Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91481
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李枝宏zh_TW
dc.contributor.advisorJu-Hong Leeen
dc.contributor.author張書瑋zh_TW
dc.contributor.authorShu-Wei Changen
dc.date.accessioned2024-01-28T16:11:39Z-
dc.date.available2024-02-24-
dc.date.copyright2024-01-27-
dc.date.issued2023-
dc.date.submitted2023-07-26-
dc.identifier.citation[1] Tang, M. F., Lee, M. Y., Su, B., & Yen, C. P. (2014, November). Beamforming-based spatial precoding in FDD massive MIMO systems. In 2014 48th Asilomar Conference on Signals, Systems and Computers (pp. 2073-2077). IEEE.
[2] J.-H. Lee and J.-Y. Lee. Optimal beamforming-selection spatial precoding using population-based stochastic optimization for massive wireless mimo communication systems. Journal of the Franklin Institute, 354(10):4247–4272, 2017.C. D. Jones, A. B. Smith, and E.F. Roberts, Book Title, Publisher, Location, Date.
[3] 李景硯, "結合基於波束成型選擇方法以及粒子最佳化演算法之空間編碼於大規模多輸入多輸出系統" 國立臺灣大學電信工程學研究所碩士論文, Jul. 2016.
[4] 孫偉恩, "應用於大規模多輸入多輸出系統在數位及混和式架構下基於波束成型之最佳空間預編碼" 國立臺灣大學電信工程學研究所碩士論文, Jul. 2018.
[5] 洪子文, "基於波束選擇方法之混合式大規模多輸入多輸出收發器設計" 國立臺灣大學電信工程學研究所碩士論文, Jul. 2019.
[6] 曾怡雯, "大規模多輸入多輸出系統在部分連接混合式架構下基於波束選擇方法之最佳化空間預編碼" 國立臺灣大學電信工程學研究所碩士論文, Jul. 2021.
[7] 張嘉軒, "大規模多輸入多輸出混合式架構下基於波束成型之多段式最佳化預編碼" 國立臺灣大學電信工程學研究所碩士論文, Jul. 2021.
[8] 張景銘, "混合式波束成形空間預編碼配合最佳化部分連接應用於大規模多輸入多輸出系統" 國立臺灣大學電信工程學研究所碩士論文, Jul. 2022.
[9] S. Mirjalili, S. M. Mirjalili, and A. Lewis. Grey wolf optimizer. Advances in engineering software, 69:46–61, 2014.
[10] D. H. N. Nguyen, L. B. Le, and T. Le-Ngoc, "Hybrid MMSE precoding for mmWave multiuser MIMO systems" in Proc. IEEE Int. Conf. Commun. (ICC), Kuala Lumpur, Malayisa, May 2016, pp. 1-6.
[11] X. Li and X. Yao. Cooperatively coevolving particle swarms for large scale optimization.IEEE Transactions on Evolutionary Computation, 16(2):210–224, 2011.
[12] N. Song, T. Yang, and H. Sun, "Overlapped subarray based hybrid beamforming for millimeter wave multiuser massive MIMO," IEEE Signal Processing Letters, vol. 24, no. 5, pp. 550-554, 2017.
[13] E. Emary, H. M. Zawbaa, and A. E. Hassanien, "Binary grey wolf optimization approaches for feature selection," Neurocomputing, vol. 172, pp. 371-381, 2016.
[14] B. Martin, J. Marot, and S. Bourennane, "Improved Discrete Grey Wolf Optimizer," 2018 26th European Signal Processing Conference (EUSIPCO), pp.494-498, Sept. 2018.
[15] S. Durrani and M. E. Bialkowski, "Effect of mutual coupling on the interference rejection capabilities of linear and circular arrays in CDMA systems," IEEE Transactions on Antennas and Propagation, vol. 52, no. 4, pp. 1130-1134, 2004.
[16] Q. Nadeem, A. Kammoun, M. Debbah, and M. Alouini, "Performance Analysis of Compact FD-MIMO Antenna Arrays in a Correlated Environment," IEEE Access,vol. 5, pp. 4163-4178, 2017.
[17] H. Jafarkhani, "A quasi-orthogonal space-time block code," IEEE Transactions on Communications, vol. 49, no. 1, pp. 1-4, 2001.
[18] J. Kennedy and R. Eberhart, "Particle swarm optimization," Proceedings of ICNN'95 - International Conference on Neural Networks, vol. 4, pp. 1942-1948, Dec.1995.
[19] W. Weichselberger, M. Herdin, H. Ozcelik, and E. Bonek, "A stochastic MIMO channel model with joint correlation of both link ends," IEEE Transactions on Wireless Communications, vol. 5, no. 1, pp. 90-100, 2006.
[20] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, "Spatially Sparse Precoding in Millimeter Wave MIMO Systems," IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp. 1499-1513, 2014.
[21] S. M. Alamouti, "A simple transmit diversity technique for wireless communications," IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451-1458, 1998.
[22] H. Jafarkhani, "A quasi-orthogonal space-time block code," IEEE Transactions on Communications, vol. 49, no. 1, pp. 1-4, 2001.
[23] W. Su and X.-G. Xia, "On Space-Time Block Codes from Complex Orthogonal Designs," Wireless Personal Communications, vol. 25, no. 1, pp. 1-26, 2003.
[24] "Spatial channel model for multiple input multiple output(MIMO) simulations(3GPP TR25.996 version 6.1.0)," 2003.
[25] "MATLAB implementation of the 3GPP spatial channel model(3GPP TR25.996 version 6.1.0) " 2005.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91481-
dc.description.abstract延伸自本實驗室先前提出的波束成型選擇空間預編碼 (BSSP),為了節省毫米波(mm-Wave)大規模多輸入多輸出系統(massive MIMO) 的傳輸負擔與硬體成本,我們結合了傳送端混合式預編碼與BSSP兩種方法。此外,我們使用灰狼演算法 (GWO) 對預編碼矩陣進行參數最佳化。
不同於先前所提出的天線選擇最佳化結合多段式最佳化方法,該方法所使用的數位預編碼器(Baseband precoder)是基於MMSE法則,在本論文中我們將其使用GWO做最佳化,最佳化第一段為調整天線選擇矩陣與類比預編碼器,最佳化第二段為調整接收器,最佳化第三段為再調整天線選擇矩陣與類比預編碼器,最佳化第四段為調整數位預編碼器,最佳化第五段為調整天線選擇矩陣與類比預編碼器,最佳化第六段為調整接收器,最佳化第七段為再調整類比天線選擇矩陣與類比預編碼器,並且重複一到七段最佳化的方法直到效能改進不多的時候,即達到類比預編碼器、數位預編碼器、天線選擇矩陣、接收器皆為最佳的,如此能使用相比於全連接架構更少的天線數目,並且又能得到更好錯誤率。
zh_TW
dc.description.abstractThe goal of this thesis is mainly to improve the Beamforming-selection spatial precoding (BSSP) previously developed by our laboratory as well as reduce the millimeter-wave massive multiple-input multiple-output (mm-Wave massive MIMO) wireless system’s hardware cost. By incorporating two methods, namely hybrid precoding and BSSP at the transmission end, we then employ Gray Wolf Optimization (GWO) and its variants, namely binary gray wolf algorithm and discrete gray wolf algorithm to obtain the optimal parameters for the precoding matrix required for mm-Wave massive MIMO wireless communications.
Different from the previously proposed antenna selection optimization combined with multi-stage optimization method, the digital precoder (Baseband precoder) used in this method is based on the MMSE rule. During the proposed seven-stage optimization process, we first optimize antenna selection matrix and the analog precoder. The second stage is to optimize the receiver, the third stage is to optimize antenna selection matrix and the analog precoder, the fourth stage is to optimize the digital precoder, the fifth stage is to optimize antenna selection matrix and the analog precoder, the sixth stage is to optimize the receiver, and the seventh stage is to optimize antenna selection matrix and the analog precoder. This optimization process is then repeated until the overall system’s performance achieves a highly satisfactory result. That is, the analog precoder, digital precoder, antenna selection matrix, and receiver obtained are all optimal. Hence, the resulting mm-Wave massive MIMO wireless system can use fewer antennas and achieve better bit error rate than the system which uses a fully connected architecture. Finally, computer simulation examples are also presented for confirmation and comparison.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-28T16:11:39Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-01-28T16:11:39Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 ii
中文摘要 iii
ABSTRACT iv
目錄 vi
圖目錄 ix
Chapter 1 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 論文貢獻 4
1.4 論文架構 5
Chapter 2 FDD MIMO Downlink與基於波束成型之空間預編碼 9
2.1 FDD MIMO Downlink架構之概述 9
2.2 基於波束成型之空間預編碼之Downlink Training 11
2.3 基於波束成型之空間預編碼之編碼方式以及CSI feedback 13
2.4 結論 14
Chapter 3 灰狼最佳化演算法與(Beamforming-Selection Spatial Precoding,BSSP)基於波束成形選擇空間預編碼 15
3.1 灰狼最佳化演算法 15
3.2 基於波束成型選擇之空間預編碼(Beamforming-Seleciotn Spatial Precoding) 17
3.3 BSSP在3GPP通道下的實驗 19
3.4 結論 23
Chapter 4 考慮通道誤差與天線擺設位置在不同連接架構下並加入QOSTBC之GWO-BSSP 24
4.1 交互耦合相關性及空間相關性介紹與最佳化天線擺設位置 24
4.1.1 (Mutual Coupling)交互耦合相關性模型 24
4.1.2 (Spatial Correlation)空間相關性模型 26
4.1.3 (Mutual Coupling & Spatial Correlation)交互耦合空間相關性影響模型 28
4.1.4 (Nonuniform Linear Array)最佳化天線擺設位置 29
4.2 GWO-BSSP考慮通道誤差與天線擺設位置之模擬實驗 29
4.3 不同天線連接架構與QOSTBC之介紹 34
4.3.1 不同天線連接架構與GWO-BSSP方法結合介紹 34
4.3.2 QOSTBC與GWO-BSSP方法結合介紹 37
4.4 加入QOSTBC之GWO-BSSP於不同連接架構下模擬實驗 39
4.5 結論 44
Chapter 5 於混合式波束成型架構下加入多段式最佳化之GWO-BSSP-QOSTBC 45
5.1 GWO-BSSP-QOSTBC加入混合式架構之方法介紹 45
5.2 加入混合式架構之GWO-BSSP-QOSTBC模擬實驗 47
5.3 Hybrid-GWO-BSSP-QOSTBC加入多段式最佳化之方法介紹 55
5.3.1 二位元灰狼演算法(Binary Grey Wolf Optimization, BGWO)之介紹 56
5.3.2 離散灰狼演算法(Discrete Grey Wolf Optimization, DGWO)之介紹 58
5.3.3 多段式最佳化之介紹 60
5.4 加入多段式最佳化之Hybrid GWO-BSSP-QOSTBC模擬實驗 64
Chapter 6 於Massive MIMO之實驗模擬 72
6.1 NB=128、NU=2之實驗參數設定 72
6.2 NB=128、NU=2之模擬實驗 75
Chapter 7 總結與未來方向 80
參考文獻 81
-
dc.language.isozh_TW-
dc.subject混合式波束成型zh_TW
dc.subject部分連接架構zh_TW
dc.subject二位元灰狼演算法zh_TW
dc.subject空間預編碼zh_TW
dc.subject灰狼演算法zh_TW
dc.subject離散灰狼演算法zh_TW
dc.subject大規模多輸入多輸出系統zh_TW
dc.subjectdiscrete gray wolf algorithmen
dc.subjectbinary gray wolf algorithmen
dc.subjecthybrid beamformingen
dc.subjectmassive MIMO systemen
dc.subjectgray wolf algorithmen
dc.subjectpartially connected architectureen
dc.subjectspatial precodingen
dc.title多段式最佳化之空間預編碼應用於大規模多輸入多輸出混合式架構系統zh_TW
dc.titleSpatial precoding of multi-stage optimization for Massive MIMO system with Hybrid Architectureen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉俊麟;方文賢zh_TW
dc.contributor.oralexamcommitteeChun-Lin Liu;Wen-Hsien Fangen
dc.subject.keyword二位元灰狼演算法,離散灰狼演算法,灰狼演算法,空間預編碼,混合式波束成型,部分連接架構,大規模多輸入多輸出系統,zh_TW
dc.subject.keywordmassive MIMO system,hybrid beamforming,binary gray wolf algorithm,discrete gray wolf algorithm,spatial precoding,partially connected architecture,gray wolf algorithm,en
dc.relation.page83-
dc.identifier.doi10.6342/NTU202302026-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-27-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-lift2028-07-24-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
3.16 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved