Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91419
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊杉zh_TW
dc.contributor.advisorChuin-Shan Chenen
dc.contributor.author周遠同zh_TW
dc.contributor.authorYuan-Tung Chouen
dc.date.accessioned2024-01-26T16:25:22Z-
dc.date.available2024-01-27-
dc.date.copyright2024-01-26-
dc.date.issued2024-
dc.date.submitted2024-01-08-
dc.identifier.citation[1] T. D. Ancheta, R. B. Darragh, J. P. Stewart, E. Seyhan, W. J. Silva, B. S.-J. Chiou, K. E. Wooddell, R. W. Graves, A. R. Kottke, D. M. Boore, T. Kishida, and J. L. Donahue. Nga-west2 database. Earthquake Spectra, 30(3):989–1005, 2014.
[2] R. J. Balling. Optimal steel frame design by simulated annealing. Journal of Structural Engineering, 117(6):1780–1795, 1991.
[3] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, C. Gulcehre, F. Song, A. Ballard, J. Gilmer, G. Dahl, A. Vaswani, K. Allen, C. Nash, V. Langston, C. Dyer, N. Heess, D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu. Relational inductive biases, deep learning, and graph networks. 2018.
[4] P. W. Battaglia, R. Pascanu, M. Lai, D. Rezende, and K. Kavukcuoglu. Interaction networks for learning about objects, relations and physics. 2016.
[5] M. Bodén. A guide to recurrent neural networks and backpropagation. 12 2001.
[6] K.-H. Chang and C.-Y. Cheng. Learning to simulate and design for structural engineering. 2020.
[7] S. CHEN and S. A. BILLINGS. Neural networks for nonlinear dynamic system modelling and identification. International Journal of Control, 56(2):319–346, 1992.
[8] T. Chen and H. Chen. Approximations of continuous functionals by neural networks with application to dynamic systems. IEEE Transactions on Neural Networks, 4(6):910–918, 1993.
[9] N. Christiansen, J. Høgsberg, and O. Winther. Artificial neural networks for nonlinear dynamic response simulation in mechanical systems. In Proceedings of the 24th Nordic Seminar on Computational Mechanics, 2011. NSCM-24 ; Conference date: 01-01-2011.
[10] Z. Cui, K. Henrickson, R. Ke, Z. Pu, and Y. Wang. Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting. 2018.
[11] K. Do, T. Tran, and S. Venkatesh. Graph transformation policy network for chemical reaction prediction. 2018.
[12] A. Fout, J. Byrd, B. Shariat, and A. Ben-Hur. Protein interface prediction using graph convolutional networks. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.
[13] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing for quantum chemistry. 2017.
[14] R. Guarize, N. Matos, L. Sagrilo, and E. Lima. Neural networks in the dynamic response analysis of slender marine structures. Applied Ocean Research, 29(4):191–198, 2007.
[15] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):922–929, Jul. 2019.
[16] K. Hayashi and M. Ohsaki. Reinforcement learning and graph embedding for binary truss topology optimization under stress and displacement constraints. Frontiers in Built Environment, 6:59, 04 2020.
[17] K. Hayashi and M. Ohsaki. Graph-based reinforcement learning for discrete cross-section optimization of planar steel frames. Advanced Engineering Informatics, 51:101512, 2022.
[18] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.
[19] C. S. Huang, S. Hung, C. Wen, and T. Tu. A neural network approach for structural identification and diagnosis of a building from seismic response data. Earthquake Engineering & Structural Dynamics, 32:187 – 206, 02 2003.
[20] P. Huang and Z. Chen. Deep learning for nonlinear seismic responses prediction of subway station. Engineering Structures, 244:112735, 2021.
[21] L. C. Jain and L. R. Medsker. Recurrent Neural Networks: Design and Applications. CRC Press, Inc., USA, 1st edition, 1999.
[22] W. Jin, R. Barzilay, and T. Jaakkola. Junction tree variational autoencoder for molecular graph generation. 2018.
[23] W. Jin, K. Yang, R. Barzilay, and T. Jaakkola. Learning multimodal graph-to-graph translation for molecular optimization. 2018.
[24] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey, 1996.
[25] T. Kim, O.-S. Kwon, and J. Song. Response prediction of nonlinear hysteretic systems by deep neural networks. Neural Networks, 111:1–10, 2019.
[26] T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel. Neural relational inference for interacting systems. 2018.
[27] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks, 2017.
[28] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220(4598):671–680, 1983.
[29] A. Kundu and S. Chakraborty. Deep learning-based metamodeling technique for nonlinear seismic response quantification. IOP Conference Series: Materials Science and Engineering, 936(1):012042, sep 2020.
[30] N. D. Lagaros and M. Papadrakakis. Neural network based prediction schemes of the non-linear seismic response of 3d buildings. Advances in Engineering Software, 44(1):92–115, 2012. CIVIL-COMP.
[31] Y. Lecun and Y. Bengio. Convolutional networks for images, speech, and time-series. 01 1995.
[32] B.-Z. Lin, M.-C. Chuang, and K.-C. Tsai. Object-oriented development and application of a nonlinear structural analysis framework. Advances in Engineering Software, 40(1):66–82, 2009.
[33] M. Liu, S. A. Burns, and Y. K. Wen. Genetic algorithm based construction-conscious minimum weight design of seismic steel moment-resisting frames. Journal of Structural Engineering, 132(1):50–58, 2006.
[34] M. Mitchell. An introduction to genetic algorithms. MIT press, 1998.
[35] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing atari with deep reinforcement learning, 2013.
[36] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning (ICML-10), pages 807–814, 2010.
[37] C. Olah. Understanding lstm networks, 2015.
[38] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks, 2013.
[39] H. Peng, J. Yan, Y. Yu, and Y. Luo. Time series estimation based on deep learning for structural dynamic nonlinear prediction. Structures, 29:1016–1031, 2021.
[40] S. Preetha Hareendran and A. Alipour. Prediction of nonlinear structural response under wind loads using deep learning techniques. Applied Soft Computing, 129:109424, 2022.
[41] K. T. H. Rahit, R. H. Nabil, and M. H. Huq. Machine translation from natural language to code using long-short term memory. In Proceedings of the Future Technologies Conference (FTC) 2019: Volume 1, pages 56–63. Springer, 2020.
[42] H. Sak, A. Senior, and F. Beaufays. Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition. arXiv preprint arXiv:1402.1128, 2014.
[43] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. W. Battaglia. Learning to simulate complex physics with graph networks. 2020.
[44] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Riedmiller, R. Hadsell, and P. Battaglia. Graph networks as learnable physics engines for inference and control. 2018.
[45] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.
[46] S.-B. Sun, Y.-Y. He, S.-D. Zhou, and Z.-J. Yue. A data-driven response virtual sensor technique with partial vibration measurements using convolutional neural network. Sensors, 17(12), 2017.
[47] A. A. Torky and S. Ohno. Deep learning techniques for predicting nonlinear multi-component seismic responses of structural buildings. Computers & Structures, 252:106570, 2021.
[48] L. van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal of Machine Learning Research, 9:2579–2605, 2008.
[49] H. van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning, 2015.
[50] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need, 2017.
[51] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention networks. 2017.
[52] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8:279–292, 1992.
[53] R.-T. Wu and M. Jahanshahi. Deep convolutional neural network for structural dynamic response estimation and system identification. Journal of Engineering Mechanics, 145:04018125, 01 2019.
[54] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 32(1):4–24, jan 2021.
[55] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks?, 2019.
[56] Z. Xu, J. Chen, J. Shen, and M. Xiang. Recursive long short-term memory network for predicting nonlinear structural seismic response. Engineering Structures, 250:113406, 2022.
[57] W. Ying, W. Chong, L. Hui, and Z. Renda. Artificial neural network prediction for seismic response of bridge structure. In 2009 International Conference on Artificial Intelligence and Computational Intelligence, volume 2, pages 503–506, 2009.
[58] R. Zhang, Z. Chen, S. Chen, J. Zheng, O. Büyüköztürk, and H. Sun. Deep long short-term memory networks for nonlinear structural seismic response prediction. Computers & Structures, 220:55–68, 2019.
[59] R. Zhang, Y. Liu, and H. Sun. Physics-guided convolutional neural network (phycnn)for data-driven seismic response modeling. Engineering Structures, 215:110704, 2020.
[60] R. Zhang, Y. Liu, and H. Sun. Physics-informed multi-lstm networks for metamodeling of nonlinear structures. Computer Methods in Applied Mechanics and Engineering, 369:113226, 2020.
[61] Y. Zhang, Z. Gan, K. Fan, Z. Chen, R. Henao, D. Shen, and L. Carin. Adversarial feature matching for text generation. In International Conference on Machine Learning, pages 4006–4015. PMLR, 2017.
[62] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun. Graph neural networks: A review of methods and applications. AI Open, 1:57–81, 2020.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91419-
dc.description.abstract近年來,隨著人工智慧領域的發展,機器學習、深度學習技術逐漸被使用在結構工程的領域中,包括此研究主要探討的兩個主題:結構分析及結構斷面設計。然而,過去以機器學習預測結構分析及最佳化斷面設計的研究仍有諸多限制,例如結構系統規模、對不同結構之泛用性、結構分析之預測目標反應、無法基於歷時分析設計斷面等。因此,本研究提出一系列基於圖神經網路 (graph neural network) 之深度學習方法,對現有以機器學習預測結構分析和最佳化斷面方法所遇之瓶頸進行改善。
在將鋼結構以圖 (graph) 資料結構表示後,本研究基於此表示法進行了三項結構工程之研究。第一項研究透過一訊息傳遞層 (message-passing layer) 數量會隨著輸入結構樓層數改變之圖神經網路,對結構在受到外施載重下靜力分析之結構反應進行預測。第二項研究透過結合圖神經網路與長短期記憶模型 (long short-term memory network) 預測不同幾何形狀之結構在不同地震下之非線性歷時反應。第三項研究結合圖神經網路及強化學習 (reinforcement learning) ,以持續縮減斷面尺寸之方式對結構之斷面設計進行最佳化,並融入第二項研究中所預測之非線性歷時反應,作為斷面設計時檢核之條件,以得到在不同強度考慮情況下最佳化之設計。
數值結果驗證了此基於圖神經網路方法之可行性。在第一項研究中,靜力分析之位移、剪力、彎矩預測皆達到99\%之相對準確率,且模型在更高、未看過之結構也有96\%之準確率。在第二項研究中,模型在非線動力分析之加速度、速度、位移、彎矩、剪力歷時預測皆能達到0.90之決定係數 ($R^2$),而在峰值預測更達到0.95。在最後第三項研究中,模型在70\%以上不同幾何形狀之鋼結構中,得到之設計會比90\%經由抽樣產生之設計更好,且多考慮歷時分析時,產生之斷面設計有更好的耐震能力。
zh_TW
dc.description.abstractIn recent years, machine learning and deep learning techniques have gradually been applied in the field of structural engineering. However, previous studies in the machine-learning-based prediction of structural analysis and section design optimization have encountered various limitations, such as scalability issues, lack of generality across different structures, limitations in predicting target responses in structural analysis, and the inability to incorporate nonlinear response-history analysis in section design. To address these limitations, this research proposes a series of deep learning methods based on graph neural networks to improve the prediction of structural analysis and section design optimization and overcome the existing bottlenecks.
This study investigates three areas of structural engineering using the graph representation of steel structures. The first study focuses on predicting the structural response under external loads using a graph neural network with a dynamic number of message-passing layers. The second study combines graph neural networks with long short-term memory models to predict the nonlinear response-history responses of structures under earthquakes. The third study integrates graph neural networks and reinforcement learning to optimize section design by iteratively reducing section sizes and incorporating the predicted nonlinear response-history responses from the second study as design constraints.
The numerical results confirm the feasibility of the graph neural network approach used in this study. In the first study, the relative accuracy of predicting displacements, shear forces, and bending moments in static analysis reached 99\%, with a 96\% accuracy rate even for unseen structures. In the second study, the model achieved determination coefficients ($R^2$) of 0.90 for predicting accelerations, velocities, displacements, bending moments, and shear forces in nonlinear dynamic analysis, and a peak prediction accuracy of 0.95. In the final study, over 90\% of the model's section designs outperformed over 70\% of the designs sampled from the input space. Furthermore, when incorporating the additional consideration of response-history analysis, the generated section designs demonstrated improved seismic performance.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-26T16:25:22Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-01-26T16:25:22Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements iii
摘要 v
Abstract vii
Contents ix
List of Figures xiii
List of Tables xvii
Chapter 1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Objectives of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 9
Chapter 2 Methodology 11
2.1 Graph-based Structure Representation . . . . . . . . . . . . . . . . . 11
2.1.1 ElemAsEdge vs. ElemAsNode Representation . . . . . . . . . . . . 11
2.1.2 Features on the Structural Graph Representation . . . . . . . . . . . 13
2.1.3 Advantages of the Structural Graph Representation . . . . . . . . . 14
2.2 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Message-passing Layer . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Graph Convolutional Networks . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Graph Attention Networks . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4 Graph Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Long Short-term Memory Networks . . . . . . . . . . . . . . . . . . 20
2.3.1 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Long Short-term Memory . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Reinforcement Learning: Q-Learning . . . . . . . . . . . . . . . . . 23
2.4.1 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Deep Q-Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Chapter 3 Linear Static Analysis with Graph Neural Networks 27
3.1 Structural Graph Representation . . . . . . . . . . . . . . . . . . . . 28
3.1.1 Message Passing With Original Structural Graph Representation . . 28
3.1.2 Structural Graph Representation With Pseudo Nodes . . . . . . . . 29
3.2 Structure Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Deformable Graph Neural Network Architecture . . . . . . . . . . . 33
3.4 Numerical Experiment Settings . . . . . . . . . . . . . . . . . . . . 37
3.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.1 Training Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.2 Generalizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5.3 Visualization of Hidden Embedding Propagation . . . . . . . . . . . 41
3.5.4 Effect of Pseudo Nodes . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.4.1 Without pseudo nodes, trained with fixed layer number 42
3.5.4.2 Without pseudo nodes, trained with optimized layer number . . . 43
3.5.4.3 With pseudo nodes, but without beam/column edges . . 44
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Chapter 4 Nonlinear Response-history Analysis with Hierarchical Graph-based Long Short-Term Memory Networks 47
4.1 Structural Graph Representation . . . . . . . . . . . . . . . . . . . . 48
4.2 Ground Motion Settings . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Structure Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Hierarchical Graph-LSTM Architecture . . . . . . . . . . . . . . . . 53
4.5 Numerical Experiment Settings . . . . . . . . . . . . . . . . . . . . 55
4.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6.1 Learning Target Performance . . . . . . . . . . . . . . . . . . . . . 57
4.6.2 Visualization of Graph Embedding . . . . . . . . . . . . . . . . . . 60
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Chapter 5 Section Design Optimization with Graph-based Deep Q-Networks 65
5.1 Optimization Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Cross-section Design Constraint . . . . . . . . . . . . . . . . . . . . 67
5.2.1 Linear Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.1.1 Load condition . . . . . . . . . . . . . . . . . . . . . . 67
5.2.1.2 Constraints from specifications . . . . . . . . . . . . . 69
5.2.2 Nonlinear Response-history Analysis . . . . . . . . . . . . . . . . . 70
5.2.2.1 Ground motion selection . . . . . . . . . . . . . . . . 71
5.2.2.2 Constraints for nonlinear response-history analysis . . . 72
5.2.3 Section Design as Optimization Problem . . . . . . . . . . . . . . . 72
5.3 Reinforcement Learning Problem Formulation . . . . . . . . . . . . 72
5.3.1 State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.2 Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.3 Reward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4 Graph-based Deep Q-Network . . . . . . . . . . . . . . . . . . . . . 76
5.4.1 Embeddings and Q-values . . . . . . . . . . . . . . . . . . . . . . 77
5.5 Numerical Experiment Settings . . . . . . . . . . . . . . . . . . . . 79
5.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.6.1 Evaluation of AI-designed Sections . . . . . . . . . . . . . . . . . . 81
5.6.2 Extra Chances for the Agent . . . . . . . . . . . . . . . . . . . . . 83
5.6.3 Visualization of Design Process . . . . . . . . . . . . . . . . . . . . 85
5.6.4 Drift Ratio Comparison . . . . . . . . . . . . . . . . . . . . . . . . 86
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Chapter 6 Conclusions and Future Work 91
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
References 95
-
dc.language.isoen-
dc.subject強化學習zh_TW
dc.subject圖神經網路zh_TW
dc.subject非線性歷時分析zh_TW
dc.subject深度學習zh_TW
dc.subject斷面設計最佳化zh_TW
dc.subject長短期記憶模型zh_TW
dc.subjectReinforcement Learningen
dc.subjectNonlinear Response-history Analysisen
dc.subjectStructural Section Design Optimizationen
dc.subjectDeep Learningen
dc.subjectGraph Neural Networken
dc.subjectLong Short-term Memoryen
dc.title圖深度學習於非線性歷時分析及結構斷面設計最佳化之應用zh_TW
dc.titleGraph-based Deep Learning for Nonlinear Response-history Analysis and Section Design Optimizationen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.coadvisor黃尹男zh_TW
dc.contributor.coadvisorYin-Nan Huangen
dc.contributor.oralexamcommittee黃世建;吳日騰;曹昌盛zh_TW
dc.contributor.oralexamcommitteeShyh-Jiann Hwang;Rih-Teng Wu;Chang-Sheng Caoen
dc.subject.keyword非線性歷時分析,斷面設計最佳化,深度學習,圖神經網路,長短期記憶模型,強化學習,zh_TW
dc.subject.keywordNonlinear Response-history Analysis,Structural Section Design Optimization,Deep Learning,Graph Neural Network,Long Short-term Memory,Reinforcement Learning,en
dc.relation.page102-
dc.identifier.doi10.6342/NTU202304570-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-01-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf21.06 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved