請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91449
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 單秋成 | zh_TW |
dc.contributor.advisor | Chow-Shing Shin | en |
dc.contributor.author | 羅崇榮 | zh_TW |
dc.contributor.author | Chung-Jung Lo | en |
dc.date.accessioned | 2024-01-26T16:33:29Z | - |
dc.date.available | 2024-01-27 | - |
dc.date.copyright | 2024-01-26 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-12-04 | - |
dc.identifier.citation | [1] Dara G. Schniederjans, Adoption of 3D-printing technologies in manufacturing: A survey analysis, International Journal of Production Economics, Volume 183, Part A, 2017, Pages 287-298
[2] Iman Dankar, Amira Haddarah, Fawaz E.L. Omar, Francesc Sepulcre, Montserrat Pujolà, 3D printing technology: The new era for food customization and elaboration, Trends in Food Science & Technology, Volume 75, 2018, Pages 231-242 [3] N. Shahrubudin, T.C. Lee, R. Ramlan, An Overview on 3D Printing Technology: Technological, Materials, and Applications, Procedia Manufacturing, Volume 35, 2019, Pages 1286-1296 [4] Yu, Xiaoling & Zhang, Tian & Li, Yuan. (2020). 3D Printing and Bioprinting Nerve Conduits for Neural Tissue Engineering. Polymers. 12. 1637. 10.3390/polym12081637. [5] Turunen, Sanna & Melchels, Ferry & Grijpma, Dirk & Kellomäki, Minna. (2008). A review of rapid prototyping techniques for tissue engineering purposes. Annals of medicine. 40. 268-80. 10.1080/07853890701881788. [6] Zhang, Zhe-chen; Li, Pei-lun; Chu, Feng-ting; Shen, Gang, Influence of the three-dimensional printing technique and printing layer thickness on model accuracy, Journal of Orofacial Orthopedics/Fortschritte der Kieferorthopadie . Jul2019, Vol. 80 Issue 4, p194-204. 11p. [7] LCD, LCoS, or DLP: Choosing a Projector Imaging Technology, Available from: https://www.projectorcentral.com/Digital-Projector-Imaging-Technologies-Explained.html [8] Haoyuan Quan, Ting Zhang, Hang Xu, Shen Luo, Jun Nie, Xiaoqun Zhu, Photo-curing 3D printing technique and its challenges, Bioactive Materials, Volume 5, Issue 1,2020,Pages 110-115 [9] Allen, J. Application of patterned illumination using a DMD for optogenetic control of signaling. Nat Methods 14, 1114 (2017). https://doi.org/10.1038/nmeth.f.402 [10] Oscar Santoliquido, Paolo Colombo, Alberto Ortona. (2019). Additive Manufacturing of ceramic components by Digital Light Processing: A comparison between the “bottom-up” and the “top-down” approaches, Journal of the European Ceramic Society, Volume 39, Issue 6, Pages 2140-2148 [11] Aylward, R.P. (2003), "Advanced galvanometer‐based optical scanner design", Sensor Review, Vol. 23 No. 3, pp. 216-222. [12] Huang, Jigang & Qin, Qin & Wang, Jie & Fang, Hui. (2018). Two Dimensional Laser Galvanometer Scanning Technology for Additive Manufacturing. International Journal of Materials, Mechanics and Manufacturing. 6. 332-336. 10.18178/ ijmmm.2018.6.5.402. [13] Bernhard Busetti, Bernhard Steyrer, Bernhard Lutzer, Rafael Reiter, Jürgen Stampfl, A hybrid exposure concept for lithography-based additive manufacturing, Additive Manufacturing, Volume 21, 2018, Pages 413-421 [14] Zhao, X. & Zhang, C.. (2013). Digital manufacturing system design for large area microstructure based on DLP projector. Journal of Theoretical and Applied Information Technology. 48. 490-495. [15] Elan Dubrofsky, Homography Estimation, B.Sc., Carleton University, 2007 [16] 簡韶逸, Computer Vision [Projective Geometry]. (2023) [17] Affinity Photo 2-Stitching panoramas, Available from: https://affinity.help/photo2/en-US.lproj/pages/Panorama/panorama_stitching.html [18] Augmented reality, Available from: https://www.techrepublic.com/article/augmented-reality-for-business-cheat-sheet [19] Weng, Y, Shan, J, Lu, Z, Lu, X, Spencer, BF Homography-based structural displacement measurement for large structures using unmanned aerial vehicles. Comput Aided Civ Inf. 2021; 36: 1114– 1128. [20] Innovative refractive microoptics, Available from: https://www.nanoscribe.com/en/applications/ [21] Hiroshi Yabu and Masatsugu Shimomura Langmuir, Simple Fabrication of Micro Lens Arrays (2005) [22] C. Chang, S. Yang, L. Huang, and K. Hsieh, "Fabrication of polymer microlens arrays using capillary forming with a soft mold of micro-holes array and UV-curable polymer," Opt. Express 14, 6253-6258 (2006). [23] H Ren, S Xu, Y Liu, ST Wu, A plano-convex/biconvex microlens array based on self-assembled photocurable polymer droplets, Journal of Materials Chemistry C, 2013 [24] J. Ratcliff, A. Supikov, S. Alfaro and R. Azuma, "ThinVR: Heterogeneous microlens arrays for compact, 180 degree FOV VR near-eye displays," in IEEE Transactions on Visualization and Computer Graphics, vol. 26, no. 5, pp. 1981-1990, May 2020 [25] Motoyama, Y, Sugiyama, K, Tanaka, H, Tsuchioka, H, Matsusaki, K, Fukumoto, H. High-efficiency OLED microdisplay with microlens array. J Soc Inf Display. 2019 [26] 黃柏翰, ”列印範圍延伸之探討,” 國立臺灣大學機械工程學研究所(2020) [27] 連韋智, ” DLP 列印振鏡系統,” 國立臺灣大學機械工程學研究所(2022) [28] 林軒邑, ”以數位光學處理進行 3D 列印製作微米級結構,” 國立臺灣大學機械工程學研究所(2017) | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91449 | - |
dc.description.abstract | 本研究以數位光處理(Digital Light Processing, DLP)3D 列印技術為基礎,進一步探索如何透過掃描式振鏡來打破其固有的列印面積限制,從而實現大面積精密列印的可能性。研究的重點在於評估振鏡對於克服傳統 DLP 3D 列印系統面積限制的潛力,並以此為手段實現將多個小型圖形拼接成一個大型圖形的目標。
影像在經過振鏡不同轉角的影響下,會產生變形。為了解決這個問題,本研究採用了單應性矩陣(Homography)方法來對原始設計圖進行預先的變形。利用這種變形後的設計圖進行列印,使得不同的圖形能夠精準地拼接在一起。此外,為了實證此方法的可行性與實用性,本研究選擇微透鏡陣列為實驗對象,實際列印出微透鏡陣列(Micro lens array),進一步驗證了此方法的有效性。 | zh_TW |
dc.description.abstract | This study is based on Digital Light Processing (DLP) 3D printing technology and further explores how to break its inherent print area limitation through the application of galvanometer scanners, thereby realizing the possibility of large-area precision printing. The focus of the study is to evaluate the potential of galvanometers in overcoming the area limitations of traditional DLP 3D printing systems, with the aim of achieving the seamless assembly of multiple small graphics into a large one.
Due to the influence of different rotation angles of the galvanometer, the image will deform. To solve this problem, this study adopts the Homography method to pre-deform the original design diagram. The printing is performed using this deformed design diagram, allowing different graphics to be precisely assembled together. In addition, to verify the feasibility and practicality of this method, this study selects the micro lens array as the experimental object and actually prints out the micro lens array, further verifying the effectiveness of this method. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-26T16:33:29Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-01-26T16:33:29Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝..................................................................... i
摘要..................................................................... ii Abstract................................................................. iii 目錄..................................................................... iv 圖目錄................................................................... vii 表目錄................................................................... xi 第 1 章 緒論..............................................................1 1.1 前言.................................................................1 1.2 研究動機............................................................. 2 1.3 論文架構............................................................. 2 第 2 章 文獻回顧......................................................... 3 2.1 積層製造成型技術(Additive Manufacturing)............................. 3 2.1.1 立體光刻術(Stereolithography,SLA).................................. 4 2.1.2 數位光處理(Digital Light Processing,DLP) .......................... 4 2.1.3 雙光子聚合(Two-photon polymerization,TPP).......................... 5 2.2 DLP 光固化成型技術(Digital Light Processing)......................... 6 2.2.1 DLP 投影機........................................................ 7 2.2.2 數位微鏡裝置 DMD(Digital Micromirror Device)....................... 8 2.2.3 上照式與下照式 DLP 系統的比較....................................... 9 2.2.4 掃描式振鏡.........................................................11 2.3 大面積微結構列印技術................................................. 12 2.3.1 單應性(Homography) ............................................... 13 2.4 微透鏡陣列(Micro Lens Array,MLA).................................... 16 第 3 章 研究設備........................................................ 18 3.1 列印系統........................................................... 18 3.1.1 投影機........................................................... 18 3.1.2 凸透鏡........................................................... 18 3.1.3 振鏡............................................................. 19 3.1.4 控制系統......................................................... 19 3.1.5 CMOS 對焦系統.................................................... 21 3.2 列印材料........................................................... 22 3.3 量測設備........................................................... 23 第 4 章 實驗原理與流程.................................................. 24 4.1 實驗原理........................................................... 24 4.1.1 DLP 振鏡系統原理................................................. 24 4.1.2 設計圖預變形..................................................... 26 4.1.3 光路調整......................................................... 33 4.2 列印軟體........................................................... 36 4.2.1 LABVIEW 3D 列印程式.............................................. 36 4.2.2 Arduino 控制程式................................................. 37 4.2.3 Creation Workshop .............................................. 38 4.3 列印流程........................................................... 39 4.3.1 對焦............................................................. 40 4.3.2 列印............................................................. 42 4.4 樹脂透明度測試...................................................... 43 4.5 MLA 軟體模擬 ...................................................... 44 第 5 章 實驗結果與討論.................................................. 45 5.1 逆單應性矩陣預變形探討.............................................. 45 5.1.1 光學角度......................................................... 45 5.1.2 實體角度......................................................... 53 5.2 亮度修正探討....................................................... 58 5.3 樹脂透明度......................................................... 62 5.4 曝光時間探討....................................................... 67 5.5 MLA 照度輪廓之實驗與模擬驗證 ....................................... 69 5.5.1 列印成品........................................................ 69 5.5.2 與軟體模擬結果比較............................................... 70 第 6 章 結論與未來展望................................................. 73 6.1 結論.............................................................. 73 6.2 未來展望.......................................................... 73 參考文獻.............................................................. 75 | - |
dc.language.iso | zh_TW | - |
dc.title | 以振鏡擴大 DLP 3D 列印系統範圍之探討 | zh_TW |
dc.title | An Investigation of Expanding DLP 3D Printing System Scope Using Galvanometer Scanner | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林志郎;韓斌 | zh_TW |
dc.contributor.oralexamcommittee | Chih-Lang Lin;Pin Han | en |
dc.subject.keyword | 光固化成型技術,掃描式振鏡,單應性,微透鏡陣列, | zh_TW |
dc.subject.keyword | Vat Photopolymerization,Galvanometer Scanners,Homography,Micro Lens Array, | en |
dc.relation.page | 90 | - |
dc.identifier.doi | 10.6342/NTU202304471 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-12-05 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 機械工程學系 | - |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 目前未授權公開取用 | 11.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。