16:18:38Z-
dc.date.available2024-01-29-
dc.date.copyright2024-01-27-
dc.date.issued2023-
dc.date.submitted2023-08-12-
dc.identifier.citationAthey, S., Chetty, R., and Imbens, G. (2020). Combining experimental and observational data to estimate treatment effects on long term outcomes. arXiv preprint arXiv:2006.09676.
Athey, S., Imbens, G. W., and Wager, S. (2018). Approximate residual balancing: debiased inference of average treatment effects in high dimensions. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(4):597–623.
Athey, S., Tibshirani, J., and Wager, S. (2019). Generalized random forests. The Annals of Statistics, 47(2):1148–1178.
Athey, S. and Wager, S. (2021). Policy learning with observational data. Econometrica, 89(1):133–161.
Belloni, A., Chernozhukov, V., Fernandez-Val, I., and Hansen, C. (2013). Program evaluation and causal inference with high-dimensional data.
Box, G. E. P. and Wilson, K. B. (1951). On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society. Series B (Methodological), 13(1):1–45.
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and regression trees. Routledge, first edition.
Chen, G., Zeng, D., and Kosorok, M. R. (2016). Personalized dose finding using outcome weighted learning. Journal of the American Statistical Association, 111(516):1509–1521.
Chen, M., Liu, H., Liao, W., and Zhao, T. (2020). Doubly robust off-policy learning on low-dimensional manifolds by deep neural networks. arXiv preprint arXiv:2011.01797.
Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., and Robins, J. (2018). Double/debiased machine learning for treatment and structural parameters.
Chernozhukov, V., Demirer, M., Lewis, G., and Syrgkanis, V. (2019). Semi-parametric efficient policy learning with continuous actions. Advances in Neural Information Processing Systems, 32.
Chipman, H. A., George, E. I., and McCulloch, R. E. (2010). Bart: Bayesian additive regression trees. The Annals of Applied Statistics, 4(1):266–298.
Deng, H. (2019). Interpreting tree ensembles with intrees. International Journal of Data Science and Analytics, 7(4):277–287.
Dudík, M., Langford, J., and Li, L. (2011). Doubly robust policy evaluation and learning. arXiv preprint arXiv:1103.4601.
Fernández-Loría, C. and Provost, F. (2022). Causal decision making and causal effect estimation are not the same... and why it matters. INFORMS Journal on Data Science.
Holland, P. W. (1986). Statistics and causal inference. Journal of the American statistical Association, 81(396):945–960.
Horvitz, D. G. and Thompson, D. J. (1952). A generalization of sampling without replacement from a finite universe. Journal of the American statistical Association, 47(260):663–685.
Hung, Y.-H., Lee, C.-Y., Tsai, C.-H., and Lu, Y.-M. (2022). Constrained particle swarm optimization for health maintenance in three-mass resonant servo control system with lugre friction model. Annals of Operations Research, pages 1–20.
Kallus, N. and Zhou, A. (2018). Policy evaluation and optimization with continuous treatments. In International conference on artificial intelligence and statistics, pages 1243–1251. PMLR.
Kashyap, S. and Datta, D. (2015). Process parameter optimization of plastic injection molding: a review. International Journal of Plastics Technology, 19(1):1–18.
Kitagawa, T. and Tetenov, A. (2018). Who should be treated? empirical welfare maximization methods for treatment choice. Econometrica, 86(2):591–616.
Kumar, P., Gupta, P., and Singh, I. (2023). Performance analysis of acrylonitrile–butadiene–styrene–polycarbonate polymer blend filament for fused deposition modeling printing using hybrid artificial intelligence algorithms. Journal of Materials Engineering and Performance, 32(4):1924–1937.
Kunzel, S. R., Sekhon, J. S., Bickel, P. J., and Yu, B. (2019). Metalearners for estimating heterogeneous treatment effects using machine learning. Proceedings of the national academy of sciences, 116(10):4156–4165.
Lin, C.-M., Wu, J.-J., and Tan, C.-M. (2020). Processing optimization for metal injection molding of orthodontic braces considering powder concentration distribution of feedstock. Polymers, 12(11):2635.
McCaffrey, D. F., Griffin, B. A., Almirall, D., Slaughter, M. E., Ramchand, R., and Burgette, L. F. (2013). A tutorial on propensity score estimation for multiple treatments using generalized boosted models. Statistics in medicine, 32(19):3388–3414.
McCaffrey, D. F., Ridgeway, G., and Morral, A. R. (2004). Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological methods, 9(4):403.
Mohamed, O. A., Masood, S. H., and Bhowmik, J. L. (2015). Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Advances in manufacturing, 3:42–53.
Montgomery, D. C. (2017). Design and analysis of experiments. John wiley & sons.
Nie, X. and Wager, S. (2021). Quasi-oracle estimation of heterogeneous treatment effects. Biometrika, 108(2):299–319.
Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1994). Estimation of regression coefficients when some regressors are not always observed. Journal of the American statistical Association, 89(427):846–866.
Rosli, M., Ishak, M. I., Jamalludin, M. R., Khor, C., Nawi, M., and Syafiq, A. M. (2019). Simulation-based optimization of plastic injection molding parameter for aircraft part fabrication using response surface methodology (rsm). In IOP conference series: materials science and engineering, volume 551, page 012108. IOP Publishing.
Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of educational Psychology, 66(5):688.
Sedighi, R., Meiabadi, M. S., and Sedighi, M. (2017). Optimisation of gate location based on weld line in plastic injection moulding using computer-aided engineering, artificial neural network, and genetic algorithm. International Journal of Automotive and Mechanical Engineering, 14(3):4419–4431.
Sheoran, A. J. and Kumar, H. (2020). Fused deposition modeling process parameters optimization and effect on mechanical properties and part quality: Review and reflection on present research. Materials Today: Proceedings, 21:1659–1672.
Splawa-Neyman, J., Dabrowska, D. M., and Speed, T. (1990). On the application of probability theory to agricultural experiments. essay on principles. section 9. Statistical Science, pages 465–472.
Stuart, E. A. (2010). Matching methods for causal inference: A review and a look forward. Statistical science: a review journal of the Institute of Mathematical Statistics, 25(1):1.
Swaminathan, A. and Joachims, T. (2015). Batch learning from logged bandit feedback through counterfactual risk minimization. The Journal of Machine Learning Research, 16(1):1731–1755.
Taguchi, G., Chowdhury, S., and Wu, Y. (2004). Taguchi’s Quality Engineering Handbook. John Wiley & Sons, Inc.
Van der Laan, M. J., Rose, S., et al. (2011). Targeted learning: causal inference for observational and experimental data, volume 10. Springer.
Wager, S. and Athey, S. (2018). Estimation and inference of heterogeneous treatment effects using random forests. Journal of the American Statistical Association, 113(523):1228–1242.
Wang, Z., Li, J., Wu, W., Zhang, D., and Yu, N. (2021). Multitemperature parameter optimization for fused deposition modeling based on response surface methodology. AIP Advances, 11(5):055315.
Weichert, D., Link, P., Stoll, A., Ruping, S., Ihlenfeldt, S., and Wrobel, S. (2019). A review of machine learning for the optimization of production processes. The International Journal of Advanced Manufacturing Technology, 104(5-8):1889–1902.
Yusup, N., Zain, A. M., and Hashim, S. Z. M. (2012). Evolutionary techniques in optimizing machining parameters: Review and recent applications (2007–2011). Expert Systems with Applications, 39(10):9909–9927.
Zaman, U. K. u., Boesch, E., Siadat, A., Rivette, M., and Baqai, A. A. (2019). Impact of fused deposition modeling (fdm) process parameters on strength of built parts using taguchi’s design of experiments. The international journal of Advanced Manufacturing technology, 101:1215–1226.
Zenati, H., Bietti, A., Martin, M., Diemert, E., Gaillard, P., and Mairal, J. (2020). Counterfactual learning of stochastic policies with continuous actions: from models to offline evaluation. arXiv preprint arXiv:2004.11722.
Zhou, Z., Athey, S., and Wager, S. (2022). Offline multi-action policy learning: Generalization and optimization. Operations Research.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91507-
dc.description.abstract本研究探討製程參數最佳化之問題,在一製造系統中可控因子往往會直接影響到產品品質。然而,除了可控因子之外仍有其他不可控因子會影響到生產環境,進而影響到產出,而這些不可控因子通常與每個決策個體有關,同時代表著該個體的特性。在過去的製程參數最佳化研究當中,實驗設計常用以獲得最好的製程參數設定,同時也有大量的研究利用預測模型搭配最佳化方法求解,然而個體的異質性鮮少被當作決策依據。因此,我們透過觀察性資料進行因果推論中的雙重穩健估計同時衡量可控因子與不可控因子對於產出的影響。在我們所提出的架構當中涵蓋了對於資料的前處理、政策品質估計、政策最佳化與政策詮釋,給定一個體,所習得的政策便會基於其個體特性給出製程參數設定值,又由於此政策是一決策樹結構,因此其自有高度的可詮釋性。在數值研究當中,我們所提出的方法展現出良好的決策能力,同時透過實驗我們也建議使用者採用政策森林,以加強該方法之決策品質,而政策森林不足之可解釋性也可透過我們所提出之政策詮釋方法加以補強。據我們所知,此研究率先提出一特定方法來詮釋習得政策,並且也以一容易理解的方式來呈現決策準則。一決策者可透過習得之政策基於每個個體特性給予其最佳的製程參數設定,同時透過決策之詮釋也可獲得製程背後之洞見。zh_TW
dc.description.abstractWe study the process parameter adjusting problem to maximize a quality quantity, while considering the heterogeneity of instances. For a manufacturing process, controllable factors such as process parameters will directly affect the quality measurement. However, there are also some uncontrollable factors, which are usually instance-wise features, influencing the outcome. In previous studies, conducting an experiment or developing prediction models to select optimal controllable factors are well-known methods. However, they lack consideration of the effect of uncontrollable factors, i.e., heterogene- ity of instances. In this study, we use observational data and adopt doubly robust esti- mation in causal inference to estimate the effect of both controllable and uncontrollable factors. Our proposed framework involves data preprocessing, policy value estimation, policy optimization, and policy interpretation. The learned policy inputs an instance-wise feature and outputs an action to adjust process parameters. This policy is also highly interpretable due to its tree structure. In the numerical study, our method shows great support for decision-making. We also recommend taking Policy Forest as the policy class to increase the quality of a solution. Meanwhile, the insufficient interpretability can be enhanced by our policy interpretation procedure. To the best of our knowledge, this is the first study to interpret a learned policy and present decision rules in a more understand- able fashion. With the learned policy, a decision maker can determine the best process parameter setting for each individual according to its characteristics. Moreover, insights about the process can also be obtained via policy interpretation to drive productivity.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-28T16:18:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-01-28T16:18:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 iii
Abstract iv
List of Figures vii
List of Tables viii
1 Introduction 1
1.1 Background and Motivation 1
1.2 Research Objectives 5
1.3 Research Overview 7
2 Literature Review 9
2.1 Process Parameter Optimization 9
2.2 Causal Inference 12
3 Methodology 18
3.1 Research Framework 18
3.2 Data Preprocessing 18
3.2.1 Data Preparation 18
3.2.2 Discretization 19
3.2.3 Action Encoding 20
3.3 Policy Value Estimation 21
v3.4 Policy Optimization 23
3.5 Policy Interpretation 26
4 Numerical Study 30
4.1 Simulation Dataset 30
4.1.1 Simulation Setup 30
4.1.2 Experiment Results 35
4.2 Policy Interpretation 44
5 Conclusion and Future Research 47
Bibliography 50
Appendices 56
A Diagram of Benchmark Methods 56
-
dc.language.isoen-
dc.subject政策學習zh_TW
dc.subject政策詮釋zh_TW
dc.subject個體行為指派zh_TW
dc.subject製程參數最佳化zh_TW
dc.subjectPolicy Interpretationen
dc.subjectProcess Parameter Optimizationen
dc.subjectIndividual Action Assignmenten
dc.subjectPolicy Learningen
dc.title政策學習於製程參數:以因果推論觀點zh_TW
dc.titlePolicy Learning in Manufacturing Process Parameters: A Causal Inference Perspectiveen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee孔令傑;張升懋;盧信銘;藍俊宏zh_TW
dc.contributor.oralexamcommitteeLing-Chieh Kung;Sheng-Mao Chang;Hsin-Min Lu;Jakey Blueen
dc.subject.keyword製程參數最佳化,個體行為指派,政策學習,政策詮釋,zh_TW
dc.subject.keywordProcess Parameter Optimization,Individual Action Assignment,Policy Learning,Policy Interpretation,en
dc.relation.page57-
dc.identifier.doi10.6342/NTU202303926-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-12-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
dc.date.embargo-lift2026-08-31-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  此日期後於網路公開 2026-08-31
2.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved