請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91424完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱靜雯 | zh_TW |
| dc.contributor.advisor | Ching-Wen Chiu | en |
| dc.contributor.author | 陳亞欣 | zh_TW |
| dc.contributor.author | Ya-Hsin Chen | en |
| dc.date.accessioned | 2024-01-26T16:26:41Z | - |
| dc.date.available | 2024-01-27 | - |
| dc.date.copyright | 2024-01-26 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2024-01-04 | - |
| dc.identifier.citation | 1. Maryanoff, B. E.; Reitz, A. B. The Wittig olefination reaction and modifications involving phosphoryl-stabilized carbanions. Stereochemistry, mechanism, and selected synthetic aspects. Chem. Rev. 1989, 89 (4), 863-927.
2. Roth, D.; Stirn, J.; Stephan, D. W.; Greb, L. Lewis Superacidic Catecholato Phosphonium Ions: Phosphorus-Ligand Cooperative C-H Bond Activation. J. Am. Chem. Soc. 2021, 143 (38), 15845-15851. 3. Terada, M.; Kouchi, M. Novel metal-free Lewis acid catalysis by phosphonium salts through hypervalent interaction. Tetrahedron 2006, 62 (2-3), 401-409. 4. Suryanto, B. H. R.; Matuszek, K.; Choi, J.; Hodgetts, R. Y.; Du, H.-L.; Bakker, J. M.; Kang, C. S. M.; Cherepanov, P. V.; Simonov, A. N.; MacFarlane, D. R. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle. Science 2021, 372 (6547), 1187-1191. 5. Chitnis, S. S.; LaFortune, J. H. W.; Cummings, H.; Liu, L. L.; Andrews, R.; Stephan, D. W. Phosphorus Coordination Chemistry in Catalysis: Air Stable P(III)-Dications as Lewis Acid Catalysts for the Allylation of C–F Bonds. Organometallics 2018, 37 (24), 4540-4544. 6. Andrews, R. J.; Chitnis, S. S.; Stephan, D. W. Carbonyl and olefin hydrosilylation mediated by an air-stable phosphorus(iii) dication under mild conditions. Chem. Commun. 2019, 55 (39), 5599-5602. 7. Weigand, J. J.; Feldmann, K.-O.; Henne, F. D. Carbene-Stabilized Phosphorus(III)-Centered Cations [LPX2]+ and [L2PX]2+ (L = NHC; X = Cl, CN, N3). J. Am. Chem. Soc. 2010, 132 (46), 16321-16323. 8. Petuskova, J.; Patil, M.; Holle, S.; Lehmann, C. W.; Thiel, W.; Alcarazo, M. Synthesis, structure, and reactivity of carbene-stabilized phosphorus(III)-centered trications [L3P]3+. J. Am. Chem. Soc. 2011, 133 (51), 20758-20760. 9. Carreras, J.; Patil, M.; Thiel, W.; Alcarazo, M. Exploiting the π-acceptor properties of carbene-stabilized phosphorus centered trications [L3P]3+: applications in Pt(II) catalysis. J. Am. Chem. Soc. 2012, 134 (40), 16753-16758. 10. Henne, F. D.; Dickschat, A. T.; Hennersdorf, F.; Feldmann, K.-O.; Weigand, J. J. Synthesis of Selected Cationic Pnictanes [LnPnX3–n]n+ (L = Imidazolium-2-yl; Pn = P, As; n = 1–3) and Replacement Reactions with Pseudohalogens. Inorg. Chem. 2015, 54 (14), 6849-6861. 11. Nakazawa, H. The chemistry of transition metal complexes containing a phosphenium ligand. J. Organomet. Chem. 2000, 611 (1), 349-363. 12. Cowley, A. H.; Kemp, R. A. Synthesis and reaction chemistry of stable two-coordinate phosphorus cations (phosphenium ions). Chem. Rev. 1985, 85 (5), 367-382. 13. Stalder, T.; Krischer, F.; Steinert, H.; Neigenfind, P.; Gessner, V. H. Ylide-Stabilized Phosphenium Cations: Impact of the Substitution Pattern on the Coordination Chemistry. Chem. Eur. J. 2022, 28 (8), e202104074. 14. Burck, S.; Daniels, J.; Gans-Eichler, T.; Gudat, D.; Nättinen, K.; Nieger, M. N-Heterocyclic Phosphenium, Arsenium, and Stibenium Ions as Ligands in Transition Metal Complexes: A Comparative Experimental and Computational Study. Z. Anorg. Allg. Chem. 2005, 631 (8), 1403-1412. 15. Rao, B.; Chong, C. C.; Kinjo, R. Metal-Free Regio- and Chemoselective Hydroboration of Pyridines Catalyzed by 1,3,2-Diazaphosphenium Triflate. J. Am. Chem. Soc. 2018, 140 (2), 652-656. 16. Tay, M. Q. Y.; Lu, Y.; Ganguly, R.; Vidović, D. A carbone-stabilized two-coordinate phosphorus(III)-centered dication. Angew. Chem. Int. Ed. Engl. 2013, 52 (11), 3132-3135. 17. Dordevic, N.; Ganguly, R.; Petkovic, M.; Vidović, D. E-H (E = B, Si, C) Bond Activation by Tuning Structural and Electronic Properties of Phosphenium Cations. Inorg. Chem. 2017, 56 (23), 14671-14681. 18. Chen, W.-C.; Shen, J.-S.; Jurca, T.; Peng, C.-J.; Lin, Y.-H.; Wang, Y.-P.; Shih, W.-C.; Yap, G. P. A.; Ong, T.-G. Expanding the Ligand Framework Diversity of Carbodicarbenes and Direct Detection of Boron Activation in the Methylation of Amines with CO2. Angew. Chem. Int. Ed. 2015, 54 (50), 15207-15212. 19. Ishida, S.; Hirakawa, F.; Iwamoto, T. A Stable Dialkylphosphinyl Radical. J. Am. Chem. Soc. 2011, 133 (33), 12968-12971. 20. Back, O.; Celik, M. A.; Frenking, G.; Melaimi, M.; Donnadieu, B.; Bertrand, G. A Crystalline Phosphinyl Radical Cation. J. Am. Chem. Soc. 2010, 132 (30), 10262-10263. 21. Rosa, P.; Gouverd, C.; Bernardinelli, G.; Berclaz, T.; Geoffroy, M. Phosphaalkenes with Inverse Electron Density: Electrochemistry, Electron Paramagnetic Resonance Spectra, and Density Functional Theory Calculations of Aminophosphaalkene Derivatives. J. Phys. Chem. A 2003, 107 (24), 4883-4892. 22. Sharma, M. K.; Rottschäfer, D.; Blomeyer, S.; Neumann, B.; Stammler, H.-G.; van Gastel, M.; Hinz, A.; Ghadwal, R. S. Diphosphene radical cations and dications with a π-conjugated C2P2C2-framework. Chem. Commun. 2019, 55 (70), 10408-10411. 23. Back, O.; Donnadieu, B.; Parameswaran, P.; Frenking, G.; Bertrand, G. Isolation of crystalline carbene-stabilized P2-radical cations and P2-dications. Nat. Chem. 2010, 2 (5), 369-373. 24. Zhou, J.; Liu, L. L.; Cao, L. L.; Stephan, D. W. A Phosphorus Lewis Super Acid: η5-Pentamethylcyclopentadienyl Phosphorus Dication. Chem 2018, 4 (11), 2699-2708. 25. Werner, T. Phosphonium Salt Organocatalysis. Adv. Synth. Catal. 2009, 351 (10), 1469-1481. 26. Fleming, J. T.; Higham, L. J. Primary phosphine chemistry. Coord. Chem. Rev. 2015, 297-298, 127-145. 27. Bayne, J. M.; Stephan, D. W. C-F Bond Activation Mediated by Phosphorus Compounds. Chem. Eur. J. 2019, 25 (40), 9350-9357. 28. Caputo, C. B.; Hounjet, L. J.; Dobrovetsky, R.; Stephan, D. W. Lewis Acidity of Organofluorophosphonium Salts: Hydrodefluorination by a Saturated Acceptor. Science 2013, 341 (6152), 1374-1377. 29. Zhu, J.; Pérez, M.; Caputo, C. B.; Stephan, D. W. Use of Trifluoromethyl Groups for Catalytic Benzylation and Alkylation with Subsequent Hydrodefluorination. Angew. Chem. Int. Ed. 2016, 55 (4), 1417-1421. 30. Zhu, J.; Pérez, M.; Stephan, D. W. C−C Coupling of Benzyl Fluorides Catalyzed by an Electrophilic Phosphonium Cation. Angew. Chem. Int. Ed. 2016, 55 (29), 8448-8451. 31. Pérez, M.; Caputo, C. B.; Dobrovetsky, R.; Stephan, D. W. Metal-free transfer hydrogenation of olefins via dehydrocoupling catalysis. Proc. Natl. Acad. Sci. U.S.A. 2014, 111 (30), 10917-10921. 32. Pérez, M.; Hounjet, L. J.; Caputo, C. B.; Dobrovetsky, R.; Stephan, D. W. Olefin Isomerization and Hydrosilylation Catalysis by Lewis Acidic Organofluorophosphonium Salts. J. Am. Chem. Soc. 2013, 135 (49), 18308-18310. 33. Mehta, M.; Holthausen, M. H.; Mallov, I.; Pérez, M.; Qu, Z.-W.; Grimme, S.; Stephan, D. W. Catalytic Ketone Hydrodeoxygenation Mediated by Highly Electrophilic Phosphonium Cations. Angew. Chem. Int. Ed. 2015, 54 (28), 8250-8254. 34. Augurusa, A.; Mehta, M.; Perez, M.; Zhu, J.; Stephan, D. W. Catalytic reduction of amides to amines by electrophilic phosphonium cations via FLP hydrosilylation. Chem. Commun. 2016, 52 (82), 12195-12198. 35. Mehta, M.; Garcia de la Arada, I.; Perez, M.; Porwal, D.; Oestreich, M.; Stephan, D. W. Metal-Free Phosphine Oxide Reductions Catalyzed by B(C6F5)3 and Electrophilic Fluorophosphonium Cations. Organometallics 2016, 35 (7), 1030-1035. 36. vom Stein, T.; Peréz, M.; Dobrovetsky, R.; Winkelhaus, D.; Caputo, C. B.; Stephan, D. W. Electrophilic Fluorophosphonium Cations in Frustrated Lewis Pair Hydrogen Activation and Catalytic Hydrogenation of Olefins. Angew. Chem. Int. Ed. 2015, 54 (35), 10178-10182. 37. Connelly, N. G.; Geiger, W. E. Chemical Redox Agents for Organometallic Chemistry. Chem. Rev. 1996, 96 (2), 877-910. 38. Müller, P.; Herbst-Irmer, R.; Spek, A. L.; Schneider, T. R.; Sawaya, M. R. Crystal Structure Refinement: A Crystallographer''s Guide to SHELXL. Oxford University Press, 2006. 39. Lavallo, V.; Canac, Y.; Präsang, C.; Donnadieu, B.; Bertrand, G., Stable Cyclic (Alkyl)(Amino)Carbenes as Rigid or Flexible, Bulky, Electron-Rich Ligands for Transition-Metal Catalysts: A Quaternary Carbon Atom Makes the Difference. Angew. Chem. Int. Ed. 2005, 44 (35), 5705-5709. 40. Adams, J. J.; Arulsamy, N.; Sullivan, B. P.; Roddick, D. M.; Neuberger, A.; Schmehl, R. H., Homoleptic Tris-Diphosphine Re(I) and Re(II) Complexes and Re(II) Photophysics and Photochemistry. Inorg. Chem. 2015, 54 (23), 11136-11149. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91424 | - |
| dc.description.abstract | 在這個研究中,我們嘗試合成多種二配位磷陽離子化合物。由於高氧化態且配位數較低的磷陽離子極不穩定且極具反應性,合成這些化合物十分具有挑戰性。我們受到Bertrand團隊的研究啟發,他們通過對cAAC穩定的氨基磷烯前趨物進行單電子氧化,成功地得到二配位的磷自由基陽離子。在此基礎上,我們進一步探索了二配位的磷二正陽離子。我們希望透過對cAAC-氨基磷烯進行兩當量電子的氧化來生成雙取代的磷雙陽離子。然而,生成的cAAC-雙取代磷雙陽離子反應性過高並產生了不在預期中的氫化反應,形成了cAAC配基的氮基氫化磷陽離子[cAAC-P(H)R]+。除此之外,我們預期將π-酸性的cAAC配基替換為π-鹼性的CDC配基,這個配基有助於提高二配位磷自由基陽離子的反應性。我們預期能通過對CDC配體的雙取代磷雙陽離子進行單電子還原獲得自由基陽離子。我們測得經過還原反應的氨基取代磷雙陽離子的電子自旋共振光譜,但單晶結構仍未被證明;另外,氯取代的磷雙陽離子在溶液中會發生雙磷雙陽離子的雙聚反應,低溫下EPR訊號較強,但我們目前並未測得明顯的雙自由基訊號。 | zh_TW |
| dc.description.abstract | In this project, we have explored the synthesis of several di-coordinated phosphorus cationic complexes. As phosphorus in high oxidation state with low coordination number is extremely unstable and highly reactive, the synthesis of these complexes was relatively challenging. Inspired by the work of Bertrand’s group, where a di-coordinated phosphinyl radical cation was obtained by one-electron oxidation of the cAAC-stabilized amino-phosphinidene precursor, two types of di-coordinated phosphorus cations were explored. We hypothesized that we might be able to generate di-substituted phosphorus dication from two-electron oxidation of the cAAC-phosphinidene adduct. However, the generated cAAC-coordinate di-substituted phosphorus dication is too reactive and undergoes unexpected hydride abstraction reaction from the solvent to yield the cAAC-coordinate parent phosphenium cation [cAAC-P(H)R]+. In addition, replacing the -acidic cAAC ligand with a -donating CDC is expected to raise the reactivity of the di-coordinated phosphinyl radical cation. The anticipated radical species could potentially be obtained from one-electron reduction of the CDC-coordinated di-substituted phosphorus dication. We have already got the EPR spectrum of the reduced product of the amino-substituted dication but the structure is still under investigation. Otherwise, the chloride-functionalized analogue dimerizes to give diphosphorus dication. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-26T16:26:41Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-01-26T16:26:41Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii Abstract iv Contents v List of schemes vii List of figures ix List of tables xiv Chapter 1. Introduction 1 1.1 Phosphorus cations 1 1.1.1 Tetra-coordinated phosphorus cations (PR4+) and dications (L3PR2+) 1 1.1.2 Tri-coordinated phosphorus cations (L-PR2+, L2-PR2+ and L3-P3+) 5 1.1.3 Di-coordinated phosphorus cations and dications (PR2+and LPR2+) 6 1.1.4 Phosphorus centered radical cation species 8 1.2 Reactivities and other applications of phosphorus cations 10 1.3 Molecular design 13 1.3.1 cAAC-stabilized di-substituted phosphorus dication 13 1.3.2 CDC-coordinated di-substituted phosphinyl radical cation 13 Chapter 2. Result and discussion 15 2.1 cAAC coordinated phosphorus dications 15 2.1.1 Attempt to synthesize cAAC coordinated phosphorus dications 15 2.1.2 cAAC-stabilized phosphenium cation 26 2.2 Attempt to synthesize CDC-stabilized di-substituted phosphinyl radical cation [CDC-P-R]•+ 28 2.2.1 Optimizing substituents of CDC-stabilized phosphorus dications 28 2.2.2 Reduction reaction to [CDC-P-R]2+ to achieve [CDC-P-R]•+ radical cation 30 2.2.3 CDC-substituted di-phosphorus dication 33 Chapter 3. Conclusion 41 Chapter 4. Experimental section 43 4.1 General consideration 43 4.2 Synthesis 44 4.2.1 Synthesis of starting materials in [cAAC-P-TMP]2+ 44 4.2.2 Oxidation reactions attempting phosphorus dications 50 4.2.3 Synthesis of [(CDC)P(R)Cl][Cl] (6a, 6b) 56 4.2.4 Syntheses of [(CDC)PR]2+ (7a, 7b) 59 4.2.5 Reduction reaction of CDC-coordinated phosphorus dication 62 4.3 Structural Determination 67 4.4 EPR measurement 67 Appendix 69 I. Crystal data 70 i. Me2cAAC=P-TMP (1a, ic20254) 70 ii. CycAAC=P-TMP (1b, ic20553) 72 iii. [CycAAC-P(Cl)-TMP][SbCl6] (2a, ic20351) 74 iv. [CycAAC-P(H)-TMP][SbF6] (5b, ic21716) 76 v. [CDC-P-TMP][AlCl4]2 (7a, ic20762) 78 vi. [CDC-P-Cl]2[B(C6F5)4]2 (9, ic21284) 80 II. NMR spectra 82 References 127 | - |
| dc.language.iso | en | - |
| dc.subject | 磷陽離子 | zh_TW |
| dc.subject | 雙磷雙陽離子 | zh_TW |
| dc.subject | 磷 | zh_TW |
| dc.subject | 氮族元素 | zh_TW |
| dc.subject | diphosphorus dications | en |
| dc.subject | phosphorus cations | en |
| dc.subject | phosphenium cations | en |
| dc.title | 雙取代磷陽離子 | zh_TW |
| dc.title | Di-Substituted Phosphorus Cations | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林雅凡;王朝諺 | zh_TW |
| dc.contributor.oralexamcommittee | Ya-Fan Lin;Tiow-Gan Ong | en |
| dc.subject.keyword | 氮族元素,磷,磷陽離子,雙磷雙陽離子, | zh_TW |
| dc.subject.keyword | phosphorus cations,phosphenium cations,diphosphorus dications, | en |
| dc.relation.page | 133 | - |
| dc.identifier.doi | 10.6342/NTU202304523 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-01-05 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf | 8.66 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
