請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91416
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 馬徹 | zh_TW |
dc.contributor.advisor | Che Alex Ma | en |
dc.contributor.author | Nguyen Hong Thuy Vy | zh_TW |
dc.contributor.author | Nguyen Hong Thuy Vy | en |
dc.date.accessioned | 2024-01-26T16:24:34Z | - |
dc.date.available | 2024-02-19 | - |
dc.date.copyright | 2024-01-26 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-11-08 | - |
dc.identifier.citation | 1. Lobanovska, M. and G. Pilla, Penicillin's discovery and antibiotic resistance: lessons for the future? The Yale journal of biology and medicine, 2017. 90(1): p. 135-145.
2. Aminov, R.I., A brief history of the antibiotic era: lessons learned and challenges for the future. Frontiers in microbiology, 2010. 1: p. 134-134. 3. Wu, W.-S., et al., Affinity-based screen for inhibitors of bacterial transglycosylase. Journal of the American Chemical Society, 2018. 140(8): p. 2752-2755. 4. den Blaauwen, T. and J. Luirink, Checks and balances in bacterial cell division. mBio, 2019. 10(1): p. e00149-19. 5. Goehring, N.W. and J. Beckwith, Diverse paths to midcell: assembly of the bacterial cell division machinery. Current Biology, 2005. 15(13): p. R514-R526. 6. Bi, E. and J. Lutkenhaus, FtsZ ring structure associated with division in Escherichia coli. Nature, 1991. 354(6349): p. 161-164. 7. Lock, R.L. and E.J. Harry, Cell-division inhibitors: new insights for future antibiotics. Nature Reviews Drug Discovery, 2008. 7(4): p. 324-338. 8. Choi, Y., et al., Structural insights into the FtsQ/FtsB/FtsL complex, a key component of the divisome. Scientific Reports, 2018. 8(1): p. 18061. 9. Sass, P. and H. Brötz-Oesterhelt, Bacterial cell division as a target for new antibiotics. Current Opinion in Microbiology, 2013. 16(5): p. 522-530. 10. Booth, S. and R.J. Lewis, Structural basis for the coordination of cell division with the synthesis of the bacterial cell envelope. Protein Science, 2019. 28(12): p. 2042-2054. 11. Boes, A., et al., Regulation of the peptidoglycan polymerase activity of PBP1b by antagonist actions of the core divisome proteins FtsBLQ and FtsN. mBio, 2019. 10(1): p. e01912-18. 12. Attaibi, M. and T. den Blaauwen, An updated model of the divisome: Regulation of the septal peptidoglycan synthesis machinery by the divisome. Int J Mol Sci, 2022. 23(7). 13. Taguchi, A., et al., FtsW is a peptidoglycan polymerase that is functional only in complex with its cognate penicillin-binding protein. Nature Microbiology, 2019. 4(4): p. 587-594. 14. Park, K.-T., S. Du, and J. Lutkenhaus, Essential role for FtsL in activation of septal peptidoglycan synthesis. mBio, 2020. 11(6): p. e03012-20. 15. Marmont, L.S. and T.G. Bernhardt, A conserved subcomplex within the bacterial cytokinetic ring activates cell wall synthesis by the FtsW-FtsI synthase. Proceedings of the National Academy of Sciences, 2020. 117(38): p. 23879-23885. 16. Vicente, M. and A.I. Rico, The order of the ring: assembly of Escherichia coli cell division components. Molecular Microbiology, 2006. 61(1): p. 5-8. 17. Liu, B., et al., Roles for both FtsA and the FtsBLQ subcomplex in FtsN-stimulated cell constriction in Escherichia coli. Molecular Microbiology, 2015. 95(6): p. 945-970. 18. Gonzalez, M.D., et al., Multiple interaction domains in FtsL, a protein component of the widely conserved bacterial FtsLBQ cell division complex. Journal of Bacteriology, 2010. 192(11): p. 2757-2768. 19. Van Den Ent, F., et al., Structural and mutational analysis of the cell division protein FtsQ. Molecular Microbiology, 2008. 68(1): p. 110-123. 20. van den Berg van Saparoea, H.B., et al., Fine-mapping the contact sites of the Escherichia coli cell division proteins FtsB and FtsL on the FtsQ protein. The Journal of biological chemistry, 2013. 288(34): p. 24340-24350. 21. Condon, S.G.F., et al., The FtsLB subcomplex of the bacterial divisome is a tetramer with an uninterrupted FtsL helix linking the transmembrane and periplasmic regions. The Journal of biological chemistry, 2018. 293(5): p. 1623-1641. 22. Craven, S.J., et al., The coiled-coil domain of Escherichia coli FtsLB is a structurally detuned element critical for modulating its activation in bacterial cell division. Journal of Biological Chemistry, 2022. 298(1): p. 101460. 23. Buddelmeijer, N., et al., YgbQ, a cell division protein in Escherichia coli and Vibrio cholerae, localizes in codependent fashion with FtsL to the division site. Proc Natl Acad Sci U S A, 2002. 99(9): p. 6316-21. 24. Lupas, A.N. and M. Gruber, The structure of α-helical coiled coils, in Advances in Protein Chemistry. 2005, Academic Press. p. 37-38. 25. McNamara, C., et al., Coiled-coil irregularities and instabilities in group A Streptococcus M1 are required for virulence. Science, 2008. 319(5868): p. 1405-8. 26. Kureisaite-Ciziene, D., et al., Structural analysis of the interaction between the bacterial cell division proteins FtsQ and FtsB. mBio, 2018. 9(5): p. e01346-18. 27. LaPointe, L.M., et al., Structural organization of FtsB, a transmembrane protein of the bacterial divisome. Biochemistry, 2013. 52(15): p. 2574-2585. 28. Villanelo, F., et al., A model for the Escherichia coli FtsB/FtsL/FtsQ cell division complex. BMC Struct Biol, 2011. 11: p. 28. 29. Egan, A.J. and W. Vollmer, The stoichiometric divisome: a hypothesis. Front Microbiol, 2015. 6: p. 455. 30. Glas, M., et al., The soluble periplasmic domains of Escherichia coli cell division proteins FtsQ/FtsB/FtsL form a trimeric complex with submicromolar affinity. Journal of Biological Chemistry, 2015. 290(35): p. 21498-21509. 31. Attaibi, M. and T. den Blaauwen, An updated model of the divisome: Regulation of the septal peptidoglycan synthesis machinery by the divisome. International Journal of Molecular Sciences, 2022. 23(7): p. 3537. 32. Kumar, S., et al., The Bacterial cell wall: from Lipid II flipping to polymerization. Chemical Reviews, 2022. 122(9): p. 8884-8910. 33. Vollmer, W., D. Blanot, and M.A. De Pedro, Peptidoglycan structure and architecture. FEMS Microbiology Reviews, 2008. 32(2): p. 149-167. 34. Park, K.T., et al., FtsA acts through FtsW to promote cell wall synthesis during cell division in Escherichia coli. Proc Natl Acad Sci U S A, 2021. 118(35): p. e2107210118. 35. Sung, M.-T., et al., Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli. Proceedings of the National Academy of Sciences, 2009. 106(22): p. 8824-8829. 36. Navarro, P.P., et al., Cell wall synthesis and remodelling dynamics determine division site architecture and cell shape in Escherichia coli. Nature Microbiology, 2022. 7(10): p. 1621-1634. 37. Grenga, L., et al., FtsQ interaction mutants: a way to identify new antibacterial targets. New biotechnology, 2010. 27(6): p. 870-881. 38. Carson, M.J., J. Barondess, and J. Beckwith, The FtsQ protein of Escherichia coli: membrane topology, abundance, and cell division phenotypes due to overproduction and insertion mutations. J Bacteriol, 1991. 173(7): p. 2187-95. 39. Paulussen, F.M., et al., Covalent proteomimetic inhibitor of the bacterial FtsQB divisome complex. Journal of the American Chemical Society, 2022. 144(33): p. 15303-15313. 40. Emsley, P., et al., Features and development of Coot. Acta Crystallogr D Biol Crystallogr, 2010. 66(Pt 4): p. 486-501. 41. Liebschner, D., et al., Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallographica Section D, 2019. 75(10): p. 861-877. 42. Schrodinger, LLC. The PyMOL molecular graphics system, version 1.8. 2015. 43. Liu, D.G., et al., Optical design and performance of the biological small-angle X-ray scattering beamline at the Taiwan Photon Source. Journal of Synchrotron Radiation, 2021. 28: p. 1954-1965. 44. Shih, O., et al., Performance of the new biological small- and wide-angle X-ray scattering beamline 13A at the Taiwan Photon Source. J Appl Crystallogr, 2022. 55(Pt 2): p. 340-352. 45. Manalastas-Cantos, K., et al., ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis. J Appl Crystallogr, 2021. 54(Pt 1): p. 343-355. 46. Pettersen, E.F., et al., UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem, 2004. 25(13): p. 1605-12. 47. Battye, T.G.G., et al., iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta crystallographica. Section D, Biological crystallography, 2011. 67(Pt 4): p. 271-281. 48. Nguyen, H.T.V., et al., Structure of the heterotrimeric membrane protein complex FtsB-FtsL-FtsQ of the bacterial divisome. Nature Communications, 2023. 14(1): p. 1903. 49. Jumper, J., et al., Highly accurate protein structure prediction with AlphaFold. Nature, 2021. 596(7873): p. 583-589. 50. Berezuk, A.M., M. Goodyear, and C.M. Khursigara, Site-directed fluorescence labeling reveals a revised N-terminal membrane topology and functional periplasmic residues in the Escherichia coli cell division protein FtsK. J Biol Chem, 2014. 289(34): p. 23287-301. 51. Ha, N.-C., et al., Supramolecular assembly and acid resistance of Helicobacter pylori urease. Nature Structural Biology, 2001. 8(6): p. 505-509. 52. Otomo, T., et al., Structural basis of actin filament nucleation and processive capping by a formin homology 2 domain. Nature, 2005. 433(7025): p. 488-494. 53. Song, H., et al., Avian to human receptor binding adaptation by Influenza A Virus Hemagglutinin H4. Cell Reports, 2017. 20(5): p. 1201-1214. 54. Lupas, A.N. and M. Gruber, The structure of alpha-helical coiled coils. Adv Protein Chem, 2005. 70: p. 37-78. 55. Goehring, N.W., et al., Mutants, suppressors, and wrinkled colonies: mutant alleles of the cell division gene ftsQ point to functional domains in FtsQ and a role for domain 1C of FtsA in divisome assembly. Journal of Bacteriology, 2007. 189(2): p. 633-645. 56. Sjodt, M., et al., Structural coordination of polymerization and crosslinking by a SEDS–bPBP peptidoglycan synthase complex. Nature Microbiology, 2020. 5(6): p. 813-820. 57. King, D.T., et al., Structural insights into inhibition of Escherichia coli Penicillin-binding protein 1B. J Biol Chem, 2017. 292(3): p. 979-993. 58. Käshammer, L., et al., Cryo-EM structure of the bacterial divisome core complex and antibiotic target FtsWIQBL. Nature Microbiology, 2023. 8(6): p. 1149-1159. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91416 | - |
dc.description.abstract | 細胞分裂是細菌生存的基本過程,包含協調細胞的收縮、細胞壁合成和細胞的分隔。大腸桿菌內的這個過程由分裂體執行,包含至少12種核心蛋白質,它們在分裂早期和晚期依序被招募到細胞中央,中間有一段時間差。由三種穿膜蛋白質組成的複合物,即FtsB、FtsL和FtsQ,在細菌細胞分裂中扮演至關重要的作用。FtsB-FtsL-FtsQ (FtsBLQ)充當了早期和晚期分裂體組成之間的連接器,並作為下游分隔肽聚醣(PG)合成的調節器。然而,FtsBLQ調控PG合成酶活性的機制仍然不清楚。長久以來這個膜蛋白複合物的結構一直無法獲得,制約了這個研究領域的進展。在本博士論文研究中,我們首次使用X光結晶學成功地揭示了FtsBLQ異源三聚體的結構,包括其穿膜區域。我們觀察到了這個複合物出乎意料的V形結構,其頂部的異聚三聚體β-片狀折疊之間有廣泛的相互作用。有趣的是,兩個V形分支的長度差異表明這個複合物插入細胞膜時可能出現傾斜的方向。這種構型進一步提供與其結合夥伴(包括FtsK、FtsW-FtsI和PBP1b)的相互作用以及FtsBL穿膜螺旋的縮短的合理解釋。此外,我們還發現了在FtsBL協同螺旋中的插入和非常規的親水胺基酸殘基,解決了以前關於協同螺旋結構的爭議。此外、FtsBLQ複合物的關鍵功能區域的位置也首次被確定,主要位於協同螺旋的C末端周圍,並且大部分分佈在螺旋的兩側。我們還進行了關於FtsBLQ關鍵胺基酸殘基的結構,生化和遺傳研究,為分裂體介導的PG合成調節提供了見解。 | zh_TW |
dc.description.abstract | Bacterial cell division is a fundamental process that orchestrates cell constriction, cell wall biosynthesis, and cell septation. The machinery in Escherichia coli, called divisome, contains at least twelve core proteins which are recruited hierarchically to the mid-cell during the early and late stages, with a delay in between. A complex consisting of three transmembrane proteins, namely FtsB, FtsL and FtsQ, plays a crucial role in bacterial cell division. FtsB-FtsL-FtsQ (FtsBLQ) serves as a connector between the early and late-stage components, and functions as a regulator for the downstream septal peptidoglycan (PG) synthesis. However, the mechanism by which FtsBLQ regulates the activity of PG synthases remains unclear. The structure of this protein complex remained unavailable, hindering progress in this area of study. In this study, using X-ray crystallography we have successfully revealed the structure of the heterotrimer FtsBLQ, including its transmembrane regions, for the first time. We observed an unexpected V-shape architecture of this complex with an extensive interaction between heterotrimeric β-sheets at the apex. Interestingly, the difference in length of two V-shape branches suggests a tilted orientation when this complex inserts into the membrane. This conformation is further strengthened by the interactions with its binding partners including FtsK, FtsW-FtsI and PBP1b, as well as the shortening of FtsBL transmembrane helices. Additionally, we discovered a stammer insertion, and unconventional core hydrophilic residues within the heterodimeric FtsBL coiled coil, resolving all previous controversies regarding the coiled coil structure. Furthermore, the location of key functional domains of FtsBLQ complex were also newly revealed, which are primarily situated around, but mostly at two sides of the coiled coil C-terminus. Structural, biochemical, and genetic studies of the FtsBLQ key residues were performed, providing insight into the regulation of a divisome-mediated PG synthesis. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-26T16:24:34Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-01-26T16:24:34Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | PhD DISSERTATION ACCEPTANCE CERTIFICATE i
Acknowledgment ii 摘要 iii Abstract v Table of contents vii List of figures x List of tables xii List of abbreviations xiii Chapter 1 INTRODUCTION 1 1.1 Bacterial cell division and divisome 2 1.2 The hetero protein complex, FtsB-FtsL-FtsQ 3 1.3 Divisome-mediated PG synthesis 7 1.4 Key regulatory domains of FtsB-FtsL-FtsQ 8 1.5 Important of FtsBLQ structural studies 10 1.6 Specific Aims 11 Chapter 2 MATERIALS AND METHODS 12 2.1 Materials 13 2.1.1 Bacterial strains, and oligonucleotides 13 2.1.2 Media 13 2.1.3 Others 13 2.2 Cloning 14 2.3 Mutagenesis 15 2.4 Protein co-expression 15 2.5 Detergent screening for FtsB-FtsL-FtsQ complex purification 16 2.6 Protein purification 17 2.7 FtsBLQ protein crystallization and data collection 18 2.8 Phasing, model building and structural refinement 20 2.9 Size exclusion chromatograph ‒ multi-angle light scattering (SEC-MALS) 20 2.10 Bio-Layer Interferometry (BLI) 21 2.11 Native PAGE 22 2.12 Small-Angle X-ray Scattering (Bio SAXS) 22 Chapter 3 RESULTS 24 3.1 Protein purification 25 3.2 Protein crystallization, X-ray data collection, and structure determination 26 3.3 The overall structure of FtsB-FtsL-FtsQ complex 27 3.4 Transmembrane region of FtsB, FtsL, FtsQ and a potential in forming a hexameric complex 30 3.5 Coiled-coil domain of FtsB-FtsL 33 3.6 Interacting site I between three proteins and its important role in stabilizing complex 35 3.7 Interacting site II between three proteins 36 3.8 Locations of FtsBLQ key regulatory residues 37 3.9 A hypothetical model of divisome-mediated PG synthesis regulation by FtsBLQ based on the current structure 41 Chapter 4 DISCUSSION 43 TABLES AND FIGURES 47 REFERENCES 82 APPENDIX 87 | - |
dc.language.iso | en | - |
dc.title | 細菌分裂體FtsB-FtsL-FtsQ的異三聚體膜蛋白 複合物結構與分子機轉 | zh_TW |
dc.title | Structure of the heterotrimeric membrane protein complex FtsB-FtsL-FtsQ of the bacterial divisome | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 博士 | - |
dc.contributor.coadvisor | 史有伶 | zh_TW |
dc.contributor.coadvisor | Yu-Ling Shih | en |
dc.contributor.oralexamcommittee | 呂桐睿 ;林俊宏;梁博煌;翁瑞霞 | zh_TW |
dc.contributor.oralexamcommittee | Todd L. Lowary;Chun-Hung Lin;Po-Huang Liang;Jui-Hsia Weng | en |
dc.subject.keyword | FtsB,FtsL,FtsQ,FtsBLQ,分裂體,異源三聚體,膜蛋白複合物,分隔肽聚醣合成,細菌細胞分裂,螺旋线圈,X光結晶學, | zh_TW |
dc.subject.keyword | FtsB,FtsL,FtsQ,FtsBLQ,divisome,heterotrimer,membrane protein complex,septal peptidoglycan synthesis,bacterial cell division,coiled coil,crystal structure,titled orientation, | en |
dc.relation.page | 100 | - |
dc.identifier.doi | 10.6342/NTU202304406 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-11-09 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 生化科學研究所 | - |
dc.date.embargo-lift | 2028-11-08 | - |
顯示於系所單位: | 生命科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 目前未授權公開取用 | 16.9 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。