請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91496
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳逸民 | zh_TW |
dc.contributor.advisor | Yih-Min Wu | en |
dc.contributor.author | 劉子菱 | zh_TW |
dc.contributor.author | Tzu-Ling Liu | en |
dc.date.accessioned | 2024-01-28T16:15:48Z | - |
dc.date.available | 2024-01-29 | - |
dc.date.copyright | 2024-01-27 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-10 | - |
dc.identifier.citation | 1. Abiodun, O. I., A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad (2018). State-of-the-art in artificial neural network applications: A survey, Heliyon 4. doi:https://doi.org/10.1016/j.heliyon.2018.e00938
2. Albawi, S., T. A. Mohammed, and S. Al-Zawi (2017). Understanding of a convolutional neural network, in 2017 international conference on engineering and technology (ICET), Ieee, 1-6. doi:https://doi.org/10.1109/ICEngTechnol.2017.8308186 3. Allen, R. M., P. Gasparini, O. Kamigaichi, and M. Bose (2009). The status of earthquake early warning around the world: An introductory overview, Seismological Research Letters 80 682-693. doi:https://doi.org/10.1785/gssrl.80.5.682 4. Bahdanau, D., K. Cho, and Y. Bengio (2014). Neural machine translation by jointly learning to align and translate, arXiv preprint arXiv:1409.0473. doi:https://doi.org/10.48550/arXiv.1409.0473 5. Chen, D. Y., N. C. Hsiao, and Y. M. Wu (2015). The Earthworm based earthquake alarm reporting system in Taiwan, Bulletin of the Seismological Society of America 105 568-579. doi:https://doi.org/10.1785/0120140147 6. Cho, K., B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation, arXiv preprint arXiv:1406.1078. doi:https://doi.org/10.48550/arXiv.1406.1078 7. Connor, J. T., R. D. Martin, and L. E. Atlas (1994). Recurrent neural networks and robust time series prediction, IEEE transactions on neural networks 5 240-254. doi:https://doi.org/10.1109/72.279188 8. Dozat, T. (2016). Incorporating nesterov momentum into adam. 9. Fan, J., C. Sun, C. Chen, X. Jiang, X. Liu, X. Zhao, L. Meng, C. Dai, and W. Chen (2020). EEG data augmentation: towards class imbalance problem in sleep staging tasks, Journal of Neural Engineering 17 056017. doi:10.1088/1741-2552/abb5be 10. Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio (2014). Generative adversarial nets, Advances in neural information processing systems 27. 11. Graves, A. (2013). Generating sequences with recurrent neural networks, arXiv preprint arXiv:1308.0850. doi:https://doi.org/10.48550/arXiv.1308.0850 12. Hays, W. W. (1981). Facing geologic and hydrologic hazards: earth-science considerations, US Department of the Interior, Geological Survey. doi:https://doi.org/10.3133/pp1240B 13. Hinton, G., N. Srivastava, and K. Swersky (2012). Neural networks for machine learning lecture 6a overview of mini-batch gradient descent, Cited on 14 2. 14. Hochreiter, S. and J. Schmidhuber (1997). Long short-term memory, Neural computation 9 1735-1780. doi:https://doi.org/10.1007/978-3-642-24797-2_4 15. Hsieh, C. Y., W. A. Chao, and Y. M. Wu (2015). An examination of the threshold-based earthquake early warning approach using a low-cost seismic network, Seismological Research Letters 86 1664-1667. doi:https://doi.org/10.1785/0220150073 16. Huang, T. C. and Y. M. Wu (2019). A Robust Algorithm for Automatic P‐wave Arrival‐Time Picking Based on the Local Extrema Scalogram, Bulletin of the Seismological Society of America 109 413-423. doi:https://doi.org/10.1785/0120180127 17. Huang, T. C. and Y. M. Wu (Under review). Improving Earthquake Early Warning Magnitude Estimation with Station Corrections: A Case Study Using The P-Alert Network in Taiwan, Journal of Earthquake Engineering. 18. Iwana, B. K. and S. Uchida (2021). An empirical survey of data augmentation for time series classification with neural networks, Plos one 16 e0254841. doi:https://doi.org/10.1371/journal.pone.0254841 19. Kinoshita, S. (1998). Kyoshin net (K-net), Seismological Research Letters 69 309-332. doi:https://doi.org/10.1785/gssrl.69.4.309 20. Li, Z., M. A. Meier, E. Hauksson, Z. Zhan, and J. Andrews (2018). Machine Learning Seismic Wave Discrimination: Application to Earthquake Early Warning, Geophysical Research Letters 45 4773-4779. doi:https://doi.org/10.1029/2018GL077870 21. Luong, M. T., H. Pham, and C. D. Manning (2015). Effective approaches to attention-based neural machine translation, arXiv preprint arXiv:1508.04025. doi:https://doi.org/10.48550/arXiv.1508.04025 22. Mahata, S. K., D. Das, and S. Bandyopadhyay (2019). Mtil2017: Machine translation using recurrent neural network on statistical machine translation, Journal of Intelligent Systems 28 447-453. doi:https://doi.org/10.1515/jisys-2018-0016 23. Mathur, A. and G. M. Foody (2008). Multiclass and binary SVM classification: Implications for training and classification users, IEEE Geoscience and remote sensing letters 5 241-245. doi:https://doi.org/10.1109/LGRS.2008.915597 24. Mikołajczyk, A. and M. Grochowski (2018). Data augmentation for improving deep learning in image classification problem, in 2018 international interdisciplinary PhD workshop (IIPhDW), IEEE, 117-122. doi:https://doi.org/10.1109/IIPHDW.2018.8388338 25. Mikolov, T. and G. Zweig (2012). Context dependent recurrent neural network language model, in 2012 IEEE Spoken Language Technology Workshop (SLT), IEEE, 234-239. doi:https://doi.org/10.1109/SLT.2012.6424228 26. Mittal, H., B. M. Yang, T. L. Tseng, and Y. M. Wu (2021). Importance of real-time PGV in terms of lead-time and shakemaps: Results using 2018 ML 6.2 & 2019 ML 6.3 Hualien, Taiwan earthquakes, Journal of Asian Earth Sciences 220 104936. doi:https://doi.org/10.1016/j.jseaes.2021.104936 27. Mousavi, S. M. and G. C. Beroza (2020). A Machine-Learning Approach for Earthquake Magnitude Estimation, Geophysical Research Letters 47 e2019GL085976. doi:https://doi.org/10.1029/2019GL085976 28. National Research Institute for Earth Science and Disaster Resilience (2019). NIED K-NET, KiK-net, National research institute for earth science and disaster resilience, National research institute of earth science and disaster resilience. doi:https://www.doi.org/10.17598/NIED.0004 29. Rather, A. M., A. Agarwal, and V. Sastry (2015). Recurrent neural network and a hybrid model for prediction of stock returns, Expert Systems with Applications 42 3234-3241. doi:https://doi.org/10.1016/j.eswa.2014.12.003 30. Satriano, C., Y. M. Wu, A. Zollo, and H. Kanamori (2011). Earthquake early warning: Concepts, methods and physical grounds, Soil Dynamics and Earthquake Engineering 31 106-118. doi:https://doi.org/10.1016/j.soildyn.2010.07.007 31. Shorten, C. and T. M. Khoshgoftaar (2019). A survey on image data augmentation for deep learning, Journal of big data 6 1-48. doi:https://doi.org/10.48550/arXiv.2204.08610 32. Sun, Y., A. K. Wong, and M. S. Kamel (2009). Classification of imbalanced data: A review, International journal of pattern recognition and artificial intelligence 23 687-719. doi:https://doi.org/10.1142/S0218001409007326 33. Sutskever, I., O. Vinyals, and Q. V. Le (2014). Sequence to sequence learning with neural networks, Advances in neural information processing systems 27. doi:https://doi.org/10.48550/arXiv.1409.3215 34. Thabtah, F., S. Hammoud, F. Kamalov, and A. Gonsalves (2020). Data imbalance in classification: Experimental evaluation, Information Sciences 513 429-441. doi:https://doi.org/10.1016/j.ins.2019.11.004 35. Um, T. T., F. M. Pfister, D. Pichler, S. Endo, M. Lang, S. Hirche, U. Fietzek, and D. Kulić (2017). Data augmentation of wearable sensor data for parkinson’s disease monitoring using convolutional neural networks, in Proceedings of the 19th ACM international conference on multimodal interaction, 216-220. doi:https://doi.org/10.1145/3136755.3136817 36. Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin (2017). Attention is all you need, Advances in neural information processing systems 30. doi:https://doi.org/10.48550/arXiv.1706.03762 37. Wang, C. Y., T. C. Huang, and Y. M. Wu (2022). Using LSTM Neural Networks for Onsite Earthquake Early Warning, Seismological Society of America 93 814-826. doi:https://doi.org/10.1785/0220210197 38. Wang, L. and X. Fu (2005). Data mining with computational intelligence, Springer Science & Business Media. 39. Wu, N., B. Green, X. Ben, and S. O'Banion (2020). Deep transformer models for time series forecasting: The influenza prevalence case, arXiv preprint arXiv:2001.08317. doi:https://doi.org/10.48550/arXiv.2001.08317 40. Wu, Y. C. and J. W. Feng (2018). Development and application of artificial neural network, Wireless Personal Communications 102 1645-1656. doi:https://doi.org/10.1007/s11277-017-5224 41. Wu, Y. M., D. Y. Chen, T. L. Lin, C. Y. Hsieh, T. L. Chin, W. Y. Chang, W. S. Li, and S. H. Ker (2013). A high‐density seismic network for earthquake early warning in Taiwan based on low cost sensors, Seismological Research Letters 84 1048-1054. doi:https://doi.org/10.1785/0220130085 42. Wu, Y. M., N. C. Hsiao, and T. L. Teng (2004). Relationships between strong ground motion peak values and seismic loss during the 1999 Chi-Chi, Taiwan earthquake, Natural Hazards 32 357-373. doi:https://doi.org/10.1023/B:NHAZ.0000035550.36929.d0 43. Wu, Y. M. and H. Kanamori (2005a). Experiment on an onsite early warning method for the Taiwan early warning system, Bulletin of the Seismological Society of America 95 347-353. doi:https://doi.org/10.1785/0120040097 44. Wu, Y. M. and H. Kanamori (2005b). Rapid assessment of damage potential of earthquakes in Taiwan from the beginning of P waves, Bulletin of the Seismological Society of America 95 1181-1185. doi:https://doi.org/10.1785/0120040193 45. Wu, Y. M., W. T. Liang, H. Mittal, W. A. Chao, C. H. Lin, B. S. Huang, and C. M. Lin (2016). Performance of a low‐cost earthquake early warning system (P‐alert) during the 2016 ML 6.4 Meinong (Taiwan) earthquake, Seismological Research Letters 87 1050-1059. doi:https://doi.org/10.1785/0220160058 46. Wu, Y. M. and T. L. Lin (2014). A test of earthquake early warning system using low cost accelerometer in Hualien, Taiwan, Early Warning for Geological Disasters: Scientific Methods and Current Practice 253-261. doi:https://doi.org/10.1007/978-3-642-12233-0_13 47. Wu, Y. M. and H. Mittal (2021). A Review on the Development of Earthquake Warning System Using Low-Cost Sensors in Taiwan, Sensors 21 7649. doi:https://doi.org/10.3390/s21227649 48. Wu, Y. M., T. L. Teng, T. C. Shin, and N. C. Hsiao (2003). Relationship between peak ground acceleration, peak ground velocity, and intensity in Taiwan, Bulletin of the Seismological Society of America 93 386-396. doi:https://doi.org/10.1785/0120020097 49. Zhang, X., M. Zhang, and X. Tian (2021). Real-Time Earthquake Early Warning With Deep Learning: Application to the 2016 M 6.0 Central Apennines, Italy Earthquake, Geophysical Research Letters 48 2020GL089394. doi:https://doi.org/10.1029/2020GL089394 50. 經濟部中央地質調查所 (2022). 20220917 關山地震、0918 池上地震地質調查報告, 經濟部中央地質調查所調查報告. https://faultnew.moeacgs.gov.tw/Reports/More/63cc5a4b2020403d9f79d3c33a7aba0c 51. 蕭乃祺 (2020). 臺灣的新地震震度分級制度, in 科學研習月刊. https://www.ntsec.edu.tw/LiveSupply-Content.aspx?cat=6841&a=0&fld=&key=&isd=1&icop=10&p=1&lsid=16214 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91496 | - |
dc.description.abstract | 地震預警系統透過爭取在地震發生後的極短時間內提供警報,以減少大地震所引起的傷亡與災損。地震預警分為區域型與現地型,區域型地震預警難以及時對震央附近的區域發出警告,而現地型地震預警可彌補其不足之處,其中P波到達後數秒內的最大位移振幅(Pd)已被視為現地型地震預警的指標,此方法藉由分析Pd是否超過特定閾值以判定是否應預警。然而,由於地震訊號的複雜性高,Pd方法僅以單一閾值預測地表振動將導致不確定性增加,進而使得 Pd方法成為非線性問題。由於機器學習擅於解決非線性問題,前人研究提出以長短期記憶神經網路(Long Short-Term Memory, LSTM)分析P波到達後短時間窗的訊號,並以最大地動加速度達80 gal作為發布警報的依據,再藉由神經網路模型輸出警報機率,決定是否應發布警報,其研究成果有效提升現地型地震預警的表現。然前人研究中指出最大地動加速度易出現異常高值而使不穩定性較高,若以其作為預警的標準,將難以反映實際災害情形,而最大地動速度則與災害相關程度更高,更適合作為災害評估的指標。
而近年來因為注意力機制(Attention mechanism)具有捕捉長期依賴關係、平行計算等特點而使得許多基於注意力機制的神經網路被廣泛應用於自然語言處理任務中,並且在許多任務上取得較LSTM更為卓越的表現。本研究將以注意力機制為基礎建構可運用於現地型地震預警的模型,使用短時間窗的加速度與速度訊號,以及加速度向之測站修正作為輸入資料,並藉由模型提供後續最大地動速度達15 cm/s的機率,以決定是否需發布警報。同時選取臺灣近期四個致災性地震測試模型表現,並以LSTM模型與Pd方法為基準進行比較。注意力機制建構之預警模型整體結果顯示在震央距70公里以內的區域的誤報率為30.3%、漏報率為7.4%,F1 score達到0.694,且提供了平均6.35秒的預警時間,與LSTM與Pd相比,注意力機制的整體表現有所提升,同時亦提供了足夠的預警時間。 | zh_TW |
dc.description.abstract | The earthquake early warning system aims to provide alerts within an extremely short time after an earthquake occurs, in order to reduce casualties and damage caused by major earthquakes. The earthquake early warning system consists of two types, regional and onsite. Regional earthquake early warning is challenging as it may not issue warnings to the area near the epicenter in time. The onsite earthquake early warning can compensate for its shortcomings. The peak initial-displacement amplitude (Pd) within seconds after the P-wave arrival time has been regarded as an indicator for onsite earthquake early warning. This method analyzes whether Pd exceeds a certain threshold to determine if an alarm should be issued. However, relying on a single threshold in the Pd method to predict future ground motions increases uncertainty due to the high complexity of seismic signals. It makes the Pd method a nonlinear problem. Machine learning is well-suited for solving nonlinear problems. Previous studies have proposed using Long Short-Term Memory (LSTM) neural networks to analyze signals within a short time window after the P-wave arrival time. They utilize a PGA of 80 gal as the criterion for issuing earthquake alerts. By employing neural network models to output alert probabilities, they determine whether an alert should be issued. Their results have effectively improved the performance of onsite earthquake early warning systems. In previous studies, it was pointed out that using the PGA as the criterion for issuing earthquake alerts could lead to higher instability due to the possibility of anomalous high values. As a result, it may not adequately reflect the actual disaster situation. Instead, the PGV is considered a more suitable indicator for disaster assessment as it correlates more closely with the severity of the disaster.
In recent years, attention mechanisms have been widely used in neural networks for natural language processing tasks due to their ability to capture long-term dependencies and enable parallel computation. Attention-based models have shown superior performance compared to LSTM in many tasks. This study will construct a model based on attention mechanisms for onsite earthquake early warning. It will use short-time window acceleration and velocity signals, as well as station corrections, as input data, and the model will provide the probability of reaching PGV of 15 cm/s. Four recent significant earthquake events that occurred in Taiwan were selected to test the model performance, and a comparison was made using LSTM model and Pd method as benchmarks. The results show that the attention-based model in the region within 70 kilometers of the epicenter has a false alarm rate of 30.3%, a miss alarm rate of 7.4%, an F1 score of 69.4%, and provides an average of 6.35 seconds of lead time. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-28T16:15:48Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-01-28T16:15:48Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 I
摘要 II Abstract III 目錄 V 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 地震預警系統 1 1.2 機器學習應用於地震預警 4 1.3 最大地動參數與地震災害 6 1.4 研究動機與目的 9 第二章 資料處理步驟 10 2.1 測網介紹 10 2.2 資料選取 11 2.3 資料預處理 14 2.4 資料增強(Data augmentation) 19 2.5 訓練資料集(Training dataset)與驗證資料集(Validation dataset) 21 第三章 研究方法 22 3.1 機器學習 22 3.2 神經網路(Neural Network, NN) 24 3.3 循環神經網路 (Recurrent Neural Network, RNN) 26 3.4 長短期記憶神經網路 (Long Short-Term Memory, LSTM) 27 3.5 注意力機制 (Attention Mechanism)與其優勢 29 3.6 基於注意力機制之神經網路模型架構 31 第四章 訓練模型流程 36 4.1 模型表現評估指標 36 4.2 特徵選擇(Feature Selection) 38 4.3 注意力模型 41 4.4 LSTM模型 50 第五章 模型測試結果 55 5.1 測試資料集 55 5.2 模型輸出評估分類之示意 58 5.3 注意力模型之測試結果 63 第六章 注意力模型之性能與LSTM、Pd方法比較 65 6.1 測試事件 66 6.2 小結 70 第七章 結論 73 參考文獻 74 附錄 79 附錄一: 模型訓練環境 79 附錄二: 測試資料集各測站之預測結果 79 附錄三: 以M < 5之事件測試注意力模型表現 87 附錄四: 以日本M > 6事件測試模型表現 89 附錄五: 不同輸出機率閾值對測試結果的影響 91 附錄六: 不同訓練資料之測試結果 92 | - |
dc.language.iso | zh_TW | - |
dc.title | 基於注意力機制之神經網路運用於現地型地震預警 | zh_TW |
dc.title | Attention-based Neural Network for Onsite Earthquake Early Warning | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 李恩瑞;金台齡;温士忠;黃鼎中 | zh_TW |
dc.contributor.oralexamcommittee | En-Jui Lee;Tai-Lin Chin;Strong Wen;Ting-Chung Huang | en |
dc.subject.keyword | 現地型地震預警,機器學習,注意力機制, | zh_TW |
dc.subject.keyword | onsite earthquake early warning,machine learning,attention mechanism, | en |
dc.relation.page | 96 | - |
dc.identifier.doi | 10.6342/NTU202303062 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-08-11 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地質科學系 | - |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 9.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。