Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91470
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝馬利歐zh_TW
dc.contributor.advisorMario Hofmannen
dc.contributor.author黃鼎鈞zh_TW
dc.contributor.authorTing-Chun Huangen
dc.date.accessioned2024-01-26T16:38:46Z-
dc.date.available2024-01-27-
dc.date.copyright2024-01-26-
dc.date.issued2023-
dc.date.submitted2024-01-11-
dc.identifier.citation[1] SA Wolf, DD Awschalom, RA Buhrman, JM Daughton, von S von Molnár, ML Roukes, A Yu Chtchelkanova, and DM Treger. Spintronics: a spin-based electronics vision for the future. science, 294(5546):1488–1495, 2001.
[2] Fabio Pulizzi. Spintronics. Nature materials, 11(5):367–367, 2012.
[3] Igor Žutić, Jaroslav Fabian, and S Das Sarma. Spintronics: Fundamentals and applications. Reviews of modern physics, 76(2):323, 2004.
[4] Bernard Dieny, Ioan Lucian Prejbeanu, Kevin Garello, Pietro Gambardella, Paulo Freitas, Ronald Lehndorff, Wolfgang Raberg, Ursula Ebels, Sergej O Demokritov, Johan Akerman, et al. Opportunities and challenges for spintronics in the microelectronics industry. Nature Electronics, 3(8):446–459, 2020.
[5] Yiming Huai, Frank Albert, Paul Nguyen, Mahendra Pakala, and Thierry Valet. Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions. Applied Physics Letters, 84(16):3118–3120, 2004.
[6] Jun-Yang Chen, Yong-Chang Lau, JMD Coey, Mo Li, and Jian-Ping Wang. High performance mgo-barrier magnetic tunnel junctions for flexible and wearable spintronic applications. Scientific reports, 7(1):42001, 2017.
[7] K Ryu. A magnetic tunnel junction based zero standby leakage current retention flip-flo. IEEE Trans. VLSF System, (99):1–10, 2011.
[8] De-Hua Han, Jian-Gang Zhu, and Jack H Judy. Nife/nio bilayers with high exchange coupling and low coercive fields. Journal of applied physics, 81(8):4996–4998, 1997.
[9] L. Wu et al. Atomically sharp interface enabled ultrahigh-speed non-volatile memory devices. Nature Nanotechnology, 16(8):882–887, 2021.
[10] Haikel Sediri, Debora Pierucci, Mahdi Hajlaoui, Hugo Henck, Gilles Patriarche, Yannick J Dappe, Sheng Yuan, Bérangère Toury, Rachid Belkhou, Mathieu G Silly, et al. Atomically sharp interface in an h-bn-epitaxial graphene van der waals heterostructure. Scientific reports, 5(1):16465, 2015.
[11] M. Piquemal-Banci et al. 2d-mtjs: Introducing 2d materials in magnetic tunnel junctions. Journal of Physics D: Applied Physics, 50(20):203002, 2017.
[12] V. Karpan et al. Graphite and graphene as perfect spin filters. Physical Review Letters, 99(17):176602, 2007.
[13] Y. Zhang et al. Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature, 438(7065):201–204, 2005.
[14] K. S. Novoselov et al. Two-dimensional gas of massless dirac fermions in graphene. Nature, 438(7065):197–200, 2005.
[15] E. Cobas et al. Graphene as a tunnel barrier: Graphene-based magnetic tunnel junctions. Nano Letters, 12(6):3000–3004, 2012.
[16] Ryuta Yagi, Taiki Hirahara, Ryoya Ebisuoka, Tomoaki Nakasuga, Shingo Tajima, Kenji Watanabe, and Takashi Taniguchi. Low-energy band structure and even-odd layer number effect in ab-stacked multilayer graphene. Scientific Reports, 8(1):13018, 2018.
[17] J. A. Miwa et al. Electronic structure of epitaxial single-layer mos2. Physical Review Letters, 114(4):046802, 2015.
[18] D. R. Klein et al. Electrical switching of a bistable moiré superconductor. Nature Nanotechnology, 18(4):331–335, 2023.
[19] J. Meng et al. Vertical graphene spin valve with ohmic contacts. Nanoscale, 5(19):8894–8898, 2013.
[20] J.-J. Chen et al. Layer-by-layer assembly of vertically conducting graphene devices. Nature Communications, 4(1):1921, 2013.
[21] A. Krayev et al. Dry transfer of van der waals crystals to noble metal surfaces to enable characterization of buried interfaces. ACS Applied Materials & Interfaces, 11(41):38218–38225, 2019.
[22] K. Jo et al. Direct optoelectronic imaging of 2d semiconductor–3d metal buried interfaces. ACS Nano, 15(3):5618–5630, 2021.
[23] T.M. Mohiuddin et al. Graphene in multilayered cpp spin valves. IEEE Transactions on Magnetics, 44(11):2624–2627, 2008.
[24] J.-H. Park and H.-J. Lee. Out-of-plane magnetoresistance in ferromagnet/graphene/ferromagnet spin-valve junctions. Physical Review B, 89(16):165417, 2014.
[25] P. Asshoff et al. Magnetoresistance of vertical co-graphene-nife junctions controlled by charge transfer and proximity-induced spin splitting in graphene. 2D Materials, 4(3):031004, 2017.
[26] S. Gardelis et al. Spin-valve effects in a semiconductor field-effect transistor: A spintronic device. Physical Review B, 60(11):7764, 1999.
[27] M.F. Khan et al. Layer dependent magnetoresistance of vertical mos 2 magnetic tunnel junctions. Nanoscale, 10(35):16703–16710, 2018.
[28] T. Ikuno et al. Electron transport properties of si nanosheets: Transition from direct tunneling to fowler-nordheim tunneling. Applied Physics Letters, 99(2):023107, 2011.
[29] H. Gu et al. An overview of the magnetoresistance phenomenon in molecular systems. Chemical Society Reviews, 42(13):5907–5943, 2013.
[30] Janice Nickel. Magnetoresistance overview. Hewlett-Packard Laboratories, Technical Publications Department Palo Alto …, 1995.
[31] M.N. Baibich et al. Giant magnetoresistance of (001) fe/(001) cr magnetic superlattices. Physical Review Letters, 61(21):2472, 1988.
[32] S. Dash et al. Silicon spintronics at room temperature. In Spintronics III. SPIE, 2010.
[33] O. Van’t Erve et al. Spin transport and hanle effect in silicon nanowires using graphene tunnel barriers. Nature Communications, 6(1):7541, 2015.
[34] O.M. Van’t Erve et al. Graphene and monolayer transition-metal dichalcogenides: Properties and devices. Journal of Materials Research, 31(7):845–877, 2016.
[35] W. Han et al. Graphene spintronics. Nature Nanotechnology, 9(10):794–807, 2014.
[36] Y. Ahn et al. Thermal annealing of graphene to remove polymer residues. Materials Express, 6(1):69–76, 2016.
[37] Y. Liu et al. The split-up of g band and 2d band in temperature-dependent raman spectra of suspended graphene. Optics & Laser Technology, 139:106960, 2021.
[38] Q.-Q. Li et al. Raman spectroscopy at the edges of multilayer graphene. Carbon, 85:221–224, 2015.
[39] H. Leamy. Charge collection scanning electron microscopy. Journal of Applied Physics, 53(6):R51–R80, 1982.
[40] J.-W. Ci et al. Modulations for quantum electronic material transports by vacuum annealing methods. In SPIN. World Scientific, 2023.
[41] T.-C. Huang et al. Realizing high-quality interfaces in two-dimensional material spin valves. ACS Materials Letters, 6:94–99, 2023.
[42] M. Moosmann et al. Air–water interface of submerged superhydrophobic surfaces imaged by atomic force microscopy. Beilstein Journal of Nanotechnology, 8(1):1671–1679, 2017.
[43] L. Smardz, U. Köbler, and W. Zinn. Oxidation kinetics of thin and ultrathin cobalt films. Journal of Applied Physics, 71(10):5199–5204, 1992.
[44] M.Z. Iqbal et al. Interlayer quality dependent graphene spin valve. Journal of Magnetism and Magnetic Materials, 422:322–327, 2017.
[45] T. Kuczmik et al. Hanle spin precession in a two-dimensional electron system. Physical Review B, 95(19):195315, 2017.
[46] T. Maassen et al. Contact-induced spin relaxation in hanle spin precession measurements. Physical Review B, 86(23):235408, 2012.
[47] W. Han and R.K. Kawakami. Spin relaxation in single-layer and bilayer graphene. Physical Review Letters, 107(4):047207, 2011.
[48] M. Brzhezinskaya et al. Engineering of numerous moiré superlattices in twisted multilayer graphene for twistronics and straintronics applications. ACS Nano, 15(7):12358–12366, 2021.
[49] P. Kumar, A. Kumar, and D. Kaur. Spin valve effect in sputtered fl-mos2 and ferromagnetic shape memory alloy based magnetic tunnel junction. Ceramics International, 47(4):4587–4594, 2021.
[50] J. Ni et al. Electric control of nife/nio exchange bias through resistive switching under zero magnetic field. Journal of Materials Science: Materials in Electronics, 34(6):552, 2023.
[51] I. Lyapilin, M. Okorokov, and V. Ustinov. Spin effects induced by thermal perturbation in a normal metal/magnetic insulator system. Physical Review B, 91(19):195309, 2015.
[52] G. Yu et al. Interface reaction of nio/nife and its influence on magnetic properties. Applied Physics Letters, 78(12):1706–1708, 2001.
[53] C. Catlow et al. The basic atomic processes of corrosion i. electronic conduction in mno, coo and nio. Philosophical Magazine, 35(1):177–187, 1977.
[54] N.J. Usharani and S. Bhattacharya. Effect of defect states in the optical and magnetic properties of nanocrystalline nio synthesized in a single step by an aerosol process. Ceramics International, 46(5):5671–5680, 2020.
[55] Q. Xie et al. Giant enhancements of perpendicular magnetic anisotropy and spinorbit torque by a mos2 layer. Advanced Materials, 31(21):1900776, 2019.
[56] Marta Galbiati. Mos2-based vertical spintronic devices. Graphene2017, 2017.
[57] K. Dolui et al. Efficient spin injection and giant magnetoresistance in fe/mos2/fe junctions. Physical Review B, 90(4):041401, 2014.
[58] C. Jiang et al. Robust half-metallic magnetism in two-dimensional fe/mos2. The Journal of Physical Chemistry C, 122(37):21617–21622, 2018.
[59] C.-I. Lu et al. Spontaneously induced magnetic anisotropy in an ultrathin co/mos2 heterojunction. Nanoscale Horizons, 5(7):1058–1064, 2020.
[60] A. Dankert et al. Tunnel magnetoresistance with atomically thin two-dimensional hexagonal boron nitride barriers. Nano Research, 8:1357–1364, 2015.
[61] M.-B. Martin et al. Protecting nickel with graphene spin-filtering membranes: A single layer is enough. Applied Physics Letters, 107(1), 2015.
[62] M.Z. Iqbal et al. Spin valve effect of nife/graphene/nife junctions. Nano Research, 6:373–380, 2013.
[63] M. Iqbal et al. Interlayer dependent polarity of magnetoresistance in graphene spin valves. Journal of Materials Chemistry C, 3(2):298–302, 2015.
[64] H.-C. Wu et al. Spin-dependent transport properties of fe3o4/mos2/fe3o4 junctions. Scientific Reports, 5(1):15984, 2015.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91470-
dc.description.abstract二維材料與磁性自旋閥的整合被期望能夠開啟自旋電子學裝置的潛力。然而,目前的實際情況仍然偏離預期。大多數研究將這樣的差距歸因於在二維材料與其鐵磁性電極界面之間的汙染。我們研發了能製作超高潔淨界面的製程方法。通過在真空環境中一次性且同步地沉積非對稱鐵磁電極在懸浮的二維材料上,可以有效地避免氧化和界面汙染的負面效應。在我們的研究中,基於石墨烯的自旋閥在界面與鐵磁材料呈現強烈的相互作用,產生比起以往的實驗結果更高的磁阻值。不僅如此,鐵磁性電極可以展現固有的矯頑力,而不受污染物干擾,這使我們能夠藉由額外的反鐵磁材料來製造具有可控矯頑力的自旋閥。此外,基於二硫化鉬的自旋閥的金屬鄰近效應和主導的自旋過濾效應,呈現出顯著的負磁阻值。這些發現不僅增強了自旋電子學在實際應用中的可行性,還探索了可延伸更多功能性的自旋閥機制。我們的方法提供了一條有效探討鐵磁性電極與二維材料之間固有相互作用的反應途徑。zh_TW
dc.description.abstractThe integration of 2D materials and magnetic spin valves is expected to unlock the potential of spintronics devices. However, the current practical situation still deviates from expectations. Most studies attribute such inconsistencies to the challenge of achieving a contamination-free interface between the 2D material barrier and its ferromagnetic contacts. Here, we demonstrate a novel approach to ensure an ultrahigh clean interface. By synchronously depositing asymmetric contacts on a suspended 2D material in a single step within a vacuum environment, the detrimental effects of oxidation and breaks in the interface can be effectively avoided. In our study, graphene-based spin valves present a strong interaction at the interface that gives rise to exceptional magnetoresistance values. Ferromagnetic electrodes can exhibit inherent coercivity without pollutant disturbance, allowing us to manufacture a spin valve with controllable coercivity by incorporating additional antiferromagnetic materials. Moreover, MoS2-based spin valves exhibit remarkable negative magnetoresistance values due to the metallic proximity effect and the predominant spin filter effect. These findings not only enhance the feasibility of practical applications in spintronics but also explore the mechanisms of spin valves with rich functionality. Our method evidently provides a path to investigate the intrinsic response from the interplay between ferromagnetic electrodes and 2D materials.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-26T16:38:46Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-01-26T16:38:46Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgement iii
摘要 vii
Abstract ix
Contents xi
List of Figures xv
List of Tables xix
Chapter 1 Introduction 1
1.1 Spin valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Two-dimensional materials in spintronic device . . . . . . . . . . . . 4
1.3 Interface effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Uninterrupted contact deposition method . . . . . . . . . . . . . . . 8
Chapter 2 Theory 13
2.1 Electric characterization . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.1 Ohmic contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Tunneling behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Direct tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 Fowler-Nordheim (FN) tunneling . . . . . . . . . . . . . . . . . . . 16
2.2 Magnetoresistance . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Ordinary magnetoresistance (OMR) . . . . . . . . . . . . . . . . . 17
2.2.2 Anisotropic magnetoresistance (AMR) . . . . . . . . . . . . . . . . 18
2.2.3 Giant magnetoresistance (GMR) . . . . . . . . . . . . . . . . . . . 19
2.2.4 Tunnel magnetoresistance (TMR) . . . . . . . . . . . . . . . . . . 20
2.3 Hanle effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Chapter 3 FABRICATION PROCESS AND EXPERIMENTS SETUP 25
3.1 Porous mechanical support . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 2D materials transfer method and thermal decomposition . . . . . . . 27
3.3 Photolithography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 E-beam evaporator . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Raman spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Surface and interface characterization . . . . . . . . . . . . . . . . . 32
3.6.1 Atomic force microscopy (AFM) . . . . . . . . . . . . . . . . . . . 32
3.6.2 Scanning electron microscopy (SEM) . . . . . . . . . . . . . . . . 33
3.6.3 Energy-dispersive X-ray spectroscopy (EDX) . . . . . . . . . . . . 34
3.7 Magnetoresistance measurement . . . . . . . . . . . . . . . . . . . . 35
Chapter 4 Result and Discussion 37
4.1 Realizing high-quality interfaces in 2DMs spin valves . . . . . . . . 37
4.1.1 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.2 Analysis of electric property . . . . . . . . . . . . . . . . . . . . . 40
4.1.3 Magnetotransport in UCD-GSVs . . . . . . . . . . . . . . . . . . . 41
4.1.4 Multilayer graphene spin valves . . . . . . . . . . . . . . . . . . . 44
4.2 Controllable Coercivity in NiFe-Graphene Spin Valves . . . . . . . . 52
4.2.1 Investigating the electrical properties of NiFe-GSVs . . . . . . . . . 52
4.2.2 Magnetotransport in NiFe-GSVs . . . . . . . . . . . . . . . . . . . 52
4.2.3 Controllable coercivity in NiO-NiFe-GSVs . . . . . . . . . . . . . 53
4.3 Negative MR in MoS2-based spin valves induced by spin filtering . . 65
4.3.1 Raman spectroscopic characterization . . . . . . . . . . . . . . . . 65
4.3.2 Analysis of electric property . . . . . . . . . . . . . . . . . . . . . 66
4.3.3 Magnetotransport in MoS2-based spin valves . . . . . . . . . . . . 66
Chapter 5 Conclusion 71
References 73
-
dc.language.isoen-
dc.subject純淨界面zh_TW
dc.subject自旋電子學zh_TW
dc.subject石墨稀zh_TW
dc.subject二維材料zh_TW
dc.subject自旋閥zh_TW
dc.subject磁阻zh_TW
dc.subjectUltra-clean interfaceen
dc.subjectSpintronicsen
dc.subjectSpin valveen
dc.subject2D materialsen
dc.subjectGrapheneen
dc.subjectMagnetoresistanceen
dc.title二維材料結構中高度純淨界面的自旋傳輸現象zh_TW
dc.titleSpin-transport Phenomena in 2D Materials-Based Structures with Ultraclean Interfacesen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee謝雅萍;白奇峰;賈娜·卡爾巴科娃·維普拉沃娃;馬丁·卡爾巴克zh_TW
dc.contributor.oralexamcommitteeYa-Ping Hsieh;Chi-Feng Pai;Jana Kalbáčová Vejpravová;Martin Kalbáčen
dc.subject.keyword自旋電子學,自旋閥,二維材料,石墨稀,磁阻,純淨界面,zh_TW
dc.subject.keywordSpintronics,Spin valve,2D materials,Graphene,Magnetoresistance,Ultra-clean interface,en
dc.relation.page79-
dc.identifier.doi10.6342/NTU202400068-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-01-15-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf12.48 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved