請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91490完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉如熹 | zh_TW |
| dc.contributor.advisor | Ru-Shi Liu | en |
| dc.contributor.author | 劉擎 | zh_TW |
| dc.contributor.author | Ching Liu | en |
| dc.date.accessioned | 2024-01-28T16:14:08Z | - |
| dc.date.available | 2024-02-24 | - |
| dc.date.copyright | 2024-01-27 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-06-18 | - |
| dc.identifier.citation | (1) Rabouw, F. T.; Donega, C. D. M. Excited-State Dynamics in Colloidal Semiconductor Nanocrystals. Top. Curr. Chem. 2016, 374, 58–87.
(2) Rossetti, R.; Nakahara, S.; Brus, L. E. Quantum Size Effects in the Redox Potentials, Resonance Raman Spectra, and Electronic Spectra of CdS Crystallites in Aqueous Solution. J. Chem. Phys. 1983, 79, 1086–1088. (3) Colvin, V. L.; Schlamp, M. C.; Allvlsatos, A. P. Light-Emitting Diodes Made from Cadmium Selenide Nanocrystals and A Semiconducting Polymer. Nature 1994, 370, 354–357. (4) Jennifer, L. S.; Elizabeth, A. M.; Brandi, M. C. Luminescent InP Quantum Dots with Tunable Emission by Post-Synthetic Modification with Lewis Acids. J. Phys. Chem. Lett. 2016, 7, 1315–1320. (5) Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano. Lett. 2015, 15, 3692–3696. (6) Nan, W.; Niu, Y.; Qin, H.; Cui, F.; Yang, Y.; Lai, R.; Lin, W.; Peng, X. Crystal Structure Control of Zinc-Blende CdSe/CdS Core/Shell Nanocrystals: Synthesis and Structure-Dependent Optical Properties. J. Am. Chem. Soc. 2012, 134, 19685–19693. (7) Tessier, M. D.; Dupont, D.; Nolf, K. D.; Roo, J. D.; Hens, Z. Economic and Size-Tunable Synthesis of InP/ZnE (E = S, Se) Colloidal Quantum Dots. Chem. Mater. 2015, 27, 4893–4898. (8) Navrotsky, A.; Weidner, D. J. Perovskite: A Structure of Great Interest to Geophysics and Materials Science; Geophys. Monogr. Ser., AGU, Washington, D. C, 1989. (9) Rossel, C. Perovskites: A Class of Materials with Multiple Functionalities and Applications. Europhys. News 2018, 49, 10–14. (10) Forrester, W.; Hinde, R. Crystal Structure of Barium Titanate. Nature 1945, 156, 177. (11) Zhou, Y.; Zhao, Y. Chemical Stability and Instability of Inorganic Halide Perovskites. Energy Environ. Sci. 2019, 12, 1495–1511. (12) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. (13) Meng, L.; You, J.; Yang, Y. Addressing the Stability Issue of Perovskite Solar Cells for Commercial Applications. Nat. Commun. 2018, 9, 1–4. (14) Kubo, R. Electronic Properties of Metallic Fine Particles. J. Phys. Soc. Jpn. 1962, 17, 975–986. (15) Donegá, C. D. M. Synthesis and Properties of Colloidal Heteronanocrystals. Chem. Soc. Rev. 2011, 40, 1512–1546. (16) Goldschmidt, V. M. Die Gesetze Der Krystallochemie. Naturwissenschaften 1926, 14, 477–485. (17) Pfingsten, O.; Klein, J.; Protesescu, L.; Bodnarchuk, M. I.; Kovalenko, M. V.; Bacher, G. Phonon Interaction and Phase Transition in Single Formamidinium Lead Bromide Quantum Dots. Nano Lett. 2018, 18, 4440–4446. (18) Li, Y. F.; Feng, J.; Sun, H. B. Perovskite Quantum Dots for Light-Emitting Devices. Nanoscale 2019, 11, 19119–19139. (19) Burger, S.; Ehrenreicha, M. G.; Kieslich, G. Tolerance Factors of Hybrid Organic–Inorganic Perovskites: Recent Improvements and Current State of Research. J. Mater. Chem. A 2018, 6, 21785–21793. (20) Wei, Y.; Cheng, Z.; Lin, J. An Overview on Enhancing the Stability of Lead Halide Perovskite Quantum Dots and Their Applications in Phosphor-Converted LEDs. Chem. Soc. Rev. 2019, 48, 310–350. (21) Kieslich, G.; Sun, S.; Cheetham, A. K. An Extended Tolerance Factor Approach for Organic–Inorganic Perovskites. Chem. Sci. 2015, 6, 3430–3433. (22) Manser, J. S.; Christians, J. A.; Kamat, P. V. Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chem. Rev. 2016, 116, 12956–13008. (23) Dutta, A.; Pradhan, N. Phase-Stable Red-Emitting CsPbI3 Nanocrystals: Successes and Challenges. ACS Energy Lett. 2019, 4, 709–719. (24) Mei, X.; Jia, D.; Chen, J.; Zheng, S.; Zhang, X. Approaching High-Performance Light-Emitting Devices upon Perovskite Quantum Dots: Advances and Prospects. Nano Today 2022, 43, 101449. (25) Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorg. Chem. 2013, 52, 9019–9038. (26) Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and Potential Optoelectronic Applications of Lead Halide Perovskite Nanocrystals. Science 2017, 358, 745–750. (27) Brandt, R. E.; Poindexter, J. R.; Gorai, P.; Kurchin, R. C.; Hoye, R. L. Z.; Nienhaus, L.; Wilson, M. W. B.; Polizzotti, J. A.; Sereika, R.; Žaltauskas, R.; Lee, L. C.; MacManus-Driscoll, J. L.; Bawendi, M.; Stevanović, V.; Buonassisi, T. Searching for “Defect-Tolerant” Photovoltaic Materials: Combined Theoretical and Experimental Screening. Chem. Mater. 2017, 29, 4667–4674. (28) Houtepen, A. J.; Hens, Z.; Owen, J. S.; Infante, I. On the Origin of Surface Traps in Colloidal II–VI Semiconductor Nanocrystals. Chem. Mater. 2017, 29, 752–761. (29) Xue, J.; Wang, X.; Jeong, J. H.; Yan, X. Fabrication, Photoluminescence and Applications of Quantum Dots Embedded Glass Ceramics. Chem. Eng. J. 2020, 383, 123082. (30) Li, S.; Pan, Y.; Wang, W.; Li, Y. CsPbX3 (X = Cl, Br, I) Perovskite Quantum Dots Embedded in Glasses: Recent Advances and Perspectives. Chem. Eng. J. 2022, 434, 134593. (31) Schmidt, L. C.; Pertegas, A.; Gonzalez-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Minguez, E. G.; Bolink, H. J.; Galian, R. E.; Perez, P. J. Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles. J. Am. Chem. Soc. 2014, 136, 850–853. (32) Huang, H.; Zhao, F.; Liu, L.; Zhang, F.; Wu, X. G.; Shi, L.; Zou, B.; Pei, Q.; Zhong, H. Emulsion Synthesis of Size-Tunable CH3NH3PbBr3 Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2015, 7, 28128–28133. (33) Zhang, F.; Zhong, H.; Chen, C.; Wu, X. G.; Hu, X.; Huang, H.; Han, J.; Zou, B.; Don, Y. Brightly Luminescent and Color Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. ACS Nano 2015, 9, 4533–4542. (34) Huang, S.; Li, Z.; Wang, B.; Zhu, N.; Zhang, C.; Kong, L.; Zhang, Q.; Shan, A.; Li, L. Morphology Evolution and Degradation of CsPbBr3 Nanocrystals under Blue Light-Emitting Diode Illumination. ACS Appl. Mater. Interfaces. 2017, 9, 7249−7258. (35) An, R.; Zhang, F.; Zou, X.; Tang, Y.; Liang, M.; Oshchapovskyy, I.; Liu, Y.; Honarfar, A.; Zhong, Y.; Li, C.; Geng, H.; Chen, J.; Canton, S. E.; Pullerits, T.; Zheng, K. Photostability and Photodegradation Processes in Colloidal CsPbI3 Perovskite Quantum Dots. ACS Appl. Mater. Interfaces. 2018, 10, 39222−39227. (36) Chen, J.; Liu, D.; Al, M. M. J.; Nuuttila, L.; Lehtivuori, H.; Zheng, K. Photo Stability of CsPbBr3 Perovskite Quantum Dots for Optoelectronic Application. Sci. China Mater. 2016, 59, 719–727. (37) Rodà, C.; Fasoli, M.; Zaffalon, M. L.; Cova, F.; Pinchetti, V.; Shamsi, J.; Abdelhady, A. L.; Imran, M.; Meinardi, F.; Manna, L.; Vedda, A.; Brovelli, S. Understanding Thermal and A Thermal Trapping Processes in Lead Halide Perovskites Towards Effective Radiation Detection Schemes. Adv. Funct. Mater. 2021, 31, 2104879. (38) Zhao, Y.; Riemersma, C.; Pietra, F.; Koole, R.; Donegá, C. D. M.; Meijerink, A. High-Temperature Luminescence Quenching of Colloidal Quantum Dots. ACS Nano 2012, 6, 9058–9067. (39) Blasse, G.; Grabmaier, B. C. Luminescent Materials; Springer-Verlag: Berlin, 1994. (40) Van, D. J. M. F.; Schuurmans, M. F. H. On the Nonradiative and Radiative Decay Rates and a Modified Exponential Energy Gap Law for 4f–4f Transitions in Rare-Earth Ions. J. Chem. Phys. 1983, 78, 5317–5323. (41) Martínez, C. O.; Maneiro, N. F.; Polavarapu, L. Enhancing the Intrinsic and Extrinsic Stability of Halide Perovskite Nanocrystals for Efficient and Durable Optoelectronics. ACS Appl. Mater. Interfaces 2022, 14, 34291–34302. (42) Ravi, V. K.; Santra, P. K.; Joshi, N.; Chugh, J.; Singh, S. K.; Rensmo, H.; Ghosh, P.; Nag, A. Origin of the Substitution Mechanism for the Binding of Organic Ligands on the Surface of CsPbBr3 Perovskite Nanocubes. J. Phys. Chem. Lett. 2017, 8, 4988–4994. (43) Nenon, D. P.; Pressler, K.; Kang, J.; Koscher, B. A.; Olshansky, J. H.; Osowiecki, W. T.; Koc, M. A.; Wang, L. W. Alivisatos, A. P.; Design Principles for Trap-Free CsPbX3 Nanocrystals: Enumerating and Eliminating Surface Halide Vacancies with Softer Lewis Bases. J. Am. Chem. Soc. 2018, 140, 17760–17772. (44) Roo, J. D.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; Driessche, I. V.; Kovalenko, M. V.; Hens, Z. Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals. ACS Nano 2016, 10, 2071–2081. (45) Pan, J.; Sarmah, S. P.; Murali, B.; Dursun, I.; Peng, W.; Parida, M. R.; Liu, J.; Sinatra, L.; Alyami, N.; Zhao, C.; Alarousu, E.; Ng, T. K.; Ooi, B. S.; Bakr, O. M.; Mohammed, O. F. Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and Two-Photon-Induced Amplified Spontaneous Emission. J. Phys. Chem. Lett. 2015, 6, 5027–5033. (46) Pan, J.; Quan, L. N.; Zhao, Y.; Peng, W.; Murali, B.; Sarmah, S. P.; Yuan, M.; Sinatra, L.; Alyami, N. M.; Liu, J.; Yassitepe, E.; Yang, Z.; Voznyy, O.; Comin, R.; Hedhili, M. N.; Mohammed, O. F.; Lu, Z. H.; Kim, D. H.; Sargent, E. H.; Bakr, O. M. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering. Adv. Mater. 2016, 28, 8718–8725. (47) Chiba, T.; Hoshi, K.; Pu, Y. J.; Takeda, Y.; Hayashi, Y.; Ohisa, S.; Kawata, S.; Kido, J. High-Efficiency Perovskite Quantum-Dot Light-Emitting Devices by Effective Washing Process and Interfacial Energy Level Alignment. ACS Appl. Mater. Interfaces 2017, 9, 18054–18060. (48) Yang, X.; Yan, Z. J.; Zhong, C. M.; Jia, H.; Chen, G. L.; Fan, X. T.; Wang, S. L.; Wu, T. Z.; Lin, Y.; Chen, Z. Electrohydrodynamically Printed High-resolution Arrays Based on Stabilized CsPbBr3 Quantum Dot Inks. Adv. Optical Mater. 2023, 2202673. (49) Bansal, P.; Kar, P. Succinic Acid-Assisted Stability Enhancement of a Colloidal Organometal Halide Perovskite and Its Application as a Fluorescent Keypad Lock. New J. Chem. 2019, 43, 4599–4604. (50) Pan, J.; Shang, Y.; Yin, J.; Bastiani, M. D.; Peng, W.; Dursun, I.; Sinatra, L.; El, Z. A. M.; Hedhili, M. N.; Emwas, A. H.; Mohammed, O. F.; Ning, Z.; Bakr, O. M. Bidentate Ligand-Passivated CsPbI3 Perovskite Nanocrystals for Stable Near-Unity Photoluminescence Quantum Yield and Efficient Red Light-Emitting Diodes. J. Am. Chem. Soc. 2018, 140, 562–565. (51) Han, S.; Zhang, H.; Wang, R.; He, Q. Bidentate Ligand Modified CsPbI2Br Quantum Dots as An Interface for High-Performance Carbon-Based Perovskite Solar Cells. Mater. Sci. Semicond. Process. 2021, 131, 105847. (52) Sanjayan, C. G.; Jyothi, M. S.; Sakar, M.; Balakrishna, R. G. Multidentate Ligand Approach for Conjugation of Perovskite Quantum Dots to Biomolecules. J. Colloid Interface Sci. 2021, 603, 758–770. (53) Mir, W. J.; Alamoudi, A.; Yin, J.; Yorov, K. E.; Maity, P.; Naphade, R.; Shao, B.; Wang, J.; Lintangpradipto, M. N.; Nematulloev, S.; Emwas, A. H.; Genovese, A.; Mohammed, O. F.; Bakr, O. M. Lecithin Capping Ligands Enable Ultrastable Perovskite-Phase CsPbI3 Quantum Dots for Rec. 2020 Bright-Red Light-Emitting Diodes. J. Am. Chem. Soc. 2022, 144, 13302–13310. (54) Wang, S.; Du, L.; Jin, Z.; Xin, Y.; Mattoussi, H. Enhanced Stabilization and Easy Phase Transfer of CsPbBr3 Perovskite Quantum Dots Promoted by High-Affinity Polyzwitterionic Ligands. J. Am. Chem. Soc. 2020, 142, 12669–12680. (55) Krieg, F.; Ochsenbein, S. T.; Yakunin, S.; Brinck, S. T.; Aellen, P.; Süess, A.; Clerc, B.; Guggisberg, D.; Nazarenko, O.; Shynkarenko, Y.; Kumar, S.; Shih, C. J.; Infante, I.; Kovalenko, M. V. Colloidal CsPbX3 (X = Cl, Br, I) Nanocrystals 2.0: Zwitterionic Capping Ligands for Improved Durability and Stability. ACS Energy Lett. 2018, 3, 641–646. (56) Ward, V. D. S.; Jaco, J. G.; Thomas, A.; Karel, H. W. V. D. B.; Johannes, D. M.; Sandra, V. A.; Sara, B.; Daniel, V.; Celso, D. M. D. Highly Emissive Divalent-Ion-Doped Colloidal CsPb1-xMxBr3 Perovskite Nanocrystals through Cation Exchange. J. Am. Chem. Soc. 2017, 139, 4087−4097. (57) Mir, W. J.; Swarnkar, A.; Nag, A. Postsynthesis Mn-doping in CsPbI3 Nanocrystals to Stabilize the Black Perovskite Phase. Nanoscale, 2019, 11, 4278−4286. (58) Guvenc, C. M.; Yalcinkaya, Y.; Ozen, S.; Sahin, H.; Demir, M. M. Gd3+-Doped α-CsPbI3 Nanocrystals with Better Phase Stability and Optical Properties. J. Phys. Chem. C 2019, 123, 24865−24872. (59) Yang, C.; Han, Q.; Liu, S.; Liao, J.; Long, C.; Li, Y.; Dai, G.; Yang, G.; Liu, X. Can Vacuum Deposition Apply to Bismuth-Doped γ-CsPbI3 Perovskite? Revealing the Role of Bi3+ in the Formation of Black Phase. J. Phys. Chem. Lett. 2021, 12, 6927−6933. (60) Behera, R. K.; Dutta, A.; Ghosh, D.; Bera, S.; Bhattacharyya, S.; Pradhan, N. Doping the Smallest Shannon Radii Transition Metal Ion Ni(II) for Stabilizing α-CsPbI3 Perovskite Nanocrystals. J. Phys. Chem. Lett. 2019, 10, 7916. (61) Hazarika, A.; Zhao, Q.; Gaulding, E. A.; Christians, J. A.; Dou, B.; Marshall, A. R.; Moot, T.; Berry, J. J.; Johnson, J. C.; Luther, J. M. Perovskite Quantum Dot Photovoltaic Materials beyond the Reach of Thin Films: Full-Range Tuning of A-Site Cation Composition. ACS Nano 2018, 12, 10327−10337. (62) Dimesso, L.; Quintilla, A.; Kim, Y. M.; Lemmer, U.; Jaegermann, W. Investigation of Formamidinium and Guanidinium Lead Tri-Iodide Powders as Precursors for Solar Cells. Mater. Sci. Eng. B 2016, 204, 27−33. (63) Gallardo, J. J.; Blanco, E.; Sánchez-Coronilla, A.; Pinero, J. C.; Navas, J. Tuning The Structural, Optical and Photoluminescence Properties of Hybrid Perovskite Quantum Dots by A-site Doping. Appl. Mater. Today 2020, 18, 100488. (64) Sa, R.; Ma, Z.; Wang, J.; Liu, D. The Effect of Organic Cation Doping on the Stability and Optoelectronic Properties of α-CsPbI3. J. Solid State Chem. 2020, 290, 121577. (65) Li, Z.; Yang, M.; Park, J. S.; Wei, S. H.; Berry, J. J.; Zhu, K. Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys. Chem. Mater. 2016, 28, 284−292. (66) Huang, S.; Li, Z.; Kong, L.; Zhu, N.; Shan, A.; Li, L. Enhancing the Stability of CH3NH3PbBr3 Quantum Dots by Embedding in Silica Spheres Derived from Tetramethyl Orthosilicate in “Waterless” Toluene. J. Am. Chem. Soc. 2016, 138, 5749−5752. (67) Sun, C.; Zhang, Y.; Ruan, C.; Yin, C.; Wang, X.; Wang, Y.; Yu, W. W. Efficient and Stable White LEDs with Silica-Coated Inorganic Perovskite Quantum Dots. Adv. Mater. 2016, 28, 10088−10094. (68) Fang, F.; Liu, M.; Chen, W.; Yang, H.; Liu, Y.; Li, X.; Hao, J.; Xu, B.; Wu, D.; Cao, K.; Lei, W.; Buschbaum, P. M.; Sun, X. W.; Chen, R.; Wang, K. Atomic Layer Deposition Assisted Encapsulation of Quantum Dot Luminescent Microspheres toward Display Applications. Adv. Optical Mater. 2020, 8, 1902118. (69) Liu, X.; Chen, W.; Yang, J.; Liang, X.; Fang, X.; Xiang, W. Stable CsPbBr3 Nanocrystals Embedded in SiO2 for Backlight Display Applications. ACS Appl. Electron. Mater. 2023, 5, 2309−2317. (70) Duan, Y.; Ezquerro, C.; Serrano, E.; Lalinde, E.; García, M. J.; Berenguer, J. R.; Costa, R. D. Meeting High Stability and Efficiency in Hybrid Light-Emitting Diodes Based on SiO2/ZrO2 Coated CsPbBr3 Perovskite Nanocrystals. Adv. Funct. Mater. 2020, 30, 2005401. (71) Xiang, Q.; Zhou, B.; Cao, K.; Wen, Y.; Li, Y.; Wang, Z.; Jiang, C.; Shan, B.; Chen, R. Bottom up Stabilization of CsPbBr3 Quantum Dots-Silica Sphere with Selective Surface Passivation via Atomic Layer Deposition. Chem. Mater. 2018, 30, 8486−8494. (72) Yun, H.; Noh, K.; Kim, J.; Noh, S. H.; Kim, G.; Lee, W.; Na, H. B.; Yoon, T.; Jang, J.; Kim, Y.; Cho, S. CsPbBr3 Perovskite Quantum Dot Light-Emitting Diodes Using Atomic Layer Deposited Al2O3 and ZnO Interlayers. Phys. Status Solidi RRL 2020, 14, 1900573. (73) Geng, S.; Wen, Y.; Zhou, B.; Wang, Z.; Wang, Z.; Wang, P.; Jing, Y.; Cao, K.; Wang, K.; Chen, R. High Luminance and Stability of Perovskite Quantum Dot Light-Emitting Diodes via ZnBr2 Passivation and an Ultrathin Al2O3 Barrier with Improved Carrier Balance and Ion Diffusive Inhibition. ACS Appl. Electron. Mater. 2021, 3, 2362−2371. (74) Loiudice, A.; Saris, S.; Oveisi, E.; Alexander, D. T. L.; Buonsanti, R. CsPbBr3 QD/AlOx Inorganic Nanocomposites with Exceptional Stability in Water, Light, and Heat. Angew. Chem. Int. Ed. 2017, 56, 10696. (75) Zhong, Q.; Cao, M.; Hu, H.; Yang, D.; Chen, M.; Li, P.; Wu, L.; Zhang, Q. One-Pot Synthesis of Highly Stable CsPbBr3@SiO2 Core–Shell Nanoparticles. ACS Nano 2018, 12, 8579−8587. (76) Wang, H. C.; Lin, S. Y.; Tang, A. C.; Singh, B. P.; Tong, H. C.; Chen, C. Y.; Lee, Y. C.; Tsai, T. L.; Liu, R. S. Mesoporous Silica Particles Integrated with All‐Inorganic CsPbBr3 Perovskite Quantum‐Dot Nanocomposites (MP‐PQDs) with High Stability and Wide Color Gamut Used for Backlight Display. Angew. Chem. Int. Ed. 2016, 55, 7924−7929. (77) Zhang, Q.; Wang, B.; Zheng, W.; Kong, L.; Wan, Q.; Zhang, C.; Li, Z.; Cao, X.; Liu, M.; Li, L. Ceramic-like Stable CsPbBr3 Nanocrystals Encapsulated in Silica Derived from Molecular Sieve Templates. Nat. Commun. 2020, 11, 31. (78) Sun, J. Y.; Rabouw, F. T.; Yang, X. F.; Huang, X. Y.; Jing, X. P.; Ye, S.; Zhang, Q. Y. Facile Two-Step Synthesis of All-Inorganic Perovskite CsPbX3 (X = Cl, Br, and I) Zeolite-Y Composite Phosphors for Potential Backlight Display Application. Adv. Funct. Mater. 2017, 27, 1704371. (79) Ren, J.; Li, T.; Zhou, X.; Dong, X.; Shorokhov, A. V.; Semenov, M. B.; Krevchik, V. D.; Wang, Y. Encapsulating All-Inorganic Perovskite Quantum Dots into Mesoporous Metal Organic Frameworks with Significantly Enhanced Stability for Optoelectronic Applications. Chem. Eng. J. 2019, 358, 30−39. (80) Tong, Y.; Wang, Q.; Mei, E.; Liang, X.; Gao, W.; Xiang, W. One-Pot Synthesis of CsPbX3 (X = Cl, Br, I)@Zeolite: A Potential Material for Wide-Color-Gamut Backlit Displays and Up-conversion Emission. Adv. Opt. Mater. 2021, 9, 2100012. (81) Zhao, Y.; Xie, C.; Zhang, X. Yang, P. CsPbX3 Quantum Dots Embedded in Zeolitic Imidazolate Framework-8 Microparticles for Bright White Light-Emitting Devices. ACS Appl. Nano Mater. 2021, 4, 5478−5485. (82) Wang, W.; Guo, R.; Xiong, X.; Liu, H.; Chen, W.; Hu, S.; Amador, E.; Chen, B.; Zhang, X.; Wang, L. Improved Stability and Efficiency of Perovskite via a Simple Solid Diffusion Method. Mater. Today Phys. 2021, 18, 100374. (83) Li, B.; Zhang, Y.; Xu, Y.; Xia, Z. Design Optimization of CsPbBr3 Nanocrystals into Zeolite Beta Composites as Ultra-Stable Green Emitters for Backlight Display Applications. J. Mater. Chem. C 2021, 9, 12118−12123. (84) Shankar, H.; Yu, W. W.; Kang, Y.; Kar, P. Significant Boost of the Stability and PLQY of CsPbBr3 NCs by Cu-BTC MOF. Sci. Rep. 2022, 12, 7848. (85) Lai, W.; Wu, C.; Han, X. Facile Synthesis of Hyperbranched Eu-MOF Structures for The Construction of A CsPbBr3/Eu-MOF Composite and Its Application As A Ratiometric Fluorescent Probe. J. Mater. Chem. C 2023, 11, 2995−3002. (86) Yang, W.; Fei, L.; Gao, F.; Liu, W.; Xu, H.; Yang, L.; Liu, Y. Thermal Polymerization Synthesis of CsPbBr3 Perovskite-Quantum-Dots@Copolymer Composite: Towards Long-term Stability and Optical Phosphor Application. Chem. Eng. J. 2020, 387, 124180. (87) Di, X. X.; Hu, Z. M.; Jiang, J. T.; He, M. L.; Zhou, L.; Xiang W. D.; Liang, X. J. Use of Long-term Stable CsPbBr3 Perovskite Quantum Dots in Phospho-silicate Glass for Highly Efficient White LEDs. Chem. Commun. 2017, 53, 11068−11071. (88) Liu, S.; He, M.; Di, X.; Li, P.; Xiang, W.; Liang, X. Precipitation and Tunable Emission of Cesium Lead Halide Perovskites (CsPbX3, X = Br, I) QDs in Borosilicate Glass. Ceram. Int. 2018, 44, 4496−4499. (89) Li, P.; Xie, W.; Mao, W.; Tian, Y.; Huang, F.; Xu, S.; Zhang, J. Luminescence Enhancement of CsPbBr3 Quantum Dot Glasses Induced by Two Unexpected Methods: Mechanical and Hydration Crystallization. J. Mater. Chem. C, 2020, 8, 473−480. (90) Xiang, X.; Lin, H.; Li, R.; Cheng, Y.; Huang, Q.; Xu, J.; Wang, C.; Chen, X.; Wang, Y. Stress-Induced CsPbBr3 Nanocrystallization on Glass Surface: Unexpected Mechanoluminescence and Applications. Nano Res. 2019, 12, 1049–1054. (91) Duan, Y.; Li, P.; Lei, L.; Huang, F.; Tian, Y.; Xu, S.; Zhang, J. Secondary Crystallization Mechanism of Nanocrystalline Induced by Mechanical Ball Milling in Borosilicate Glass. J. Phys. Chem. C 2022, 126, 4220–4228. (92) Zhang, L.; Lin, H.; Wang, C.; Liu, W. R.; Li, S.; Cheng, Y.; Xu, J.; Gao, H.; Li, K.; Copner, N.; Chen, X.; Wang, Y. A Solid-State Colorimetric Fluorescence Pb2+-Sensing Scheme: Mechanically-Driven CsPbBr3 Nanocrystallization in Glass. Nanoscale 2020, 12, 8801–8808. (93) Lu, C.; Duan, Y.; Li, P.; Lu, Y.; Xu, S.; Zhang, J. Polychromatic Tunable Luminescence of Eu3+ Doped CsPbBr3 Quantum Dot Glass Ceramic Induced by Mechanical Crystallization. Ceram. Int., 2022, 48, 13826–13832. (94) Wang, Y.; Zhang, R.; Yue, Y.; Yan, S.; Zhang, L.; Chen, D. Room Temperature Synthesis of CsPbX¬3 (X = Cl, Br, I) Perovskite Quantum Dots by Water-Induced Surface Crystallization of Glass. J. Alloys Compd. 2020, 818, 152872. (95) Liu, Y.; Luo, X.; Yang, S.; Wang, D.; Wu, H.; Wang, Q.; Han, T.; Wang, C.; Zhou, D.; Qiu, J. Water-Induced CsBr Crystalline Transition to CsPbBr3 and the Change of Luminescence Properties in Borophosphate Glass. J. Am. Ceram. Soc. 2022, 105, 4699–4708. (96) Erol, E.; Kıbrıslı, O.; Ersundu, M. Ç.; Ersundu, A. E. Size-Controlled Emission of Long-time Durable CsPbBr3 Perovskite Quantum Dots Embedded Tellurite Glass Nanocomposites. Chem. Eng. J. 2020, 401, 126053. (97) Chen, D.; Yuan, S.; Chen, X.; Li, J.; Mao, Q.; Li, X.; Zhong, J. CsPbX3 (X = Br, I) Perovskite Quantum Dot Embedded Low-Melting Phosphosilicate Glasses: Controllable Crystallization, Thermal Stability and Tunable Emissions. J. Mater. Chem. C 2018, 6, 6832–6839. (98) Jha, A.; Richards, B.; Jose, G.; Fernandez, T. T.; Joshi, P.; Jiang, X.; Lousteau, J. Rare-Earth Ion Doped TeO2 and GeO2 Glasses as Laser Materials. Prog. Mater. Sci., 2021, 57, 1426–1491. (99) Wang, J. S.; Vogel, E. M.; Snitzer, E. Tellurite Glass: A New Candidate for Fiber Devices. Opt. Mater. 1994, 3, 187–203. (100) Yuan, S.; Chen, D.; Li, X.; Zhong, J.; Xu, X. In Situ Crystallization Synthesis of CsPbBr3 Perovskite Quantum Dot-Embedded Glasses with Improved Stability for Solid-State Lighting and Random Upconverted Lasing. ACS Appl. Mater. Interfaces 2018, 10, 18918–18926. (101) Yao, G.; Li, S.; Valiev, D.; Chen, M.; Stepanov, S.; Lu, Y.; Li, C.; Zhou, Y.; Su, Z.; Zeng, F. Luminescence Behavior and Temperature Sensing Properties of Sm3+-Doped Cs4PbBr6 Quantum Dots Encapsulated in Borogermanate Glass. J. Non-Cryst. Solids 2022, 582, 121462. (102) Ye, Y.; Zhang, W.; Zhao, Z.; Wang, J.; Liu, C.; Deng, Z.; Zhao, X.; Han, J. Highly Luminescent Cesium Lead Halide Perovskite Nanocrystals Stabilized in Glasses for Light-Emitting Applications. Adv. Opt. Mater. 2019, 7, 1801663. (103) Pang, X.; Zhang, H.; Xie, L.; Xuan, T.; Sun, Y.; Si, S.; Jiang, B.; Chen, W.; Zhuang, J.; Hu, C.; Liu, Y.; Lei, B.; Zhang, X. Precipitating CsPbBr3 Quantum Dots in Boro-germanate Glass with A Dense Structure and Inert Environment toward Highly Stable and Efficient Narrow-Band Green Emitters for Wide-Color-Gamut Liquid Crystal Displays. J. Mater. Chem. C 2019, 7, 13139–13148. (104) Zhang, K.; Zhou, D.; Qiu, J.; Wang, Q.; Lai, J.; Wang, D.; Li, Z.; Shen, W. Effect of Topological Structure on Photoluminescence of CsPbBr3 Quantum Dot Doped Glasses. J. Alloys Compd. 2020, 826, 154111. (105) Chen, D.; Liu, Y.; Yang, C.; Zhong, J.; Zhou, S.; Chen, J.; Huang, H. Promoting Photoluminescence Quantum Yields of Glass-Stabilized CsPbX3 (X = Cl, Br, I) Perovskite Quantum Dots through Fluorine Doping. Nanoscale 2019, 11, 17216–17221. (106) Qi, F.; Shao, X.; Ma, Y.; Sun, Y.; Zhu, J.; Yin, P.; Zhao, G. Improved Luminescent Performances of CsPbI3 Perovskite Quantum Dots via Optimizing the Proportion of Boron-silicate Glass and Precipitation Processing. Opt. Mater. 2022, 124, 111981. (107) Pang, X.; Si, S.; Xie, L.; Zhang, X.; Huang, H.; Liu, S.; Xiao, W.; Wang, S.; Xuan, T.; Zhuang, J.; Hu, C.; Liu, Y.; Lei, B.; Zhang, H. Regulating the Morphology and Luminescence Properties of CsPbBr3 Perovskite Quantum Dots through The Rigidity of Glass Network Structure. J. Mater. Chem. C 2020, 8, 17374–17382. (108) Pust, P.; Schmidt, P. J.; Schnick, W. A Revolution in Lighting. Nat. Mater. 2015, 14, 454–458. (109) Bando, K.; Sakano, K.; Noguchi, Y.; Shimizu, Y. Development of High-Bright and Pure-White LED Lamps. J. Light Vis. Environ., 1998, 22, 12–15. (110) Yamada, S.; Emoto, H.; Ibukiyama, M.; Hirosaki, N. Properties of SiAlON Powder Phosphors for White LEDs. J. Eur. Ceram. Soc. 2012, 32, 1355–1358. (111) Zhu, Q. Q.; Wang, X. J.; Wang, L.; Hirosaki, N.; Nishimura, T.; Tian, Z. F.; Li, Q.; Xu, Y. Z.; Xu, X.; Xie, R. J. β-Sialon:Eu Phosphor-In-Glass: A Robust Green Color Converter for High Power Blue Laser Lighting. J. Mater. Chem. C 2015, 3, 10761–10766. (112) Oh, J. H.; Kang, H.; Ko, M.; Do, Y. R. Analysis of Wide Color Gamut of Green/Red Bilayered Freestanding Phosphor Film-capped White LEDs for LCD Backlight. Opt. Express 2015, 23, 791–804. (113) Osborne, R. A.; Cherepy, N. J.; Seeley, Z. M.; Payne, S. A.; Drobshoff, A. D.; Srivastava, A. M.; Beers, W. W.; Cohen, W. W.; Schlagel, D. L. New Red Phosphor Ceramic K2SiF6:Mn4+. Opt. Mater. 2020, 107, 110140. (114) Yin, Y.; Hu, Z.; Ali, M. U.; Duan, M.; Gao, L.; Liu, M.; Peng, W.; Geng, J.; Pan, S.; Wu, Y.; Hou, J.; Fan, J.; Li, D.; Zhang, X.; Meng, H. Full-Color Micro-LED Display with CsPbBr3 Perovskite and CdSe Quantum Dots as Color Conversion Layers. Adv. Mater. Technol. 2020, 5, 2000251. (115) Chen, Z.; Wang, Q.; Tong, Y.; Liu, X.; Zhao, J.; Peng, B.; Zeng, R.; Pan, S.; Zou, B.; Xiang, W. Tunable Green Light-Emitting CsPbBr3 Based Perovskite-Nanocrystals-in-Glass Flexible Film Enables Production of Stable Backlight Display. J. Phys. Chem. Lett. 2022, 13, 4701–4709. (116) Li, J.; Fan, Y.; Xuan, T.; Zhang, H.; Li, W.; Hu, C.; Zhuang, J.; Liu, R. S.; Lei, B.; Liu, Y.; Zhang, X. In Situ Growth of High-Quality CsPbBr3 Quantum Dots with Unusual Morphology inside a Transparent Glass with a Heterogeneous Crystallization Environment for Wide Gamut Displays. ACS Appl. Mater. Interfaces 2022, 14, 30029–30038. (117) Masui, H.; Sonoda, J.; Pfaff, N.; Koslow, I.; Nakamura, S.; Den, B. S. P. Quantum-Confined Stark Effect on Photoluminescence and Electroluminescence Characteristics of InGaN-Based Light-Emitting Diodes. J. Phys. D: Appl. Phys. 2008, 41, 165105. (118) Pavitra, E.; Raju, G. S. R.; Park, J. Y.; Wang, L.; Moon, B. K.; Yu, J. S. Novel Rare-Earth-Free Yellow Ca5Zn3.92In0.08(V0.99Ta0.01O4)6 Phosphors for Dazzling White Light-Emitting Diodes. Sci. Rep. 2015, 5, 10296. (119) Yang, C.; Zhuang, B.; Lin, J.; Wang, S.; Liu, M.; Jiang. N.; Chen, D. Ultrastable Glass-Protected All-Inorganic Perovskite Quantum Dots with Finely Tunable Green Emissions for Approaching Rec. 2020 Backlit Display. Chem. Eng. J. 2020, 398, 125616. (120) Xie, R.-J.; Li, Y. Q.; Hirosaki, N.; Yamamoto, H. Nitride Phosphors and Solid-State Lighting; Crc Press: Boca Raton, FL, 2019. (121) Fultz, B.; Howe, J. M. Transmission Electron Microscopy and Diffractometry of Materials; Springer-Verlag Berlin Heidelberg: Berlin, Germany, 2012. (122) Skoog, D. A.; West, D. M.; Holler, F. J.; Crouch, S. R. Fundementals of Analytical Chemistry; Cengage Learning: Boston, MA, 2013. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91490 | - |
| dc.description.abstract | 本研究藉熔融-焠火法(melt-quench method)與熱處理結晶法(heat treatment cystallization)將CsPbBr3鈣鈦礦量子點結晶析出於硼矽酸鹽玻璃基質中,藉硼矽酸鹽玻璃之高透光性、耐熱脆性、高表面硬度、高耐水性等性質,可大幅提升CsPbBr3鈣鈦礦量子點之穩定性。因熔融-焠火法相較於傳統之液相合成法幾無使用溶劑,使其具綠色化學特性、更加環保且玻璃基質亦可避免具高環境毒性之鉛離子釋出。此外,本研究亦藉差熱分析、原位穿透式電子顯微鏡影像、變溫X光繞射圖譜與紅外光吸收光譜探究CsPbBr3鈣鈦礦量子點於玻璃基質中之結晶行為、元素組成與玻璃之網路結構。因本研究所合成之CsPbBr3鈣鈦礦量子點玻璃(CsPbBr3@glass)原先呈板片狀,難以直接應用至發光二極體,故其須研磨為粉末狀。然研磨過程易破壞玻璃基質,導致部分CsPbBr3鈣鈦礦量子點暴露於空氣中而降低其穩定性。為解決此一問題,本研究將藉原子層沉積製程(atomic layer deposition; ALD)與溶膠-凝膠法(sol-gel method)於CsPbBr3@glass表面包覆緻密二氧化矽層與疏水二氧化矽層,配製CsPbBr3@glass@ASG鈣鈦礦量子點玻璃複合材料,以提升其穩定性。本研究所合成之CsPbBr3@glass@ASG具高螢光量子效率,其內部與外部量子效率依序為42.0%與33.7%。歷經7週之耐水性測試後,其可維持100%之原始螢光強度;於30oC–100oC間歷經連續5次之加熱-冷卻循環,其具100%之螢光熱回復性。本研究之新穎性乃為此一CsPbBr3@glass@ASG鈣鈦礦量子點玻璃複合材料兼具高量子效率、高耐水性與高螢光熱回復性之特性,故其於發光二極體與顯示器相關之應用具極高之潛力,而此CsPbBr3@glass@ASG鈣鈦礦量子點玻璃複合材料未來將可拓展鈣鈦礦量子點於顯示器或光學相關元件應用之可能性。 | zh_TW |
| dc.description.abstract | In this research, the melt-quench method and heat treatment crystallization method were applied to make CsPbBr3 perovskite quantum dots (PQDs) crystallize in the borosilicate glass matrix. With the high transmittance, high surface hardness, and high water resistance of the borosilicate glass, the stability of CsPbBr3 PQDs can be enhanced significantly. By comparing the melt-quench method with the traditional solution-state synthesis of CsPbBr3 PQDs, the melt-quench method was a kind of solvent-free synthetic process and it met the spirit of green chemistry. Besides, the glass matrix could prevent the toxic lead ions from releasing to the environment. In our research, differential thermal analysis, in-situ transmission electron microscopy, temperature-dependent X-ray diffraction, and infrared absorption spectroscopy were used to explore the crystallization process of CsPbBr3 PQDs in the glass matrix. In addition, because the grinding process for the as-prepared plate-like CsPbBr3@glass would destroy the glass protective layer, the stability of CsPbBr3 PQDs against the environment would reduce significantly. Thus, the atomic layer deposition and sol-gel method were applied to synthesize the compact SiO2 layer and hydrophobic SiO2 layer on the surface of CsPbBr3@glass, respectively, to fabricate the CsPbBr3@glass@ASG composite material. With the triple-layer protection of glass matrix, compact SiO2 layer, and hydrophobic SiO2 layer, CsPbBr3@glass@ASG possessed ~100% water resistance and ~100% thermal reversibility of photoluminescence during the water resistance test and heating-cooling cycle, respectively. Due to the significant enhancement in the stability of CsPbBr3 PQDs, CsPbBr3@glass@ASG might become the potential photoluminescent material for optoelectronic devices in the next generation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-28T16:14:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-01-28T16:14:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 摘要 III Abstract IV 目錄 V 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1鈣鈦礦量子點之簡介 1 1.1.1 奈米材料 1 1.1.2 近年量子點之發展歷程 2 1.1.3 鈣鈦礦材料之定義 4 1.1.4 量子尺寸效應與量子侷限效應 6 1.1.5 鈣鈦礦量子點之晶體結構 10 1.1.6 鈣鈦礦量子點之發光機制 11 1.1.7 全無機式鈣鈦礦量子點 13 1.2鈣鈦礦量子點之穩定性 15 1.2.1 鈣鈦礦量子點之穩定度探討 15 1.2.2 提升鈣鈦礦量子點穩定性之策略 18 1.2.3 鈣鈦礦量子點晶體表面配基鈍化修飾 19 1.2.4 鈣鈦礦量子點晶體之離子摻雜 21 1.2.5 鈣鈦礦量子點晶體之包覆技術 25 1.3鈣鈦礦量子點之表面包覆技術 25 1.3.1 無機氧化物包覆法 25 1.3.2 金屬有機框架材料(metal organic framework; MOF)包覆法 29 1.3.3 聚合物包覆法 30 1.3.4 玻璃基質包覆法 32 1.4全無機鈣鈦礦量子點玻璃(CsPbX3@glass) 35 1.4.1 各式量子點玻璃合成技術 35 1.4.2 各式玻璃基質介紹 40 1.4.3 微結構調控對量子點玻璃之性質影響 45 1.5鈣鈦礦量子點於發光二極體之應用 49 1.5.1 CIE 1931色彩空間 49 1.5.2 白光發光二極體 52 1.5.3 白光發光二極體於背光顯示器之應用 53 1.5.4 螢光材料之選擇 55 1.6研究背景與目的 57 第二章 實驗步驟與儀器分析原理 60 2.1 化學藥品 60 2.2 實驗步驟 62 2.2.1 綠光CsPbBr3@glass複合材料之合成 62 2.2.2 綠光CsPbBr3@glass複合材料之粉末顆粒篩選 64 2.2.3 綠光CsPbBr3@glass@A複合材料之合成 65 2.2.4 綠光CsPbBr3@glass@ASG複合材料之合成 67 2.3 儀器分析 69 2.3.1 粉末X光繞射儀(powder X-ray diffraction microscopy; XRD) 69 2.3.2 同步輻射X光繞射儀(synchrotron X-ray diffraction) 71 2.3.3 熱重與差熱分析儀(thermogravimetric analysis, differential thermal analysis; TGA, DTA) 72 2.3.4 光激發光譜儀(photoluminescence spectrometer; PL) 73 2.3.5 絕對量子效率儀(photoluminescence quantum yield; PLQY) 75 2.3.6 掃描式電子顯微鏡(scanning electron microscope; SEM) 77 2.3.7 穿透式電子顯微鏡(transmission electron microscopy; TEM) 78 2.3.8 紅外光吸收光譜儀(infrared absorption spectrometer; IR) 82 2.3.9 原子層沉積儀(atomic layer deposition; ALD) 84 第三章 結果與討論 86 3.1 CsPbBr3@glass之表面形貌、結晶行為與成分元素分析 87 3.1.1 熱重與差熱分析 87 3.1.2 同步輻射變溫X光繞射分析 88 3.1.3 原位(in-situ)變溫穿透式電子顯微鏡分析 90 3.1.4 X光能量分散光譜分析 93 3.1.5 掃描式電子顯微鏡分析 94 3.2 CsPbBr3@glass、CsPbBr3@glass@A與CsPbBr3@glass@ASG之晶體結構鑑定 95 3.3 CsPbBr3@glass、CsPbBr3@glass@A與CsPbBr3@glass@ASG之光學性質分析 97 3.3.1 穿透光譜分析 97 3.3.2 螢光光譜分析 98 3.3.3 絕對量子效率分析 101 3.4 CsPbBr3@glass@A與CsPbBr3@glass@ASG之包覆層結構分析 102 3.4.1 紅外光吸收光譜分析 102 3.4.2 高解析穿透式電子顯微鏡分析 104 3.5 CsPbBr3@glass、CsPbBr3@glass@A與CsPbBr3@glass@ASG之耐水性與疏水性測試 105 3.5.1 簡易疏水性測試 105 3.5.2 晶體結構變化分析 106 3.5.3 光學性質變化分析 108 3.6 CsPbBr3@glass、CsPbBr3@glass@A與CsPbBr3@glass@ASG之螢光熱回復性分析 111 第四章 結論 115 參考文獻 117 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | CsPbBr3 | zh_TW |
| dc.subject | 鈣鈦礦量子點 | zh_TW |
| dc.subject | 發光二極體 | zh_TW |
| dc.subject | 複合材料 | zh_TW |
| dc.subject | 表面基質包覆 | zh_TW |
| dc.subject | CsPbBr3 | en |
| dc.subject | Encapsulation | en |
| dc.subject | Light-Emitting Diode | en |
| dc.subject | Quantum Dot | en |
| dc.subject | Perovskite | en |
| dc.title | 應用於發光二極體之高穩定性鈣鈦礦量子點玻璃複合材料 | zh_TW |
| dc.title | Highly Stable Perovskite Quantum Dot Glass Composite Materials for Light Emitting-Diodes | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 江建文;吳春桂;魏大華;李育群 | zh_TW |
| dc.contributor.oralexamcommittee | Kien-Voon Kong;Chun-Guey Wu;Da-Hua Wei;Yu-Chun Lee | en |
| dc.subject.keyword | 鈣鈦礦量子點,CsPbBr3,表面基質包覆,複合材料,發光二極體, | zh_TW |
| dc.subject.keyword | Perovskite,Quantum Dot,CsPbBr3,Encapsulation,Light-Emitting Diode, | en |
| dc.relation.page | 132 | - |
| dc.identifier.doi | 10.6342/NTU202301067 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-06-19 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 9.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
