Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91415
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林裕彬zh_TW
dc.contributor.advisorYu-Pin Linen
dc.contributor.author周品樺zh_TW
dc.contributor.authorPin-Hua Chouen
dc.date.accessioned2024-01-26T16:24:18Z-
dc.date.available2024-01-27-
dc.date.copyright2024-01-26-
dc.date.issued2024-
dc.date.submitted2024-01-08-
dc.identifier.citationAbera, W., L. Tamene, T. Kassawmar, K. Mulatu, H. Kassa, L. Verchot, M. Quintero (2021), Impacts of land use and land cover dynamics on ecosystem services in the Yayo coffee forest biosphere reserve, southwestern Ethiopia, Ecosystem Services, 50, 101338.
Arunrat, N., S. Sereenonchai, C. Wang (2021), Carbon footprint and predicting the impact of climate change on carbon sequestration ecosystem services of organic rice farming and conventional rice farming: A case study in Phichit province, Thailand, Journal of Environmental Management, 289, 112458
Asmus, M. L., J. Nicolodi, L. S. Anello, K. Gianuca (2019), The risk to lose ecosystem services
Assessment, M. E. (2005), Ecosystems and human well-being: wetlands and water, World resources institute
Beaumont, N. J., M. Aanesen, M. C. Austen, T. Börger, J. R. Clark, M. Cole, T. Hooper, P. K. Lindeque, C. Pascoe, K. J. Wyles (2019), Global ecological, social and economic impacts of marine plastic, Marine pollution bulletin, 142, 189-195
Berta Aneseyee, A., T. Noszczyk, T. Soromessa, E. Elias (2020), The InVEST Habitat Quality Model Associated with Land Use/Cover Changes: A Qualitative Case Study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia, Remote Sensing, 12(7), 1103
Bing, Z., Y. Qiu, H. Huang, T. Chen, W. Zhong, H. Jiang (2021), Spatial distribution of cultural ecosystem services demand and supply in urban and suburban areas: A case study from Shanghai, China, Ecological Indicators, 127, 107720.
Breiman, L. (2001), Random Forests, Machine Learning, 45(1), 5-32.
Case, M. J., B. G. Johnson, K. J. Bartowitz, T. W. Hudiburg (2021), Forests of the future: Climate change impacts and implications for carbon storage in the Pacific Northwest, USA, Forest Ecology and Management, 482, 118886
Chen, P., J. Yang, Z. Jiang, E. Zhu, C. Mo (2020), Prediction of future carbon footprint and ecosystem service value of carbon sequestration response to nitrogen fertilizer rates in rice production, Science of The Total Environment, 735, 139506.
Chiang, L.-C., Y.-P. Lin, T. Huang, D. S. Schmeller, P. H. Verburg, Y.-L. Liu, T.-S. Ding (2014), Simulation of ecosystem service responses to multiple disturbances from an earthquake and several typhoons, Landscape and Urban Planning, 122, 41-55.
Clerici, N., F. Cote-Navarro, F. J. Escobedo, K. Rubiano, J. C. Villegas (2019), Spatio-temporal and cumulative effects of land use-land cover and climate change on two ecosystem services in the Colombian Andes, Science of The Total Environment, 685, 1181-1192
Costanza, R., R. d'Arge, R. De Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R. V. O'neill, J. Paruelo (1997), The value of the world's ecosystem services and natural capital, nature, 387(6630), 253-260
Costanza, R., R. De Groot, P. Sutton, S. Van der Ploeg, S. J. Anderson, I. Kubiszewski, S. Farber, R. K. Turner (2014), Changes in the global value of ecosystem services, Global environmental change, 26, 152-158
Dale, V. H. (1997), The relationship between land‐use change and climate change, Ecological applications, 7(3), 753-769
Dale, V. H. (1997), The relationship between land‐use change and climate change, Ecological applications, 7(3), 753-769
de Bremond, A., A. Ehrensperger, I. Providoli, P. Messerli (2019), What role for global change research networks in enabling transformative science for global sustainability? A Global Land Programme perspective, Current opinion in environmental sustainability, 38, 95-102
Gordon, B. A., O. Dorothy, C. F. Lenhart (2020), Nutrient Retention in Ecologically Functional Floodplains: A Review, Water, 12(10), 2762
Guo, M., S. Ma, L.-J. Wang, C. Lin (2021), Impacts of future climate change and different management scenarios on water-related ecosystem services: A case study in the Jianghuai ecological economic Zone, China, Ecological Indicators, 127, 107732
Han, B., A. Reidy, A. Li (2021), Modeling nutrient release with compiled data in a typical Midwest watershed, Ecological Indicators, 121, 107213.
Han, H., C. Yang, J. Song (2015), Scenario Simulation and the Prediction of Land Use and Land Cover Change in Beijing, China, Sustainability, 7(4), 4260-4279
He, J., X. Shi, Y. Fu, Y. Yuan (2020), Spatiotemporal pattern of the trade-offs and synergies of ecosystem services after Grain for Green Program: a case study of the Loess Plateau, China, Environmental Science and Pollution Research, 27(24), 30020-30033.
Hou, Y., Y. Lü, W. Chen, B. Fu (2017), Temporal variation and spatial scale dependency of ecosystem service interactions: a case study on the central Loess Plateau of China, Landscape Ecology, 32(6), 1201-1217.
Houghton, R. A. (2003), Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000, Tellus B: Chemical and Physical Meteorology, 55(2), 378-390.
Hoyer, R. and H. Chang (2014). "Assessment of freshwater ecosystem services in the Tualatin and Yamhill basins under climate change and urbanization." Applied Geography 53: 402-416.
Hu, T., J. Liu, G. Zheng, D. Zhang, K. Huang (2020), Evaluation of historical and future wetland degradation using remote sensing imagery and land use modeling, Land Degradation & Development, 31(1), 65-80
Huang, D., J. Huang, T. Liu (2019), Delimiting urban growth boundaries using the CLUE-S model with village administrative boundaries, Land Use Policy, 82, 422-435.
Jakob, M., Hungr, O., Jan, C. D., & Chen, C. L. (2005). Debris flows caused by Typhoon Herb in Taiwan. Debris-flow hazards and related phenomena, 539-563.
Jiang, W., Y. Deng, Z. Tang, X. Lei, Z. Chen (2017), Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models, Ecological Modelling, 345, 30-40
Kucsicsa, G., E.-A. Popovici, D. Bălteanu, I. Grigorescu, M. Dumitraşcu, B. Mitrică (2019), Future land use/cover changes in Romania: regional simulations based on CLUE-S model and CORINE land cover database, Landscape and ecological engineering, 15, 75-90
Kumar, S., N. Radhakrishnan, S. Mathew (2014), Land use change modelling using a Markov model and remote sensing, Geomatics, Natural Hazards and Risk, 5(2), 145-156.
Landis, J. R., G. G. Koch (1977), The Measurement of Observer Agreement for Categorical Data, Biometrics, 33(1), 159-174.
Li, M., P. Zheng, W. Pan (2022), Spatial-Temporal Variation and Tradeoffs/Synergies Analysis on Multiple Ecosystem Services: A Case Study in Fujian, Sustainability, 14(5), 3086
Li, X., X. Yu, K. Wu, Z. Feng, Y. Liu, X. Li (2021), Land-use zoning management to protecting the Regional Key Ecosystem Services: A case study in the city belt along the Chaobai River, China, Science of The Total Environment, 762, 143167.
Lin, C. Y., & Tung, C. P. (2017). Procedure for selecting GCM datasets for climate risk assessment. Terrestrial, Atmospheric & Oceanic Sciences, 28(1).
Lin, Y.-P., W.-C. Lin, Y.-C. Wang, W.-Y. Lien, T. Huang, C.-C. Hsu, D. S. Schmeller, N. D. Crossman (2017), Systematically designating conservation areas for protecting habitat quality and multiple ecosystem services, Environmental Modelling & Software, 90, 126-146.
Liu, L., H. Zhang, Y. Gao, W. Zhu, X. Liu, Q. Xu (2019), Hotspot identification and interaction analyses of the provisioning of multiple ecosystem services: Case study of Shaanxi Province, China, Ecological Indicators, 107, 105566.
Liu, X., X. Liang, X. Li, X. Xu, J. Ou, Y. Chen, S. Li, S. Wang, F. Pei (2017), A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects, Landscape and Urban Planning, 168, 94-116.
Lorencová, E., J. Frélichová, E. Nelson, D. Vačkář (2013), Past and future impacts of land use and climate change on agricultural ecosystem services in the Czech Republic, Land Use Policy, 33, 183-194
Lyu, R., K. C. Clarke, J. Zhang, J. Feng, X. Jia, J. Li (2019), Spatial correlations among ecosystem services and their socio-ecological driving factors: A case study in the city belt along the Yellow River in Ningxia, China, Applied Geography, 108, 64-73.
Mace, G. M., K. Norris, A. H. Fitter (2012), Biodiversity and ecosystem services: a multilayered relationship, Trends in ecology & evolution, 27(1), 19-26
Marquès, M., R. F. Bangash, V. Kumar, R. Sharp, M. Schuhmacher (2013), The impact of climate change on water provision under a low flow regime: A case study of the ecosystems services in the Francoli river basin, Journal of Hazardous Materials, 263, 224-232
Mehvar, S., T. Filatova, M. H. Sarker, A. Dastgheib, R. Ranasinghe (2019), Climate change-driven losses in ecosystem services of coastal wetlands: A case study in the West coast of Bangladesh, Ocean & coastal management, 169, 273-283
Mohammady, M., H. R. Moradi, H. Zeinivand, A. Temme, M. R. Yazdani, H. R. Pourghasemi (2018), Modeling and assessing the effects of land use changes on runoff generation with the CLUE-s and WetSpa models, Theoretical and Applied Climatology, 133, 459-471
Nasiakou, S., M. Vrahnakis, D. Chouvardas, G. Mamanis, V. Kleftoyanni (2022), Land Use Changes for Investments in Silvoarable Agriculture Projected by the CLUE-S Spatio-Temporal Model, Land, 11(5), 598
Nolan, C., J. T. Overpeck, J. R. Allen, P. M. Anderson, J. L. Betancourt, H. A. Binney, S. Brewer, M. B. Bush, B. M. Chase, R. Cheddadi (2018), Past and future global transformation of terrestrial ecosystems under climate change, Science, 361(6405), 920-923
Palczewska, A., J. Palczewski, R. M. Robinson, D. Neagu (2013), Interpreting random forest models using a feature contribution method, paper presented at 2013 IEEE 14th International Conference on Information Reuse & Integration (IRI), 14-16 Aug. 2013.
Peng, K., W. Jiang, Z. Ling, P. Hou, Y. Deng (2021), Evaluating the potential impacts of land use changes on ecosystem service value under multiple scenarios in support of SDG reporting: A case study of the Wuhan urban agglomeration, Journal of Cleaner Production, 307, 127321
Peng, L.-C., Y.-P. Lin, G.-W. Chen, W.-Y. Lien (2019), Climate Change Impact on Spatiotemporal Hotspots of Hydrologic Ecosystem Services: A Case Study of Chinan Catchment, Taiwan, Water, 11(4), 867
Pontius Jr, R. G., K. Si (2014), The total operating characteristic to measure diagnostic ability for multiple thresholds, International Journal of Geographical Information Science, 28(3), 570-583.
Pontius, R. G., W. Boersma, J.-C. Castella, K. Clarke, T. de Nijs, C. Dietzel, Z. Duan, E. Fotsing, N. Goldstein, K. Kok, E. Koomen, C. D. Lippitt, W. McConnell, A. Mohd Sood, B. Pijanowski, S. Pithadia, S. Sweeney, T. N. Trung, A. T. Veldkamp, P. H. Verburg (2008), Comparing the input, output, and validation maps for several models of land change, The Annals of Regional Science, 42(1), 11-37.
Schirpke, U., S. Candiago, L. Egarter Vigl, H. Jäger, A. Labadini, T. Marsoner, C. Meisch, E. Tasser, U. Tappeiner (2019), Integrating supply, flow and demand to enhance the understanding of interactions among multiple ecosystem services, Science of The Total Environment, 651, 928-941.
Schröter, D., W. Cramer, R. Leemans, I. C. Prentice, M. B. Araújo, N. W. Arnell, A. Bondeau, H. Bugmann, T. R. Carter, C. A. Gracia (2005), Ecosystem service supply and vulnerability to global change in Europe, Science, 310(5752), 1333-1337
Shirmohammadi, B., Malekian, A., Salajegheh, A., Taheri, B., Azarnivand, H., Malek, Z., & Verburg, P. H. (2020). Impacts of future climate and land use change on water yield in a semiarid basin in Iran. Land Degradation & Development, 31(10), 1252-1264.
Sintayehu, D. W. (2018), Impact of climate change on biodiversity and associated key ecosystem services in Africa: a systematic review, Ecosystem health and sustainability, 4(9), 225-239
Srichaichana, J., Y. Trisurat, S. Ongsomwang (2019), Land use and land cover scenarios for optimum water yield and sediment retention ecosystem services in Klong U-Tapao Watershed, Songkhla, Thailand, Sustainability, 11(10), 2895
Teng, T.-Y., T.-M. Liu, Y.-S. Tung, K.-S. Cheng (2021), Converting Climate Change Gridded Daily Rainfall to Station Daily Rainfall—A Case Study at Zengwen Reservoir, Water, 13(11), 1516
Thellmann, K., R. Golbon, M. Cotter, G. Cadisch, F. Asch (2019), Assessing hydrological ecosystem services in a rubber-dominated watershed under scenarios of land use and climate change, Forests, 10(2), 176
Van Vliet, J., A. K. Bregt, A. Hagen-Zanker (2011), Revisiting Kappa to account for change in the accuracy assessment of land-use change models, Ecological Modelling, 222(8), 1367-1375. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2011.01.017
Van Vuuren, D. P., J. Edmonds, M. Kainuma, K. Riahi, A. Thomson, K. Hibbard, G. C. Hurtt, T. Kram, V. Krey, J.-F. Lamarque, T. Masui, M. Meinshausen, N. Nakicenovic, S. J. Smith, S. K. Rose (2011), The representative concentration pathways: an overview, Climatic Change, 109(1), 5. https://doi.org/10.1007/s10584-011-0148-z
Verburg, P. H., A. Veldkamp (2004), Projecting land use transitions at forest fringes in the Philippines at two spatial scales, Landscape Ecology, 19(1), 77-98.
Verburg, P. H., P. P. Schot, M. J. Dijst, A. Veldkamp (2004), Land use change modelling: current practice and research priorities, GeoJournal, 61(4), 309-324.
Verburg, P. H., W. Soepboer, A. Veldkamp, R. Limpiada, V. Espaldon, S. S. Mastura (2002), Modeling the spatial dynamics of regional land use: the CLUE-S model, Environmental management, 30, 391-405
Wei, F., X. Zhan (2019), Delineating Urban Growth Boundaries with Ecosystem Service Evaluation, Sustainability, 11(19), 5390
Weiskopf, S. R., M. A. Rubenstein, L. G. Crozier, S. Gaichas, R. Griffis, J. E. Halofsky, K. J. Hyde, T. L. Morelli, J. T. Morisette, R. C. Muñoz (2020), Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States, Science of The Total Environment, 733, 137782
Wu, C., B. Chen, X. Huang, Y. D. Wei (2020), Effect of land-use change and optimization on the ecosystem service values of Jiangsu province, China, Ecological Indicators, 117, 106507
Xiao, Y., Q. Xiao (2018), Identifying key areas of ecosystem services potential to improve ecological management in Chongqing City, southwest China, Environmental Monitoring and Assessment, 190(4), 258.
Xu, C., Y. Jiang, Z. Su, Y. Liu, J. Lyu (2022), Assessing the impacts of Grain-for-Green Programme on ecosystem services in Jinghe River basin, China, Ecological Indicators, 137, 108757.
Xu, R., D. Nettleton, D. J. Nordman (2016), Case-Specific Random Forests, Journal of Computational and Graphical Statistics, 25(1), 49-65.
Yang, J., B. Xie, D. Zhang (2021), The Trade-Offs and Synergistic Relationships between Grassland Ecosystem Functions in the Yellow River Basin, Diversity, 13(10), 505
Yang, Q., P. Zhang, X. Qiu, G. Xu, J. Chi (2023), Spatial-Temporal Variations and Trade-Offs of Ecosystem Services in Anhui Province, China, International Journal of Environmental Research and Public Health, 20(1).
Yang, S., W. Zhao, Y. Liu, S. Wang, J. Wang and R. Zhai (2018). "Influence of land use change on the ecosystem service trade-offs in the ecological restoration area: Dynamics and scenarios in the Yanhe watershed, China." Science of The Total Environment 644: 556-566.
Yohannes, H., T. Soromessa, M. Argaw, A. Dewan (2021), Spatio-temporal changes in habitat quality and linkage with landscape characteristics in the Beressa watershed, Blue Nile basin of Ethiopian highlands, Journal of Environmental Management, 281, 111885.
Zarrineh, N., K. C. Abbaspour, A. Holzkämper (2020), Integrated assessment of climate change impacts on multiple ecosystem services in Western Switzerland, Science of The Total Environment, 708, 135212
Zhang, J., W. Guo, C. Cheng, Z. Tang, L. Qi (2022), Trade-offs and driving factors of multiple ecosystem services and bundles under spatiotemporal changes in the Danjiangkou Basin, China, Ecological Indicators, 144, 109550.
Zhong, L., J. Wang, X. Zhang and L. Ying (2020). "Effects of agricultural land consolidation on ecosystem services: Trade-offs and synergies." Journal of Cleaner Production 264: 121412.
李錫堤(1996)。從地形學的觀點看陳有蘭溪的賀伯風災。地工技術,57,17-24。
汪中安(2022)。氣候與土地利用變遷情境下的都市熱島效應—以桃園市區為例。國立臺灣大學生物環境系統工程學研究所
林昭遠、劉昌文、林鶴儒(2004)。陳有蘭溪集水區降雨-逕流模式動態分析系統建置之研究。水土保持學報,36(3),243-258
林昭遠、賴威任、莊智瑋(2010)。水庫集水區植生緩衝帶配置區位及效益評估之研究。中華水土保持學報,42(1),15-34。
林修立,林士堯,童裕翔(民110年9月15日),AR5 統計降尺度雨量資料生產履歷4.0 版。於2023/02/23取自臺灣氣候變遷推估資訊與調適知識平台。
張文豪(2018)。以系統性保育規劃法評估氣候變遷對生態系服務的影響—以陳有蘭溪流域為例。國立臺灣大學生物環境系統工程學研究所
張庭瑜、王湘閔、林昭遠(2015)。陳有蘭溪集水區災後山坡地土地可利用限度查定快速評估之研究。中華水土保持學報,46(3),158-170。
陳文福、李毅宏、吳輝龍(2005)。結合地文與降雨條件以判定土石流發生之研究—以陳有蘭溪集水區為例。台灣地理資訊學刊,(2),27-44。
陳時仲(2015)。隨機森林模型效力評估。國立交通大學統計學研究所
陳麒如(2017)。系統景觀保護規劃法對於生態系統之影響—以陳有蘭溪為例。國立臺灣大學生物環境系統工程學研究所
溫在弘、劉擇昌、林民浩(2010)。犯罪地圖繪製與熱區分析方法及其應用:以1998-2007年台北市住宅竊盜罪為例。地理研究,52,43-64。
劉海柔(2018)。氣候與土地利用與覆蓋變遷對生態系服務的影響—以大屯溪流域為例。國立臺灣大學生物環境系統工程學研究所。
蕭戎雯(2013)。不同單元尺度對土地利用及生態系統服務模擬之影響—以大屯溪流域為例。國立臺灣大學生物環境系統工程學研究所。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91415-
dc.description.abstract生態系服務(Ecosystem Service, ES)為大自然中的生態系統環境所提供給人類社會之資源與服務,為人類生存與生活的一切基礎。聯合國政府間氣候變遷專門委員會(IPCC)於2022年的氣候報告指出,不當的開發所帶來的土地利用變遷及氣候變遷的壓力之下正影響著碳循環、水循環等多個生態過程,加劇對生態系服務的破壞,進而對人類社會造成威脅。本研究基於土地利用變遷以及氣候變遷,探討陳有蘭溪流域在2007年、2014年、2020年三個歷史年份,以及2050年代表濃度路徑(Representative Concentration Path, RCP)為RCP8.5,大氣環流模式(General Circulation Models, GCM): CanESM2、CESM1-CAM5、MIROC5情境下的生態系服務熱點以及權衡關係,以生態系服務管理的角度提供流域內優先進行保護及治理之建議。
本研究使用InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs)模式量化流域內歷史年份的生態系服務:碳儲存、棲地品質、產水量、氮磷營養鹽留存、沉積物留存。並採區域空間自相關(Local Indicators of Spatial Association)的High-High聚集區域與前25%高值區的交集做各生態系服務的熱點分析,視可提供四種以上熱點的區域作為生態系服務綜合熱點,再將綜合熱點聯集政府所劃設之國有林地分區作為未來土地發展之限制保護區,使用CLUE-s (Conversion of Land Use and its Effects at Small regional extent)模式模擬流域內2050年土地利用分佈,其中土地利用變遷驅動因子的溫度及雨量分別輸入三種GCM的預測資料,以探討不同氣候情境的土地利用分佈的差異,接著再量化2050年的生態系服務,最後計算Pearson相關係數及雙變量區域空間自相關分析(Bivariate local indicator of spatial association)以探討兩兩生態系服務間的權衡關係與空間聚集情形。
研究結果表示陳有蘭溪流域內有14%的土地為生態系服務綜合熱點,綜合熱點土地類型以林地為主(94%),其次為草地(3%),65%的綜合熱點已位於政府劃設之國有林地。在本研究對未來土地變化的假設情境下,不同氣候GCM的土地利用分佈差異不大。所有生態系服務中僅產水量受該年降雨空間分佈影響而具明顯的時空變異性,受氣候變遷的影響大於土地利用變遷,而棲地品質、氮磷營養鹽留存、沉積物留存、碳儲存則是主要受土地利用影響。除了產水量以外的生態系服務不論在歷史年份或是未來2050年三種GCM情境下均維持穩定的協同關係,具有競合關係的生態系服務均與產水量相關,但在CESM1-CAM5情境下無競合關係。生態系服務雙變量空間自相關的結果表示在所有研究年份中,流域內的山區林地皆為碳儲存-棲地品質的High-High熱點,中下游地勢平緩處農地、建地則為為多組生態系服務Low-Low聚集的熱點,可見人類活動越密集的區域,對生態系服務產生的負面影響越大。最後,作為未來政策規劃之參考,本研究將未包含在國有林地內的綜合熱點所缺少的生態系服務項目進行分類,建議主要位於信義鄉神木村、豐丘村、自強村的生態系服務綜合熱點區域可新增納入國土保安區,以加強流域內的生態系服務管理,實踐生態系服務永續經營的目標。
zh_TW
dc.description.abstractEcosystem services (ES) refer to the resources and benefits provided by natural ecosystems to human societies, forming the foundation for human survival and well-being. In its 2022 climate report, the Intergovernmental Panel on Climate Change (IPCC) highlighted that improper land use change resulting from development, under the pressures of climate change, are impacting various ecological processes such as carbon and water cycling, exacerbating the degradation of ecosystem services, and thereby posing threats to human society. This study examines the Chenyoulan watershed at historical years 2007, 2014, 2020, and 2050under the Representative Concentration Path (RCP)8.5 and General Circulation Model(GCM): CanESM2, CESM1-CAM5, MIROC5. It aims to identify ES hotspots and trade-offs, considering land use changes and climate change, and provide recommendations for prioritized conservation and management from an ecosystem service management perspective.
This study employs the InVEST model (Integrated Valuation of Ecosystem Services and Tradeoffs) to quantify historical-year ecosystem services within the watershed: carbon storage, habitat quality, water yield, nitrogen and phosphorus retention, sediment retention. The hotspot analysis for each ES is based on the intersection of Local Indicators of Spatial Association (LISA) High-High clusters and the top 25% high-value areas. Regions offering hotspots for four or more ES are considered comprehensive ES hotspots. These areas are then intersected with government-designated state-owned forest zones, serving as restricted conservation zones for future land development. The CLUE-s model (Conversion of Land Use and its Effects at Small regional extent) is employed to simulate land use distribution for the year 2050 within the watershed. Temperature and precipitation, as drivers of land use change, are inputted from three GCMs'' predictive data to explore variations in land use distribution under different climate scenarios. The study quantifies 2050 ecosystem services and concludes with Pearson correlation coefficients and Bivariate Local Indicators of Spatial Association analysis to investigate trade-offs and spatial clustering between pairs of ES.
The results reveal that 14% of the Chenyoulan watershed comprises comprehensive ES hotspots, predominantly consisting of forests (94%) followed by grasslands (3%), with 65% already located within government-designated state-owned forest areas. Under assumed future land change scenarios, differences in land use distribution among different climate GCMs are negligible. Among all ecosystem services, only water yield exhibits significant spatiotemporal variability due to rainfall distribution, with climate change exerting a greater influence than land use change. Habitat quality, nitrogen and phosphorus retention, sediment retention, and carbon storage are primarily influenced by land use. Except for water yield, the synergistic relationships between ES remain stable across historical years and the three GCM scenarios for 2050, with competing relationships observed primarily involving water yield, except for the CESM1-CAM5 scenario. Bivariate spatial autocorrelation of ecosystem services indicates that mountainous forests within the watershed are consistently high-high hotspots for carbon storage and habitat quality across all study years, while agricultural and built-up areas in the middle and lower reaches are hotspots for co-occurring low values of multiple ecosystem services. This underscores that regions with intensified human activities experience greater negative impacts on ecosystem services. Finally, the study classifies the missing ecosystem service components in comprehensive hotspots not encompassed within state-owned forest areas, suggesting the addition of hotspot regions located primarily in the Shengmu, Fengqiu, and Ziqiang villages of Xinyi Township to protected areas, strengthening ecosystem service management within the watershed and serving as a reference for future policy planning.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-26T16:24:18Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-01-26T16:24:18Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract iii
目錄 vi
圖目錄 ix
表目錄 xi
第一章、前言 1
1.1研究動機 1
1.2研究目的 2
1.3研究架構 4
第二章、文獻回顧 7
2.1氣候變遷 7
2.2土地利用變遷 10
2.3生態系服務 12
2.3.1生態系服務熱點 14
2.3.2生態系服務的權衡關係 14
第三章、研究方法 19
3.1研究區域 19
3.2氣候變遷模式 21
3.2.1模式介紹與選取 21
3.2.2氣象資料產製 22
3.3土地利用變遷模擬 23
3.3.1 CLUE-s模式輸入資料 23
3.3.2 CLUE-s模式空間分配 28
3.3.3土地利用變遷模擬之檢定與驗證 29
3.4生態系服務量化 32
3.4.1 碳儲存 32
3.4.2 棲地品質–生物多樣性 33
3.4.3 水源供給–產水量 37
3.4.4 土壤保持–沉積物留存 40
3.4.5 淨化水質-氮、磷營養鹽留存 41
3.5權衡熱點分析 43
3.5.1區域空間自相關分析 43
3.5.2 Pearson相關係數 44
3.5.3雙變量區域空間自相關分析 45
第四章、研究結果 46
4.1 歷史分析 46
4.1.1土地利用變遷 46
4.1.2 氣象資料 48
4.1.3 生態系服務量化 51
4.1.4 生態系服務熱點 57
4.2 未來氣候變遷情境 60
4.2.1氣候變遷情境下的土地利用分佈 60
4.2.2氣候變遷情境下氣象資料 65
4.2.3氣候變遷情境下的生態系服務 67
4.3 生態系服務的權衡關係與空間分布 72
4.3.1歷史年份的生態系服務權衡關係 72
4.3.2 2050年氣候情境下生態系服務權衡關係 75
4.3.3 綜合熱點保護區的生態系服務權衡關係 77
4.3.4 生態系服務權衡關係之空間分佈 80
第五章、結果討論 92
5.1 氣候變遷與土地利用變遷 92
5.2 生態系服務 94
5.2.1碳儲存 94
5.2.2棲地品質 95
5.2.3營養鹽留存 96
5.2.4沉積物留存 97
5.2.5產水量 98
5.3 生態系服務綜合熱點 100
5.4 生態系服務權衡關係 102
5.5 生態系服務權衡熱點 105
第六章、結論與建議 107
6.1 結論 107
6.2 建議 110
第七章、參考文獻 112
-
dc.language.isozh_TW-
dc.subjectInVEST模式zh_TW
dc.subject氣候變遷zh_TW
dc.subject生態系服務熱點zh_TW
dc.subject生態系服務權衡關係zh_TW
dc.subject土地利用變遷zh_TW
dc.subjectCLUE-s模式zh_TW
dc.subject生態系服務zh_TW
dc.subjectecosystem service trade-offen
dc.subjectclimate changeen
dc.subjectland use changeen
dc.subjectCLUE-s modelen
dc.subjectecosystem serviceen
dc.subjectInVEST modelen
dc.subjectecosystem service hotspoten
dc.title氣候與土地利用變遷下的生態系服務時空熱點與權衡關係—以陳有蘭溪流域為例zh_TW
dc.titleSpatiotemporal hotspots and trade-offs of Ecosystem services under climate and land use changes: Chenyoulan River watersheden
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee潘述元;王咏潔;吳振發zh_TW
dc.contributor.oralexamcommitteeShu-Yuan Pan;Yung-Chieh Wang;Chen-Fa Wuen
dc.subject.keyword氣候變遷,土地利用變遷,CLUE-s模式,生態系服務,InVEST模式,生態系服務熱點,生態系服務權衡關係,zh_TW
dc.subject.keywordclimate change,land use change,CLUE-s model,ecosystem service,InVEST model,ecosystem service hotspot,ecosystem service trade-off,en
dc.relation.page122-
dc.identifier.doi10.6342/NTU202400030-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-01-09-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物環境系統工程學系-
dc.date.embargo-lift2025-01-05-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
6.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved