Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91472
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor歐海仁 博士zh_TW
dc.contributor.advisorHiran A. Ariyawansaen
dc.contributor.authorHimanshi Jayasinghezh_TW
dc.contributor.authorHimanshi Jayasingheen
dc.date.accessioned2024-01-26T16:39:16Z-
dc.date.available2024-01-27-
dc.date.copyright2024-01-26-
dc.date.issued2024-
dc.date.submitted2024-01-18-
dc.identifier.citationAbarenkov, K., Zirk, A., Piirmann, T., Pöhönen, R., Ivanov, F., Nilsson, R. H., and Kõljalg, U. (2021). UNITE general FASTA release for Fungi. Version 10.05.2021. UNITE Community.
Abdelfattah, A., Malacrinò, A., Wisniewski, M., Cacciola, S. O., and Schena, L. (2018). Metabarcoding: A powerful tool to investigate microbial communities and shape future plant protection strategies. Biol. Control 120, 1–10. doi: 10.1016/j.biocontrol.2017.07.009.
Adam, E., Bernhart, M., Müller, H., Winkler, J., and Berg, G. (2018). The Cucurbita pepo seed microbiome: genotype-specific composition and implications for breeding. Plant Soil 422, 35–49. doi: 10.1007/s11104-016-3113-9.
Agler, M. T., Ruhe, J., Kroll, S., Morhenn, C., Kim, S.-T., Weigel, D., et al. (2016). Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 14, e1002352. doi: 10.1371/journal.pbio.1002352.
Ahmed, W., Dai, Z., Liu, Q., Munir, S., Yang, J., Karunarathna, S. C., et al. (2022). Microbial cross-talk: dissecting the core microbiota associated with Flue-Cured Tobacco (Nicotiana tabacum) plants under healthy and diseased state. Front. Microbiol. 13, 845310. doi: 10.3389/fmicb.2022.845310.
Aloo, B. N., Mbega, E. R., Makumba, B. A., Hertel, R., and Daniel, R. (2021). Molecular identification and in vitro plant growth-promoting activities of culturable potato (Solanum tuberosum L.) Rhizobacteria in Tanzania. Potato Res. 64, 67–95. doi: 10.1007/s11540-020-09465-x.
Anal, A. K. D., Rai, S., Singh, M., and Solanki, M. K. (2020). “Plant Mycobiome: Current research and applications,” in Phytobiomes: Current Insights and Future Vistas, eds. M. K. Solanki, P. L. Kashyap, and B. Kumari (Singapore: Springer Singapore), 81–104. doi: 10.1007/978-981-15-3151-4_4.
Andrews, S. (2010). FastQC: A quality control tool for high throughput sequence data. Available at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Ares, A., Pereira, J., Garcia, E., Costa, J., and Tiago, I. (2021). The leaf bacterial microbiota of female and male Kiwifruit plants in distinct seasons: Assessing the impact of Pseudomonas syringae pv. actinidiae. Phytobiomes J. 5, 275–287. doi: 10.1094/PBIOMES-09-20-0070-R.
Arnault, G., Mony, C., and Vandenkoornhuyse, P. (2023). Plant microbiota dysbiosis and the Anna Karenina Principle. Trends in Plant Sci. 28, 18–30. doi: 10.1016/j.tplants.2022.08.012.
Aydogan, E. L., Budich, O., Hardt, M., Choi, Y. H., Jansen-Willems, A. B., Moser, G., et al. (2020). Global warming shifts the composition of the abundant bacterial phyllosphere microbiota as indicated by a cultivation-dependent and -independent study of the grassland phyllosphere of a long-term warming field experiment. FEMS Microbiol. Ecol. 96, fiaa087. doi: 10.1093/femsec/fiaa087.
Balasundram, S. K., Golhani, K., Shamshiri, R. R., and Vadamalai, G. (2020). “Precision agriculture technologies for management of plant diseases,” in Plant Disease Management Strategies for Sustainable Agriculture through Traditional and Modern Approaches Sustainability in Plant and Crop Protection., eds. I. Ul Haq and S. Ijaz (Cham: Springer International Publishing), 259–278. doi: 10.1007/978-3-030-35955-3_13.
Banerjee, S., Schlaeppi, K., and Van Der Heijden, M. G. A. (2018). Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576. doi: 10.1038/s41579-018-0024-1.
Bashir, A., Manzoor, M. M., Ahmad, T., Farooq, S., Sultan, P., Gupta, A. P., et al. (2023). Endophytic fungal community of Rosa damascena Mill. as a promising source of indigenous biostimulants: Elucidating its spatial distribution, chemical diversity, and ecological functions. Microbiol. Res. 276, 127479. doi: 10.1016/j.micres.2023.127479.
Bashir, I., War, A. F., Rafiq, I., Reshi, Z. A., Rashid, I., and Shouche, Y. S. (2022). Phyllosphere microbiome: Diversity and functions. Microbiol. Res. 254, 126888. doi: 10.1016/j.micres.2021.126888.
Bekris, F., Vasileiadis, S., Papadopoulou, E., Samaras, A., Testempasis, S., Gkizi, D., et al. (2021). Grapevine wood microbiome analysis identifies key fungal pathogens and potential interactions with the bacterial community implicated in grapevine trunk disease appearance. Environ. Microbiome 16, 23. doi: 10.1186/s40793-021-00390-1.
Benjamini, Y., and Hochberg, Y. (2000). On the adaptive control of the false discovery rate in multiple testing with independent statistics. J. Educ. Behav. Stat. 25, 60–83. doi: 10.3102/10769986025001060.
Berendsen, R. L., Pieterse, C. M. J., and Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. Trends in Plant Sci. 17, 478–486. doi: 10.1016/j.tplants.2012.04.001.
Berg, G., Köberl, M., Rybakova, D., Müller, H., Grosch, R., and Smalla, K. (2017). Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiol. Ecol. 93. doi: 10.1093/femsec/fix050.
Berlec, A. (2012). Novel techniques and findings in the study of plant microbiota: Search for plant probiotics. Plant Sci. 193–194, 96–102. doi: 10.1016/j.plantsci.2012.05.010.
Bez, C., Esposito, A., Thuy, H. D., Nguyen Hong, M., Valè, G., Licastro, D., et al. (2021). The rice foot rot pathogen Dickeya zeae alters the in‐field plant microbiome. Environ. Microbiol. 23, 7671–7687. doi: 10.1111/1462-2920.15726.
Bhandari, R., Sanz-Saez, A., Leisner, C. P., and Potnis, N. (2023). Xanthomonas infection and ozone stress distinctly influence the microbial community structure and interactions in the pepper phyllosphere. ISME Commun. 3, 24. doi: 10.1038/s43705-023-00232-w.
Bodenhausen, N., Bortfeld-Miller, M., Ackermann, M., and Vorholt, J. A. (2014). A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet. 10, e1004283. doi: 10.1371/journal.pgen.1004283.
Bodor, A., Bounedjoum, N., Vincze, G. E., Erdeiné Kis, Á., Laczi, K., Bende, G., et al. (2020). Challenges of unculturable bacteria: environmental perspectives. Rev. Environ. Sci. Biotechnol. 19, 1–22. doi: 10.1007/s11157-020-09522-4.
Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., et al. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. doi: 10.1038/s41587-019-0209-9.
Bonanomi, G., De Filippis, F., Zotti, M., Idbella, M., Cesarano, G., Al-Rowaily, S., et al. (2020). Repeated applications of organic amendments promote beneficial microbiota, improve soil fertility and increase crop yield. Appl. Soil Ecol. 156, 103714. doi: 10.1016/j.apsoil.2020.103714.
Borodušķe, A., Ķibilds, J., Fridmanis, D., Gudrā, D., Ustinova, M., Seņkovs, M., et al. (2023). Does peptide-nucleic acid (PNA) clamping of host plant DNA benefit ITS1 amplicon-based characterization of the fungal endophyte community. Fungal Ecol. 61, 101181. doi: 10.1016/j.funeco.2022.101181.
Bringel, F., and Couée, I. (2015). Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front. Microbiol. 06. doi: 10.3389/fmicb.2015.00486.
Buonaurio, R., Moretti, C., Da Silva, D. P., Cortese, C., Ramos, C., and Venturi, V. (2015). The olive knot disease as a model to study the role of interspecies bacterial communities in plant disease. Front. Plant Sci. 6. doi: 10.3389/fpls.2015.00434.
Burke, D. J., Hoke, A. J., and Koch, J. (2020). The emergence of beech leaf disease in Ohio: Probing the plant microbiome in search of the cause. Forest Pathol. 50, e12579. doi: 10.1111/efp.12579.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. doi: 10.1038/nmeth.3869.
Canellas, L. P., and Olivares, F. L. (2017). Production of border cells and colonization of maize root tips by Herbaspirillum seropedicae are modulated by humic acid. Plant Soil 417, 403–413. doi: 10.1007/s11104-017-3267-0.
Chang, W. N., Huang, P. (1998). A study on the improvement of onion vegetables in Taiwan. Vegetable Breeding Technology Seminar 73, 305-324.
Chase, M. W., Reveal, J. L., and Fay, M. F. (2009). A subfamilial classification for the expanded asparagalean families Amaryllidaceae, Asparagaceae and Xanthorrhoeaceae: Asparagales subfamilial classification. Bot. J. Linn. Soc. 161, 132–136. doi: 10.1111/j.1095-8339.2009.00999.x.
Chen, K.-H., Marcón, F., Duringer, J., Blount, A., Mackowiak, C., and Liao, H.-L. (2022). Leaf mycobiome and mycotoxin profile of warm-season grasses structured by plant species, geography, and apparent black-stroma fungal structure. Appl. Environ. Microbiol. 88, e00942-22. doi: 10.1128/aem.00942-22.
Chen, Q., Hu, H., Yan, Z., Li, C., Nguyen, B. T., Zhu, Y., et al. (2021). Precipitation increases the abundance of fungal plant pathogens in Eucalyptus phyllosphere. Environ. Microbiol. 23, 7688–7700. doi: 10.1111/1462-2920.15728.
Chen, W., Guo, X., Guo, Q., Tan, X., and Wang, Z. (2021). Long-Term chili monoculture alters environmental variables affecting the dominant microbial community in rhizosphere soil. Front. Microbiol. 12, 681953. doi: 10.3389/fmicb.2021.681953.
Chen, W., Modi, D., and Picot, A. (2023). Soil and phytomicrobiome for plant disease suppression and management under climate change: A Review. Plants 12, 2736. doi: 10.3390/plants12142736.
Chen, X., He, B., Yang, H., and Cernava, T. (2020). Bacteriome and mycobiome in Nicotiana tabacum fields affected by black shank disease. Plant Dis. 104, 315–319. doi: 10.1094/PDIS-07-19-1342-A.
Chen, X., Krug, L., Yang, M., Berg, G., and Cernava, T. (2021). The Himalayan onion (Allium wallichii Kunth) harbors unique spatially organized bacterial communities. Microb. Ecol. 82, 909–918. doi: 10.1007/s00248-021-01728-5.
Chowdhary, K., Sharma, S., and Kalra, R. (2021). Isolation, identification and characterisation of fungal endophytes from Plectranthus amboinicus L. Natl. Acad. Sci. Lett. 44, 519–523. doi: 10.1007/s40009-020-01035-6.
Clauset, A., Newman, M. E. J., and Moore, C. (2004). Finding community structure in very large networks. Phys. Rev. E 70, 066111. doi: 10.1103/PhysRevE.70.066111.
Compant, S., Cambon, M. C., Vacher, C., Mitter, B., Samad, A., and Sessitsch, A. (2021). The plant endosphere world – bacterial life within plants. Environ. Microbiol. 23, 1812–1829. doi: 10.1111/1462-2920.15240.
Compant, S., Samad, A., Faist, H., and Sessitsch, A. (2019). A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J. Adv. Res. 19, 29–37. doi: 10.1016/j.jare.2019.03.004.
Cui, K., Xu, T., Chen, J., Yang, H., Liu, X., Zhuo, R., et al. (2022). Siderophores, a potential phosphate solubilizer from the endophyte Streptomyces sp. CoT10, improved phosphorus mobilization for host plant growth and rhizosphere modulation. J. Clean. Prod. 367, 133110. doi: 10.1016/j.jclepro.2022.133110.
Daroodi, Z., Taheri, P., and Tarighi, S. (2022). Acrophialophora jodhpurensis: an endophytic plant growth promoting fungus with biocontrol effect against Alternaria alternata. Front. Plant Sci. 13, 984583. doi: 10.3389/fpls.2022.984583.
Dastogeer, K. M. G., Yasuda, M., and Okazaki, S. (2022). Microbiome and pathobiome analyses reveal changes in community structure by foliar pathogen infection in rice. Front. Microbiol. 13, 949152. doi: 10.3389/fmicb.2022.949152.
De Silva, D. D., Crous, P. W., Ades, P. K., Hyde, K. D., and Taylor, P. W. J. (2017). Life styles of Colletotrichum species and implications for plant biosecurity. Fungal Biol. Rev. 31, 155–168. doi: 10.1016/j.fbr.2017.05.001.
Delmotte, N., Knief, C., Chaffron, S., Innerebner, G., Roschitzki, B., Schlapbach, R., et al. (2009). Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl. Acad. Sci. U.S.A. 106, 16428–16433. doi: 10.1073/pnas.0905240106.
Deng, Y., Ning, Y., Yang, D.-L., Zhai, K., Wang, G.-L., and He, Z. (2020). Molecular basis of disease resistance and perspectives on breeding strategies for resistance improvement in crops. Molecular Plant 13, 1402–1419. doi: 10.1016/j.molp.2020.09.018.
Dlamini, S. P., Akanmu, A. O., Fadiji, A. E., and Babalola, O. O. (2023). Maize rhizosphere modulates the microbiome diversity and community structure to enhance plant health. Saudi J. Biol. Sci. 30, 103499. doi: 10.1016/j.sjbs.2022.103499.
Dong, C.-J., Wang, L.-L., Li, Q., and Shang, Q.-M. (2019). Bacterial communities in the rhizosphere, phyllosphere and endosphere of tomato plants. PLoS ONE 14, e0223847. doi: 10.1371/journal.pone.0223847.
Ebrahimi, L., Hatami Rad, S., and Etebarian, H. R. (2022). Apple endophytic fungi and their antagonism against apple scab disease. Front. Microbiol. 13, 1024001. doi: 10.3389/fmicb.2022.1024001.
Elshahawy, I. E., and Khattab, A. E.-N. A. (2022). Endophyte Chaetomium globosum improves the growth of maize plants and induces their resistance to late wilt disease. J. Plant Dis. Prot. 129, 1125–1144. doi: 10.1007/s41348-022-00626-3.
Espinoza, F., Vidal, S., Rautenbach, F., Lewu, F., and Nchu, F. (2019). Effects of Beauveria bassiana (Hypocreales) on plant growth and secondary metabolites of extracts of hydroponically cultivated chive (Allium schoenoprasum L. [Amaryllidaceae]). Heliyon 5, e03038. doi: 10.1016/j.heliyon.2019.e03038.
Feng, C., Xu, F., Li, L., Zhang, J., Wang, J., Li, Y., et al. (2023). Biological control of Fusarium crown rot of wheat with Chaetomium globosum 12XP1-2-3 and its effects on rhizosphere microorganisms. Front. Microbiol. 14, 1133025. doi: 10.3389/fmicb.2023.1133025.
Finkel, O. M., Castrillo, G., Herrera Paredes, S., Salas González, I., and Dangl, J. L. (2017). Understanding and exploiting plant beneficial microbes. Curr. Opin. Plant Biol. 38, 155–163. doi: 10.1016/j.pbi.2017.04.018.
Fisher, M. M., and Triplett, E. W. (1999). Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl. Environ. Microbiol. 65, 4630–4636. doi: 10.1128/AEM.65.10.4630-4636.1999.
Fravel, D. R. (2005). Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol. 43, 337–359. doi: 10.1146/annurev.phyto.43.032904.092924.
Fricker, A. M., Podlesny, D., and Fricke, W. F. (2019). What is new and relevant for sequencing-based microbiome research. A mini-review. J. Adv. Res. 19, 105–112. doi: 10.1016/j.jare.2019.03.006.
Galindez, H. J. A., Lopez, L. L. M. A., Kalaw, S. P., Waing, K. G. D., and Galindez, J. L. (2017). Evaluation of three species of Trichoderma as potential bio-control agent against Colletotrichum gloeosrioides, a causal agent of anthracnose disease in onion. Adv. Environ. Biol. 11(6), 62-68
Galván, G. A., Koning-Boucoiran, C. F. S., Koopman, W. J. M., Burger-Meijer, K., González, P. H., Waalwijk, C., et al. (2008). Genetic variation among Fusarium isolates from onion, and resistance to Fusarium basal rot in related Allium species. Eur. J. Plant Pathol. 121, 499–512. doi: 10.1007/s10658-008-9270-9.
Gao, M., Xiong, C., Gao, C., Tsui, C. K. M., Wang, M.-M., Zhou, X., et al. (2021). Disease-induced changes in plant microbiome assembly and functional adaptation. Microbiome 9, 187. doi: 10.1186/s40168-021-01138-2.
Gates, A. J., Wood, I. B., Hetrick, W. P., and Ahn, Y.-Y. (2019). Element-centric clustering comparison unifies overlaps and hierarchy. Sci. Rep. 9, 8574. doi: 10.1038/s41598-019-44892-y.
Girardi, N. S., Sosa, A. L., García, J. L., and Passone, M. A. (2023). Ecophysiological characteristics of the nematophagous fungus, Plectosphaerella plurivora, with biocontrol potential on Nacobbus aberrans s.l. in tomato. In Review doi: 10.21203/rs.3.rs-2762633/v1.
Gohl, D. M., Vangay, P., Garbe, J., MacLean, A., Hauge, A., Becker, A., et al. (2016). Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat. Biotechnol. 34, 942–949. doi: 10.1038/nbt.3601.
Goodrich, J. K., Di Rienzi, S. C., Poole, A. C., Koren, O., Walters, W. A., Caporaso, J. G., et al. (2014). Conducting a microbiome study. Cell 158, 250–262. doi: 10.1016/j.cell.2014.06.037.
Gossen, B. D., Carisse, O., Kawchuk, L. M., Van Der Heyden, H., and McDonald, M. R. (2014). Recent changes in fungicide use and the fungicide insensitivity of plant pathogens in Canada. Can. J. Plant Pathol. 36, 327–340. doi: 10.1080/07060661.2014.925506.
Gu, S., Wei, Z., Shao, Z., Friman, V.-P., Cao, K., Yang, T., et al. (2020). Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nat. Microbiol. 5, 1002–1010. doi: 10.1038/s41564-020-0719-8.
Gu, Y., Wang, Y., Wang, P., Wang, C., Ma, J., Yang, X., et al. (2020). Study on the diversity of fungal and bacterial communities in continuous cropping fields of Chinese chives (Allium tuberosum). BioMed Res. Int. 2020, 1–14. doi: 10.1155/2020/3589758.
Haas, B. J., Gevers, D., Earl, A. M., Feldgarden, M., Ward, D. V., Giannoukos, G., et al. (2011). Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21, 494–504. doi: 10.1101/gr.112730.110.
Hahn, M. W., Koll, U., and Schmidt, J. (2019). “Isolation and Cultivation of Bacteria,” in The Structure and Function of Aquatic Microbial Communities Advances in Environmental Microbiology., ed. C. J. Hurst (Cham: Springer International Publishing), 313–351. doi: 10.1007/978-3-030-16775-2_10.
Hartmann, A., Rothballer, M., and Schmid, M. (2008). Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312, 7–14. doi: 10.1007/s11104-007-9514-z.
Hu, Q., Tan, L., Gu, S., Xiao, Y., Xiong, X., Zeng, W., et al. (2020). Network analysis infers the wilt pathogen invasion associated with non-detrimental bacteria. npj Biofilms Microbiomes 6, 8. doi: 10.1038/s41522-020-0117-2.
Huang, J.-H., and Yuan, C.-Y. (2023). Case study of agricultural adaptation for the climate change impact on crop diseases in Taiwan – integrated management of Welsh onion Phytophthora blight induced by heavy rainfall. Acta Hortic., 245–252. doi: 10.17660/ActaHortic.2023.1378.32.
Huang, Y. (2019). Illumina-based analysis of endophytic bacterial diversity of four Allium species. Sci. Rep. 9, 15271. doi: 10.1038/s41598-019-51707-7.
Huang, Y., Wang, H.-C., Cai, L.-T., Li, W., Pan, D., Xiang, L., et al. (2021). Phyllospheric microbial composition and diversity of the tobacco leaves infected by Didymella segeticola. Front. Microbiol. 12, 699699. doi: 10.3389/fmicb.2021.699699.
Hugerth, L. W., and Andersson, A. F. (2017). Analysing microbial community composition through amplicon sequencing: from sampling to hypothesis testing. Front. Microbiol. 8, 1561. doi: 10.3389/fmicb.2017.01561.
Igarashi, Y., Ogawa, M., Sato, Y., Saito, N., Yoshida, R., Kunoh, H., et al. (2000). Fistupyrone, a novel inhibitor of the infection of Chinese cabbage by Alternaria brassicicola, from Streptomyces sp. TP-A0569. J. Antibiot. 53, 1117–1122. doi: 10.7164/antibiotics.53.1117.
Janakiev, T., Berić, T., Stević, T., Stanković, S., Bačić, J., Majstorović, H., et al. (2022). The microbiome of the ‘Williams’ pear variety grown in the organic orchard and antifungal activity by the autochthonous bacterial and yeast isolates. Microorganisms 10, 1282. doi: 10.3390/microorganisms10071282.
Jelušić, A., Popović, T., Dimkić, I., Mitrović, P., Peeters, K., Miklavčič Višnjevec, A., et al. (2021). Changes in the winter oilseed rape microbiome affected by Xanthomonas campestris pv. campestris and biocontrol potential of the indigenous Bacillus and Pseudomonas isolates. Biol. Control 160, 104695. doi: 10.1016/j.biocontrol.2021.104695.
Jiang, H., Xu, X., Fang, Y., Ogunyemi, S. O., Ahmed, T., Li, X., et al. (2023). Metabarcoding reveals response of rice rhizosphere bacterial community to rice bacterial leaf blight. Microbiol. Res. 270, 127344. doi: 10.1016/j.micres.2023.127344.
Jin, H., Yang, X.-Y., Yan, Z.-Q., Liu, Q., Li, X.-Z., Chen, J.-X., et al. (2014). Characterization of rhizosphere and endophytic bacterial communities from leaves, stems and roots of medicinal Stellera chamaejasme L. Syst. Appl. Microbiol. 37, 376–385. doi: 10.1016/j.syapm.2014.05.001.
Kaushal, M., Mahuku, G., and Swennen, R. (2020). Metagenomic insights of the root colonizing microbiome associated with symptomatic and non-symptomatic bananas in Fusarium wilt infected fields. Plants 9, 263. doi: 10.3390/plants9020263.
Knight, R., Vrbanac, A., Taylor, B. C., Aksenov, A., Callewaert, C., Debelius, J., et al. (2018). Best practices for analysing microbiomes. Nat. Rev. Microbiol. 16, 410–422. doi: 10.1038/s41579-018-0029-9.
Kong, P., Li, X., Sharifi, M., Bordas, A., and Hong, C. (2023). Leaf endophyte community composition and network structures differ between tolerant and susceptible English boxwood. Phytobiomes J. 7, 160–171. doi: 10.1094/PBIOMES-02-23-0009-FI.
Koranda, M., Schnecker, J., Kaiser, C., Fuchslueger, L., Kitzler, B., Stange, C. F., et al. (2011). Microbial processes and community composition in the rhizosphere of European beech – The influence of plant C exudates. Soil Biol. Biochem. 43, 551–558. doi: 10.1016/j.soilbio.2010.11.022.
Kou, M.-Z., Bastías, D. A., Christensen, M. J., Zhong, R., Nan, Z.-B., and Zhang, X.-X. (2021). The plant salicylic acid signalling pathway regulates the infection of a biotrophic pathogen in grasses associated with an Epichloë endophyte. J. Fungi 7, 633. doi: 10.3390/jof7080633.
Kovalchuk, A., Mukrimin, M., Zeng, Z., Raffaello, T., Liu, M., Kasanen, R., et al. (2018). Mycobiome analysis of asymptomatic and symptomatic Norway spruce trees naturally infected by the conifer pathogens Heterobasidion spp. Environ. Microbiol. Rep. 10, 532–541. doi: 10.1111/1758-2229.12654.
Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., and Schloss, P. D. (2013). Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120. doi: 10.1128/AEM.01043-13.
Kumar, I., Mondal, M., Gurusamy, R., Balakrishnan, S., and Natarajan, S. (2019). “Plant-Microbiome interaction and the effects of biotic and abiotic components in agroecosystem,” in Microbial Interventions in Agriculture and Environment, eds. D. P. Singh, V. K. Gupta, and R. Prabha (Singapore: Springer Singapore), 517–546. doi: 10.1007/978-981-13-8383-0_18.
Kumar, V., Jain, L., Jain, S. K., Chaturvedi, S., and Kaushal, P. (2020). Bacterial endophytes of rice (Oryza sativa L.) and their potential for plant growth promotion and antagonistic activities. S. Afr. J. Bot. 134, 50–63. doi: 10.1016/j.sajb.2020.02.017.
Lamichhane, J. R., and Venturi, V. (2015). Synergisms between microbial pathogens in plant disease complexes: a growing trend. Front. Plant Sci. 06. doi: 10.3389/fpls.2015.00385.
Lareen, A., Burton, F., and Schäfer, P. (2016). Plant root-microbe communication in shaping root microbiomes. Plant Mol. Biol. 90, 575–587. doi: 10.1007/s11103-015-0417-8.
Latz, M. A. C., Jensen, B., Collinge, D. B., and Lyngs Jørgensen, H. J. (2020). Identification of two endophytic fungi that control Septoria tritici blotch in the field, using a structured screening approach. Biol. Control 141, 104128. doi: 10.1016/j.biocontrol.2019.104128.
Li, Q., Zhang, D., Cheng, H., Ren, L., Jin, X., Fang, W., et al. (2022). Organic fertilizers activate soil enzyme activities and promote the recovery of soil beneficial microorganisms after dazomet fumigation. J. Environ. Manage. 309, 114666. doi: 10.1016/j.jenvman.2022.114666.
Lin, W., Lin, M., Zhou, H., Wu, H., Li, Z., and Lin, W. (2019). The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS ONE 14, e0217018. doi: 10.1371/journal.pone.0217018.
Liu, F., Hewezi, T., Lebeis, S. L., Pantalone, V., Grewal, P. S., and Staton, M. E. (2019). Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiol. 19, 201. doi: 10.1186/s12866-019-1572-x.
Liu, H., Li, J., Carvalhais, L. C., Percy, C. D., Prakash Verma, J., Schenk, P. M., et al. (2021). Evidence for the plant recruitment of beneficial microbes to suppress soil‐borne pathogens. New Phytol. 229, 2873–2885. doi: 10.1111/nph.17057.
Liu, W. T., Marsh, T. L., Cheng, H., and Forney, L. J. (1997). Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63, 4516–4522. doi: 10.1128/aem.63.11.4516-4522.1997.
Liu, Y.-X., Qin, Y., Chen, T., Lu, M., Qian, X., Guo, X., et al. (2021). A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell 12, 315–330. doi: 10.1007/s13238-020-00724-8.
Lombardi, N., Vitale, S., Turrà, D., Reverberi, M., Fanelli, C., Vinale, F., et al. (2018). Root exudates of stressed plants stimulate and attract Trichoderma soil fungi. MPMI 31, 982–994. doi: 10.1094/MPMI-12-17-0310-R.
López, S. M. Y., Pastorino, G. N., Fernández-González, A. J., Franco, M. E. E., Fernández-López, M., and Balatti, P. A. (2020). The endosphere bacteriome of diseased and healthy tomato plants. Arch. Microbiol. 202, 2629–2642. doi: 10.1007/s00203-020-01987-9.
Lozupone, C. A., and Knight, R. (2008). Species divergence and the measurement of microbial diversity. FEMS Microbiol. Rev. 32, 557–578. doi: 10.1111/j.1574-6976.2008.00111.x.
Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D., and Dangl, J. L. (2013). Practical innovations for high-throughput amplicon sequencing. Nat. Methods 10, 999–1002. doi: 10.1038/nmeth.2634.
Luo, L., Zhang, J., Ye, C., Li, S., Duan, S., Wang, Z., et al. (2022). Foliar pathogen infection manipulates soil health through root exudate-modified rhizosphere microbiome. Microbiol. Spectr. 10, e02418-22. doi: 10.1128/spectrum.02418-22.
Malacrinò, A., Mosca, S., Li Destri Nicosia, M. G., Agosteo, G. E., and Schena, L. (2022). Plant genotype shapes the bacterial microbiome of fruits, leaves, and soil in olive plants. Plants 11, 613. doi: 10.3390/plants11050613.
Mannaa, M., and Seo, Y.-S. (2021). Plants under the attack of allies: moving towards the plant pathobiome paradigm. Plants 10, 125. doi: 10.3390/plants10010125.
Marchesi, J. R., and Ravel, J. (2015). The vocabulary of microbiome research: a proposal. Microbiome 3, 31, s40168-015-0094–5. doi: 10.1186/s40168-015-0094-5.
Marian, M., Fujikawa, T., and Shimizu, M. (2021). Genome analysis provides insights into the biocontrol ability of Mitsuaria sp. strain TWR114. Arch. Microbiol. 203(6), 3373-3388.
Martin, K. J., and Rygiewicz, P. T. (2005). Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol. 5, 28. doi: 10.1186/1471-2180-5-28.
Masuhara, G., Katsuya, K., and Yamaguchi, K. (1993). Potential for symbiosis of Rhizoctonia solani and binucleate Rhizoctonia with seeds of Spiranthes sinensis var. amoena in vitro. Mycol. Res. 97, 746–752. doi: 10.1016/S0953-7562(09)80156-1.
Matchado, M. S., Lauber, M., Reitmeier, S., Kacprowski, T., Baumbach, J., Haller, D., et al. (2021). Network analysis methods for studying microbial communities: A mini review. Comput. Struct. Biotechnol. J. 19, 2687–2698. doi: 10.1016/j.csbj.2021.05.001.
McMurdie, P. J., and Holmes, S. (2013). phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217. doi: 10.1371/journal.pone.0061217.
Mendes, R., Garbeva, P., and Raaijmakers, J. M. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663. doi: 10.1111/1574-6976.12028.
Milazzo, C., Zulak, K. G., Muria-Gonzalez, M. J., Jones, D., Power, M., Bransgrove, K., et al. (2021). High-Throughput metabarcoding characterizes fungal endophyte diversity in the phyllosphere of a Barley crop. Phytobiomes J. 5, 316–325. doi: 10.1094/PBIOMES-09-20-0066-R.
Minter, D. W., and Cannon, P. F. (2018). Phaeosphaeria silenes-acaulis. Descr. Fungi Bact. doi: 10.1079/DFB/20173373955.
Mishra, B., and Pratap Singh, R. (2017). Fungicidal management of Stemphylium blight of onion caused by Stemphylium vesicarium (Wallr.) Simmons. Biosci., Biotech. Res. Asia 14, 1043–1049. doi: 10.13005/bbra/2539.
Mogouong, J., Constant, P., Legendre, P., and Guertin, C. (2021). The phyllosphere microbiome of host trees contributes more than leaf phytochemicals to variation in the Agrilus planipennis Fairmaire gut microbiome structure. Sci. Rep. 11, 15911. doi: 10.1038/s41598-021-95146-9.
Mohamad, O. A. A., Liu, Y.-H., Li, L., Ma, J.-B., Huang, Y., Gao, L., et al. (2022). synergistic plant-microbe interactions between endophytic Actinobacteria and their role in plant growth promotion and biological control of Cotton under salt stress. Microorganisms 10, 867. doi: 10.3390/microorganisms10050867.
Mongkolporn, O., and Taylor, P. W. J. (2018). Chili anthracnose: Colletotrichum taxonomy and pathogenicity. Plant Pathol. 67, 1255–1263. doi: 10.1111/ppa.12850.
Mulissa, J. M., Carolin, R. L., Ruth, A. S., and Fassil, A. (2016). Phosphate solubilization and multiple plant growth promoting properties of rhizobacteria isolated from Chickpea (Cicer aeritinum L.) producing areas of Ethiopia. Afr. J. Biotechnol. 15, 1899–1912. doi: 10.5897/AJB2015.15172.
Munir, N., Hanif, M., Abideen, Z., Sohail, M., El-Keblawy, A., Radicetti, E., et al. (2022). Mechanisms and strategies of plant microbiome interactions to mitigate abiotic stresses. Agronomy 12, 2069. doi: 10.3390/agronomy12092069.
Musonerimana, S., Bez, C., Licastro, D., Habarugira, G., Bigirimana, J., and Venturi, V. (2020). Pathobiomes revealed that Pseudomonas fuscovaginae and Sarocladium oryzae are independently associated with rice sheath rot. Microb. Ecol. 80, 627–642. doi: 10.1007/s00248-020-01529-2.
Muyzer, G., De Waal, E. C., and Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700. doi: 10.1128/aem.59.3.695-700.1993.
Newman, M. E. J. (2006). Modularity and community structure in networks. Proc. Natl. Acad. Sci. U.S.A. 103, 8577–8582. doi: 10.1073/pnas.0601602103.
Nutaratat, P., Srisuk, N., Arunrattiyakorn, P., and Limtong, S. (2014). Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from Rice and Sugar cane leaves in Thailand. Fungal Biol. 118, 683–694. doi: 10.1016/j.funbio.2014.04.010.
Oh, J. Y., Mannaa, M., Han, G. D., Chun, S.-C., and Kim, K. D. (2016a). First report of Aspergillus awamori as a fungal pathogen of Garlic (Allium sativum L.). Crop Prot. 85, 65–70. doi: 10.1016/j.cropro.2016.03.019.
Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R. (2020) Vegan: community ecology package. R package version 2.6–2. Available at: https://CRAN.R-project.org/package=vegan
Pacheco-Moreno, A., Bollmann-Giolai, A., Chandra, G., Brett, P., Davies, J., Thornton, O., et al. (2023). Barley cultivars shape the abundance, phenotype, genotype and gene expression of their associated microbiota by differential root exudate secretion. Microbiology doi: 10.1101/2023.07.05.547901.
Paterson, E., Gebbing, T., Abel, C., Sim, A., and Telfer, G. (2007). Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol. 173, 600–610. doi: 10.1111/j.1469-8137.2006.01931.x.
Pathak, C. S., Black, L. L., Cheng, S. J., Wang, T. C., and Ko, S. S. (2001). Breeding onions for Stemphylium leaf blight resistance. Acta Hortic., 77–81. doi: 10.17660/ActaHortic.2001.555.7.
Paul, S. K., Gupta, D. R., Mahapatra, C. K., Rani, K., and Islam, T. (2023). Morpho-molecular, cultural and pathological characterization of Athelia rolfsii causing southern blight disease on common bean. Heliyon 9, e16136. doi: 10.1016/j.heliyon.2023.e16136.
Peiffer, J. A., Spor, A., Koren, O., Jin, Z., Tringe, S. G., Dangl, J. L., et al. (2013). Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. U.S.A. 110, 6548–6553. doi: 10.1073/pnas.1302837110.
Pellegrini, M., Spera, D. M., Ercole, C., and Del Gallo, M. (2021). Allium cepa L. inoculation with a consortium of plant growth-promoting bacteria: effects on plants, soil, and the autochthonous microbial community. Microorganisms 9, 639. doi: 10.3390/microorganisms9030639.
Perez, P. (2020). Chemical management of Anthracnose-Twister (Colletotrichum gloeosporioides and Fusarium fujikuroi) disease of onion (Allium cepa). Plant Pathol. 10, 198–216. doi: 10.5943/ppq/10/1/19.
Pérez-Cobas, A. E., Gomez-Valero, L., and Buchrieser, C. (2020). Metagenomic approaches in microbial ecology: an update on whole-genome and marker gene sequencing analyses. Microb. Genom. 6. doi: 10.1099/mgen.0.000409.
Peschel, S., Müller, C. L., von Mutius, E., Boulesteix, A.-L., and Depner, M. (2021). NetCoMi: Network construction and comparison for microbiome data in R. Brief. Bioinf. 22,1-18. https://doi.org/10.1093/bib/bbaa290
Pirttilä, A. M., Mohammad Parast Tabas, H., Baruah, N., and Koskimäki, J. J. (2021). Biofertilizers and biocontrol agents for agriculture: how to identify and develop new potent microbial strains and traits. Microorganisms 9, 817. doi: 10.3390/microorganisms9040817.
Prigigallo, M. I., Gómez-Lama Cabanás, C., Mercado-Blanco, J., and Bubici, G. (2022). Designing a synthetic microbial community devoted to biological control: The case study of Fusarium wilt of banana. Front. Microbiol. 13, 967885. doi: 10.3389/fmicb.2022.967885.
Qian, X., Li, H., Wang, Y., Wu, B., Wu, M., Chen, L., et al. (2019). Leaf and root endospheres harbor lower fungal diversity and less complex fungal co-occurrence patterns than rhizosphere. Front. Microbiol. 10, 1015. doi: 10.3389/fmicb.2019.01015.
Qiu, Z., Verma, J. P., Liu, H., Wang, J., Batista, B. D., Kaur, S., et al. (2022). Response of the plant core microbiome to Fusarium oxysporum infection and identification of the pathobiome. Environ. Microbiol. 24, 4652–4669. doi: 10.1111/1462-2920.16194.
Qu, Q., Zhang, Z., Peijnenburg, W. J. G. M., Liu, W., Lu, T., Hu, B., et al. (2020). Rhizosphere microbiome assembly and its impact on plant growth. J. Agric. Food Chem. 68, 5024–5038. doi: 10.1021/acs.jafc.0c00073.
R team (2022). R: A language and environment for statistical computing.
Rabha, A. J., Naglot, A., Sharma, G. D., Gogoi, H. K., and Veer, V. (2014). In Vitro evaluation of antagonism of endophytic Colletotrichum gloeosporioides against potent fungal pathogens of Camellia sinensis. Indian J. Microbiol. 54, 302–309. doi: 10.1007/s12088-014-0458-8.
Ranathunge, N. P., Mongkolporn, O., Ford, R., and Taylor, P. W. J. (2012). Colletotrichum truncatum pathosystem on Capsicum spp: infection, colonization and defence mechanisms. Australas. Plant Pathol. 41, 463–473. doi: 10.1007/s13313-012-0156-0.
Rastogi, G., Sbodio, A., Tech, J. J., Suslow, T. V., Coaker, G. L., and Leveau, J. H. J. (2012). Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J. 6, 1812–1822. doi: 10.1038/ismej.2012.32.
Ren, H., Wang, H., Qi, X., Yu, Z., Zheng, X., Zhang, S., et al. (2021). The damage caused by decline disease in bayberry plants through changes in soil properties, rhizosphere microbial community structure and metabolites. Plants 10, 2083. doi: 10.3390/plants10102083.
Rizaludin, M. S., Stopnisek, N., Raaijmakers, J. M., and Garbeva, P. (2021). The chemistry of stress: understanding the ‘Cry for Help’ of plant roots. Metabolites 11, 357. doi: 10.3390/metabo11060357.
Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F. (2016). VSEARCH: a versatile open-source tool for metagenomics. Peer J. 4, e2584. doi: 10.7717/peerj.2584.
Rojas, E. C., Jensen, B., Jørgensen, H. J. L., Latz, M. A. C., Esteban, P., Ding, Y., et al. (2020a). Selection of fungal endophytes with biocontrol potential against Fusarium head blight in wheat. Biol. Control 144, 104222. doi: 10.1016/j.biocontrol.2020.104222.
Rojas, E. C., Sapkota, R., Jensen, B., Jørgensen, H. J. L., Henriksson, T., Jørgensen, L. N., et al. (2020b). Fusarium head blight modifies fungal endophytic communities during infection of wheat spikes. Microb. Ecol. 79, 397–408. doi: 10.1007/s00248-019-01426-3.
Roylawar, P., Khandagale, K., Randive, P., Shinde, B., Murumkar, C., Ade, A., et al. (2021). Piriformospora indica primes onion response against Stemphylium leaf blight disease. Pathogens 10, 1085. doi: 10.3390/pathogens10091085.
Rudrappa, T., Czymmek, K. J., Paré, P. W., and Bais, H. P. (2008). Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol. 148, 1547–1556. doi: 10.1104/pp.108.127613.
Runge, P., Ventura, F., Kemen, E., and Stam, R. (2023). Distinct phyllosphere microbiome of wild tomato species in Central Peru upon dysbiosis. Microb. Ecol. 85, 168–183. doi: 10.1007/s00248-021-01947-w.
Russel, J. 2021. MicEco: Various functions for microbial community data. R package version 0.9, 15.
Salonen, A., Nikkilä, J., Jalanka-Tuovinen, J., Immonen, O., Rajilić-Stojanović, M., Kekkonen, R. A., et al. (2010). Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: Effective recovery of bacterial and archaeal DNA using mechanical cell lysis. J. Microbiol. Methods 81, 127–134. doi: 10.1016/j.mimet.2010.02.007.
Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A. 74, 5463–5467. doi: 10.1073/pnas.74.12.5463.
Santos, L. F., and Olivares, F. L. (2021). Plant microbiome structure and benefits for sustainable agriculture. Current Plant Biol. 26, 100198. doi: 10.1016/j.cpb.2021.100198.
Sasaki, K., Nakahara, K., Tanaka, S., Shigyo, M., and Ito, S. (2015). Genetic and pathogenic variability of Fusarium oxysporum f. sp. cepae isolated from onion and Welsh onion in Japan. Phytopathology® 105, 525–532. doi: 10.1094/PHYTO-06-14-0164-R.
Sasaki, T., Igarashi, Y., Ogawa, M., and Furumai, T. (2002). Identification of 6-Prenylindole as an antifungal metabolite of Streptomyces sp. TP-A0595 and synthesis and bioactivity of 6-substituted indoles. J. Antibiot. 55, 1009–1012. doi: 10.7164/antibiotics.55.1009.
Savian, F., Marroni, F., Ermacora, P., Firrao, G., and Martini, M. (2022). A metabarcoding approach to investigate fungal and oomycete communities associated with Kiwifruit vine decline syndrome in Italy. Phytobiomes J. 6, 290–304. doi: 10.1094/PBIOMES-03-22-0019-R.
Schlaeppi, K., and Bulgarelli, D. (2015). The plant microbiome at work. MPMI 28, 212–217. doi: 10.1094/MPMI-10-14-0334-FI.
Schlechter, R. O., Miebach, M., and Remus-Emsermann, M. N. P. (2019). Driving factors of epiphytic bacterial communities: A review. J. Adv. Res. 19, 57–65. doi: 10.1016/j.jare.2019.03.003.
Schreiter, S., Ding, G.-C., Heuer, H., Neumann, G., Sandmann, M., Grosch, R., et al. (2014). Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Front. Microbiol. 5. doi: 10.3389/fmicb.2014.00144.
Scibetta, S., Schena, L., Abdelfattah, A., Pangallo, S., and Cacciola, S. O. (2018). Selection and experimental evaluation of universal primers to study the fungal microbiome of higher plants. Phytobiomes J. 2, 225–236. doi: 10.1094/PBIOMES-02-18-0009-R.
Shokralla, S., Spall, J. L., Gibson, J. F., and Hajibabaei, M. (2012). Next‐generation sequencing technologies for environmental DNA research. Mol. Ecol. 21, 1794–1805. doi: 10.1111/j.1365-294X.2012.05538.x.
Singh, R. K., Singh, P., Guo, D.-J., Sharma, A., Li, D.-P., Li, X., et al. (2021). Root-derived endophytic diazotrophic bacteria Pantoea cypripedii AF1 and Kosakonia arachidis EF1 promote nitrogen assimilation and growth in Sugarcane. Front. Microbiol. 12, 774707. doi: 10.3389/fmicb.2021.774707.
Smith, B. (2011). Optimising bacterial DNA extraction from faecal samples: Comparison of three methods. Open Microbiol. J. 5, 14–17. doi: 10.2174/1874285801105010014.
Sohrabi, R., Paasch, B. C., Liber, J. A., and He, S. Y. (2023). Phyllosphere microbiome. Annu. Rev. Plant Biol. 74, 539–568. doi: 10.1146/annurev-arplant-102820-032704.
Strange, R. N., and Scott, P. R. (2005). Plant disease: A threat to global food security. Annu. Rev. Phytopathol. 43, 83–116. doi: 10.1146/annurev.phyto.43.113004.133839.
Tao, G., Liu, Z.-Y., Liu, F., Gao, Y.-H., and Cai, L. (2013). Endophytic Colletotrichum species from Bletilla ochracea (Orchidaceae), with descriptions of seven new species. Fungal Divers. 61, 139–164. doi: 10.1007/s13225-013-0254-5.
Tebbe, C. C., and Vahjen, W. (1993). Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl. Environ. Microbiol. 59, 2657–2665. doi: 10.1128/aem.59.8.2657-2665.1993.
Toju, H., Tanabe, A. S., Yamamoto, S., and Sato, H. (2012). High-coverage its primers for the DNA-based identification of Ascomycetes and Basidiomycetes in environmental samples. PLoS ONE 7, e40863. doi: 10.1371/journal.pone.0040863.
Tsai, W.-A., Lin, P.-R., and Huang, C.-J. (2019). First report of Dickeya fangzhongdai causing soft rot disease of Welsh onion in Taiwan. J. Plant Pathol. 101, 797–798. doi: 10.1007/s42161-019-00264-z.
Tsai, Y. C. (2019). Guideline for observation of fungicide reduction on Welsh onion disease in winter season (Chinese). Hualien District Agricultural Research and Extension Station, Council of Agriculture, Crop Environment Section, Taiwan.
Usyk, M., Zolnik, C. P., Patel, H., Levi, M. H., and Burk, R. D. (2017). Novel ITS1 fungal primers for characterization of the mycobiome. mSphere 2, e00488-17. doi: 10.1128/mSphere.00488-17.
Vargas Gil, S., Meriles, J. M., Haro, R., Casini, C., and March, G. J. (2008). Crop rotation and tillage systems as a proactive strategy in the control of peanut fungal soilborne diseases. BioControl 53, 685–698. doi: 10.1007/s10526-007-9105-1.
Vayssier-Taussat, M., Albina, E., Citti, C., Cosson, J.-F., Jacques, M.-A., Lebrun, M.-H., et al. (2014). Shifting the paradigm from pathogens to pathobiome: new concepts in the light of meta-omics. Front. Cell. Infect. Microbiol. 4. doi: 10.3389/fcimb.2014.00029.
Vieira, W. A. S., Michereff, S. J., De Morais, M. A., Hyde, K. D., and Câmara, M. P. S. (2014). Endophytic species of Colletotrichum associated with mango in northeastern Brazil. Fungal Divers. 67, 181–202. doi: 10.1007/s13225-014-0293-6.
Vohník, M., and Réblová, M. (2023). Fungi in hair roots of Vaccinium spp. (Ericaceae) growing on decomposing wood: colonization patterns, identity, and in vitro symbiotic potential. Mycorrhiza 33, 69–86. doi: 10.1007/s00572-023-01101-z.
Vorholt, J. A. (2012). Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840. doi: 10.1038/nrmicro2910.
Wang, C.-H., Tsai, Y.-C., Tsai, I., Chung, C.-L., Lin, Y.-C., Hung, T.-H., et al. (2021). Stemphylium leaf blight of Welsh onion (Allium fistulosum): An emerging disease in Sanxing, Taiwan. Plant Dis. 105, 4121–4131. doi: 10.1094/PDIS-11-20-2329-RE.
Wang, J.-Y., Jayasinghe, H., Cho, Y.-T., Tsai, Y.-C., Chen, C.-Y., Doan, H. K., et al. (2023). Diversity and biocontrol potential of endophytic fungi and bacteria associated with healthy Welsh onion leaves in Taiwan. Microorganisms 11, 1801. doi: 10.3390/microorganisms11071801.
Wang, X., Wang, C., Chen, R., Wang, W., Tian, X., and Wang, D. (2022). Effects of maize variety on the structure of maize phyllosphere fungal communities. In Review doi: 10.21203/rs.3.rs-2307907/v1.
Wang, Y., Wang, C., Gu, Y., Wang, P., Song, W., Ma, J., et al. (2020). The variability of bacterial communities in both the endosphere and ectosphere of different niches in Chinese chives (Allium tuberosum). PLoS ONE 15, e0227671. doi: 10.1371/journal.pone.0227671.
Wang, Y., Wang, L., Suo, M., Qiu, Z., Wu, H., Zhao, M., et al. (2022). regulating root fungal community using Mortierella alpina for Fusarium oxysporum resistance in Panax ginseng. Front. Microbiol. 13, 850917. doi: 10.3389/fmicb.2022.850917.
Wei, F., Feng, H., Zhang, D., Feng, Z., Zhao, L., Zhang, Y., et al. (2021). Composition of rhizosphere microbial communities associated with healthy and verticillium wilt diseased cotton plants. Front. Microbiol. 12, 618169. doi: 10.3389/fmicb.2021.618169.
Wei, F., Hu, X., and Xu, X. (2016). Dispersal of Bacillus subtilis and its effect on strawberry phyllosphere microbiota under open field and protection conditions. Sci. Rep. 6, 22611. doi: 10.1038/srep22611.
Whipps, C. M., Butler, W. R., Pourahmad, F., Watral, V. G., and Kent, M. L. (2007). Molecular systematics support the revival of Mycobacterium salmoniphilum (ex Ross 1960) sp. nov., nom. rev., a species closely related to Mycobacterium chelonae. Int. J. Syst. Evol. Microbiol. 57, 2525–2531. doi: 10.1099/ijs.0.64841-0.
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis, 2nd ed. Springer-Verlag, New York, NY, U.S.A.
Wu, Z., Hao, Z., Zeng, Y., Guo, L., Huang, L., and Chen, B. (2015). Molecular characterization of microbial communities in the rhizosphere soils and roots of diseased and healthy Panax notoginseng. Antonie van Leeuwenhoek 108, 1059–1074. doi: 10.1007/s10482-015-0560-x.
Xiang, L.-G., Wang, H.-C., Cai, L.-T., Guo, T., Luo, F., Hsiang, T., et al. (2022). Variations in leaf phyllosphere microbial communities and development of tobacco brown spot before and after fungicide application. Front. Microbiol. 13, 1068158. doi: 10.3389/fmicb.2022.1068158.
Xueliang, T., Dan, X., Tingting, S., Songyu, Z., Ying, L., and Diandong, W. (2020). Plant resistance and leaf chemical characteristic jointly shape phyllosphere bacterial community. World J. Microbiol. Biotechnol. 36, 139. doi: 10.1007/s11274-020-02908-0.
Yan, L., Song, W., Yu, D., Kishan Sudini, H., Kang, Y., Lei, Y., et al. (2022). Genetic, phenotypic, and pathogenic variation among Athelia rolfsii, the causal agent of Peanut stem rot in China. Plant Dis. 106, 2722–2729. doi: 10.1094/PDIS-08-21-1681-RE.
Yan, Y., Kuramae, E. E., De Hollander, M., Klinkhamer, P. G. L., and Van Veen, J. A. (2017). Functional traits dominate the diversity-related selection of bacterial communities in the rhizosphere. ISME J. 11, 56–66. doi: 10.1038/ismej.2016.108.
Yang, F., Jiang, H., Chang, G., Liang, S., Ma, K., Cai, Y., et al. (2023). Effects of rhizosphere microbial communities on Cucumber fusarium wilt disease suppression. Microorganisms 11, 1576. doi: 10.3390/microorganisms11061576.
Yang, F., Zhang, J., Zhang, H., Ji, G., Zeng, L., Li, Y., et al. (2020). Bacterial blight induced shifts in endophytic microbiome of rice leaves and the enrichment of specific bacterial strains with pathogen antagonism. Front. Plant Sci. 11, 963. doi: 10.3389/fpls.2020.00963.
Yao, H., Sun, X., He, C., Maitra, P., Li, X.-C., and Guo, L.-D. (2019). Phyllosphere epiphytic and endophytic fungal community and network structures differ in a tropical mangrove ecosystem. Microbiome 7, 57. doi: 10.1186/s40168-019-0671-0.
Yu, Y.-H., Cho, Y.-T., Xu, Y.-C., Wong, Z.-J., Tsai, Y.-C., and Ariyawansa, H. (2023). Identifying and controlling anthracnose caused by Colletotrichum taxa of Welsh onion in Sanxing, Taiwan. Phytopathology®, PHYTO-08-23-0301-R. doi: 10.1094/PHYTO-08-23-0301-R.
Yuan, C.-Y., Huang, C.-W., Lin, C.-P., and Huang, J.-H. (2023). First report of anthracnose-twister disease of Welsh onion caused by Colletotrichum siamense in Taiwan. J. Gen. Plant Pathol. 89, 288–291. doi: 10.1007/s10327-023-01132-6.
Yurgel, S. N., Sallato C., B., and Cheeke, T. E. (2023). exploring microbial dysbiosis in orchards affected by little cherry disease. Phytobiomes J. PBIOMES-10-22-0072-R. doi: 10.1094/PBIOMES-10-22-0072-R.
Zapata-Sarmiento, D. H., Palacios-Pala, E. F., Rodríguez-Hernández, A. A., Medina Melchor, D. L., Rodríguez-Monroy, M., and Sepúlveda-Jiménez, G. (2020). Trichoderma asperellum, a potential biological control agent of Stemphylium vesicarium, on onion (Allium cepa L.). Biol. Control 140, 104105. doi: 10.1016/j.biocontrol.2019.104105.
Zhang, L., Zhang, W., Li, Q., Cui, R., Wang, Z., Wang, Y., et al. (2020). Deciphering the root endosphere microbiome of the desert plant Alhagi sparsifolia for drought resistance-promoting bacteria. Appl. Environ. Microbiol. 86, e02863-19. doi: 10.1128/AEM.02863-19.
Zhang, Y., Cao, B., Pan, Y., Tao, S., and Zhang, N. (2023). Metabolite-mediated responses of phyllosphere microbiota to rust infection in two Malus Species. Microbiol. Spectr. 11, e03831-22. doi: 10.1128/spectrum.03831-22.
Zheng, B., He, D., Liu, P., Wang, R., Li, B., and Chen, Q. (2021). Occurrence of collar rot caused by Athelia rolfsii on soybean in China. Can. J. Plant Pathol. 43, 43–47. doi: 10.1080/07060661.2019.1703819.
Zheng, Y., Feng, Z., Wang, J., Huang, X., Lei, L., Zhang, X., et al. (2021). Wheat-root associated prokaryotic community: interplay between plant selection and location. Plant Soil 464, 183–197. doi: 10.1007/s11104-021-04945-6.
Zhou, Q., Zhang, X., He, R., Wang, S., Jiao, C., Huang, R., et al. (2019). The composition and assembly of bacterial communities across the rhizosphere and phyllosphere compartments of Phragmites Australis. Diversity 11, 98. doi: 10.3390/d11060098.
Zhu, Y., Xiong, C., Wei, Z., Chen, Q., Ma, B., Zhou, S., et al. (2022). Impacts of global change on the phyllosphere microbiome. New Phytol. 234, 1977–1986. doi: 10.1111/nph.17928.
Zimmerman, N., Izard, J., Klatt, C., Zhou, J., and Aronson, E. (2014). The unseen world: environmental microbial sequencing and identification methods for ecologists. Front. Ecol. Environ. 12, 224–231. doi: 10.1890/130055.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91472-
dc.description.abstractNonezh_TW
dc.description.abstractPlants are associated with a large diversity of microbes, and these complex plant-associated microbial communities are critical for plant health. Welsh onion (Allium fistulosum L.) holds a significant place as one of the oldest and key vegetable crops cultivated in Taiwan. The leaf of the Welsh onion is one of the famous spices in Taiwanese cuisine, thus, it is crucial to control foliar diseases. In recent years, Welsh onion cultivation in Taiwan has been severely threatened by the occurrence of leaf blight disease, greatly affecting their yield and quality. However, the overall picture of microbiota associated with the Welsh onion plant is still not clear as most of the recent etiological investigations were heavily based on the isolation of microorganisms from diseased plants. Therefore, studying the diversity of fungal communities associated with the leaf blight symptoms of Welsh onion may provide information regarding key taxa possibly involved in the disease. This investigation was primarily designed to understand the key fungal communities associated with leaf blight and to identify major taxa involved in the disease. Additionally, the present study aimed to discover potentially beneficial fungi in asymptomatic plants and further evaluate any shifts in both phyllosphere and rhizosphere mycobiome assembly due to foliar pathogen infection. Amplicon sequencing targeting the Internal Transcribed Spacer (ITS) 1 region of rRNA was employed for these analyses. The alpha and beta-diversities analyses were used to compare the fungal communities and significant fungal groups were recognized based on linear discriminant analyses. Based on the results of relative abundance data and co-occurrence networks in symptomatic plants, the present study revealed that the leaf blight of Welsh onion in Sanxing, Taiwan is a disease complex mainly involving Stemphylium and Colletotrichum taxa. Additionally, fungal genera such as Aspergillus, Athelia and Colletotrichum were abundantly found associated with the symptomatic rhizosphere. Furthermore, genera such as Chaetomium, Hannaella, and Itersonilia were identified from the leaves of asymptomatic plants. Alpha diversity in some fields indicated a significant increase in species richness in the symptomatic phyllosphere compared to the asymptomatic phyllosphere. These results will enhance our knowledge of pathogens of Welsh onion associated with leaf blight symptoms and potential biocontrol agents and will assist in developing effective disease management strategies to control the progress of the disease.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-26T16:39:16Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-01-26T16:39:16Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgments i
Abstract ii
TABLE OF CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES vii
1. Introduction 1
1.1 Background 1
1.2 Plant microbiome 3
1.3 Benefits of plant microbiome 6
1.4 Factors affecting plant microbiome 7
1.4.1 Effects of climate 7
1.4.2 Effect of agricultural practices 8
1.4.3 Effect of plant genotype 10
1.4.4 Effect of pathogens 11
1.5 Manipulation of plant microbiome and biocontrol strategies 13
1.6 Study of plant microbiome 15
1.6.1 Culture dependent techniques 15
1.6.2 Culture independent techniques 15
1.7 Welsh onion 17
1.7.1 Foliar diseases of Welsh onion 17
1.7.2 Management of foliar diseases of Welsh onion 18
1.7.3 Welsh onion associated microbes and its microbiome 19
1.8 Aims of the study 21
2. Materials and methods 22
2.1 Sample collection and preprocessing 22
2.2 Total DNA extraction and amplicon sequencing 25
2.3 Sequence data processing 27
3. Results 31
3.1 Quality assessment by FASTQC tool 31
3.2 Optimization of DNA extraction protocol 32
3.3 Fungal community differences in leaves of asymptomatic and symptomatic Welsh onion plants 32
3.4 Fungal community differences in rhizosphere of asymptomatic and symptomatic Welsh onion plants 43
4. Discussion 52
5. Conclusion 64
6. References 65
7. Appendix 98
-
dc.language.isoen-
dc.title探討臺灣有無感染葉部病徵之青蔥微生物相分析zh_TW
dc.titleMycobiome profiling of asymptomatic and symptomatic Welsh onion naturally infected by the leaf blight pathogens in Taiwanen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張皓巽 博士;楊姍樺 博士;劉勃佑 博士zh_TW
dc.contributor.oralexamcommitteeHao-Xun Chang;Shan Hua Yang;Po-Yu Liuen
dc.subject.keywordα多樣性,擴增子定序,β多樣性,共現網絡,微生物相,葉圏,根際,zh_TW
dc.subject.keywordalpha diversity,amplicon sequencing,beta diversity,co-occurrence networks,microbiota,phyllosphere,rhizosphere,en
dc.relation.page111-
dc.identifier.doi10.6342/NTU202400086-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-01-19-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept植物病理與微生物學系-
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
1.95 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved