請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91413
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 柯淳涵 | zh_TW |
dc.contributor.advisor | Chun-Han Ko | en |
dc.contributor.author | 邱品蓉 | zh_TW |
dc.contributor.author | Pin-Rong Chiu | en |
dc.date.accessioned | 2024-01-26T16:23:47Z | - |
dc.date.available | 2024-01-27 | - |
dc.date.copyright | 2024-01-26 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-01-08 | - |
dc.identifier.citation | 1. 王松永(1990)製材之取材法與製材率。林產工業9(2): 131-141。
2. 王松永、林振榮、施能毅(1991)杉木及柳杉造林木之原木品等與製材率之探討。林產工業10(4): 1-22。 3. 王松永、蔡明哲、塗三賢(2009)木材利用對減緩二氧化碳排放之貢獻。全球變遷通訊雜誌(61): 7-13。 4. 王松永 (2014)地球暖化防止與森林木材利用之推廣手冊。行政院農業委員會林務局。 5. 王松永、羅盛峰(2016)木質材料生命週期之二氧化碳排出量及碳足跡評估。林產工業35(2): 67-79.。 6. 卓志隆(2013)對環境友善之森林收穫作業與技術開發(1/3)成果報告。行政院農委會林務局委託計畫。https://www.grb.gov.tw/search/planDetail?id=2918806 7. 卓志隆(2015)行政院農業委員會林務局104年度科技計畫研究報告。行政院農委會林務局委託計畫。https://www.grb.gov.tw/search/planDetail?id=11942050 8. 卓志隆、胡子恒(2018)針葉樹人工林疏伐作業之生產量與二氧化碳排放量分析比較。林產工業37(1): 23-35。 9. 周子晴、李佳如、莊閔傑、林志憲、蔡明哲(2021)柳杉材等級區分法及銅烷基銨化合物防腐處理之抗彎性質探討。國立臺灣大學生物資源暨農學院實驗林研究報告35(4): 277-292。 10. 林裕仁(1998)森林減碳能力之推算方法。《農政與農情》第 193 期。https://www.coa.gov.tw/ws.php?id=17871&print=Y 11. 林俊成(2009)森林碳匯議題之趨勢。林業研究專訊16(3): 9-14。 12. 林俊成、李國忠(2003)台灣地區木質材料消費之碳流動與貯存量研究。臺灣林業科學 18(4): 293-305。 13. 林俊成、陳溢宏(2015)2003~2013年臺灣實木產品貿易分析。中華林學季刊 48(1): 71-86。 14. 林俊成、陳溢宏、王培蓉、陳幸君、吳孟珊(2017)臺灣主要實木產品進口運輸之碳排放量估算。臺灣林業科學32(3): 191-201。 15. 林振榮、曾家琳、李佳如、王亞男、蔡明哲(2008)柳杉紅色及黑色心材造林木物理性材質之評估。國立臺灣大學生物資源暨農學院實驗林研究報告22(4): 211-227。 16. 林笙翰、陳秋萍、鄭智馨(2022)臺灣北部現有柳杉人工林林分之生長評估。中華林學季刊55(3): 103-122。 17. 林裕仁、劉瓊霦、林俊成(2002)台灣地區主要用材比重與碳含量測定。臺灣林業科學17(3): 291-299。 18. 林伊涵、林慶元(2021)國產材製成直交集成板之防火性能初探。建築學報118:49-59。 19. 林憲德、蔡耀賢、楊詩弘、尤巧茵、尤巧茵 (2019) 建築材料碳足跡資料系統建置之研究。內政部建築研究所委託研究報告。 20. 邱祈榮、蔡維倫、林思吟、陳莉坪(2010)台灣林業碳匯管理策略探討。中華林學季刊43(2): 277-293。 21. 邱祈榮、林俊成(2023)森林碳匯與抵換機制。洪葉文化。 22. 柳婉郁、莊晴、陳勇至(2022)氣候變遷下減少林木病蟲害之碳保存效益分析。林業研究季刊44(3): 161-176。 23. 張豐吉、杜明宏(1988)台灣產重要樹種化學性質之研究(Ⅱ)十樹種之化學性質。中華林學季刊22(1):43-51。 24. 張豐吉、杜明宏(1989)台灣產重要樹種化學性質之研究(Ⅲ)十三樹種之化學性質。中華林學季刊21(4):101-109。 25. 張豐吉、杜明宏(1993)台灣產重要樹種化學性質之研究(六)同一樹種內之變異性。中華林學季刊26(1):45-59。 26. 張喬惠、蘇文清(2017)原木製材加工之碳排量。嘉大農林學報14(2): 11-23。 27. 張文振、黃緯程、王派毅、李泰成、徐恆文(2022)煤炭與木顆粒燃料混燒之燃燒性能與污染物排放特性研究。中國鑛冶工程學會會刊66(4):9-20。 28. 梁勝評、王松永、林法勤(2002) Evaluation on energy consumption, carbon dioxide emission, and carbon storage quantity in manufacturing wooden furniture in Taiwan。林產工業 21(4): 243-252。 29. 陳兪甯、趙偉成、鄭雅文、李佳如、楊德新(2018)柳杉原木形質、製材率與製材品質之探討-以台大實驗林柳杉為例。林產工業 37(2): 77-87。 30. 陳麗琴、林俊成、吳俊賢、黃進睦、陳溢宏(2012)台灣地區木質材料需求量之現況分析。林業研究季刊 34(4): 287-296。 31. 黃凱洛、王兆桓、顏添明(2011)臺灣主要四種針葉樹人工林地位指數建立之研究。中華林學季刊 44(4): 553-566。 32. 塗三賢、王松永(2006)框組壁工法木構造建築在CO2減量與碳貯存之貢獻 。 林產工業25(2): 91-100。 33. 塗三賢、王松永(2008)台灣地區樑柱工法木構造住宅之碳貯存與二氧化碳減量效應。林產工業 27(3): 209-215。 34. 詹家旺(2021)直交集成板構造炭化率之研究。建築學報118:1-13。 35. 趙偉成、羅立偉、鄭雅文、楊德新(2017)杉木原木材質對製材率與機械性質之影響-以惠蓀林場52年生杉木為例。林產工業36(4): 187-196。 36. 劉興旺、鍾立展、王亞男、陳和田、鄭景鵬(2009)臺灣中部地區臺灣杉人工林之生長量與碳吸存量之研究。國立臺灣大學生物資源暨農學院實驗林研究報告23(3): 201-212。 37. 鄭森松、莊閔傑、林群雅、張上鎮、王亞男(2010)臺灣杉不同部位精油及抽出物抗褐根病菌之評估。國立臺灣大學生物資源暨農學院實驗林研究報告24(2): 85-95。 38. 顏添明、李久先、黃凱洛、劉兆昌(2004)杉木人工林成熟林分林木生長及生物量之探討。中華林學季刊37(2): 157-168 39. 我國國家溫室氣體排放清冊報告(2022)中華民國國家溫室氣體清冊報告。https://unfccc.saveoursky.org.tw/nir/tw_nir_2022.php 40. 第四次森林資源調查報告(2020)農業部林業及自然保育署。https://www.forest.gov.tw/0002393 41. 經濟部能源署。https://www.moeaea.gov.tw/ecw/populace/content/ContentDesc.aspx?menu_id=23142 42. 行政院環保署(2022)《溫室氣體排放量盤查作業指引》。 43. 交通部中央氣象局。https://www.cwa.gov.tw/V8/C/W/County/County.html?CID=10008 44. 溫室氣體排放係數管理表6.0.4版本。https://ghgregistry.moenv.gov.tw/epa_ghg/Downloads/FileDownloads.aspx?Type_ID=1 45. Adhikari, S.; Ozarska, B. (2018) Minimizing Environmental Impacts of Timber Products through the Production Process from Sawmill to Final Products. Environ. Syst. Res.7(6):6-21 46. Agar, D. A., M. Rudolfsson, G. Kalen, M. Campargue, D. D. Perez and S. H. Larsson (2018) A systematic study of ring-die pellet production from forest and agricultural biomass. Fuel Processing Technology 180: 47-55. 47. Al-Ghussain, L. (2019) Global warming: review on driving forces and mitigation. Environmental Progress & Sustainable Energy 38(1): 13-21. 48. Alfonso, S., M. Gesto and B. Sadoul (2021) Temperature increase and its effects on fish stress physiology in the context of global warming. Journal of Fish Biology 98 (6): 1496-1508. 49. Anderson, J. O. and L. Westerlund (2011) Surplus biomass through energy efficient kilns. Applied Energy 88(12): 4848-4853. 50. Anderson, J. O. and L. Westerlund (2014) Improved energy efficiency in sawmill drying system. Applied Energy 113: 891-901. 51. Armstrong, C. and D. McLaren (2022) Which Net Zero? Climate Justice and Net Zero Emissions. Ethics & International Affairs 36(4): 505-526. 52. Arous, S., A. Koubaa, H. Bouafif, B. Bouslimi, F. L. Braghiroli and C. Bradai (2021) Effect of Pyrolysis Temperature and Wood Species on the Properties of Biochar Pellets. Energies 14(20). 53. Balasbaneh, A. T. and W. Sher (2021) Comparative sustainability evaluation of two engineered wood-based construction materials: Life cycle analysis of CLT versus GLT. Building and Environment 204. 54. Barbosa, B. M., S. Vaz, J. L. Colodette, H. F. de Siqueira, C. M. S. da Silva and W. L. Candido (2022) Effects of Kraft Lignin and Corn Residue on the Production of Eucalyptus Pellets. Bioenergy Research 2022. 55. Berghel, J., S. Frodeson, K. Granstrom, R. Renstrom, M. Stahl, D. Nordgren, et al. (2013) The effects of kraft lignin additives on wood fuel pellet quality, energy use and shelf life. Fuel Processing Technology 112: 64-69. 56. Bergstrom, D., S. Israelsson, M. Ohman, S. A. Dahlqvist, R. Gref, C. Boman, et al. (2008) Effects of raw material particle size distribution on the characteristics of Scots pine sawdust fuel pellets. Fuel Processing Technology 89(12): 1324-1329. 57. Bergman, R. D. and S. A. Bowe (2008) Life-cycle inventory of hardwood lumber manufacturing in the northeast and north central United States. CORRIM: Phase II Final Report: Module C. University of Washington, Seattle. 52 pp. 58. Boucher, O., P. Friedlingstein, B. Collins and K. P. Shine (2009) The indirect global warming potential and global temperature change potential due to methane oxidation. Environmental Research Letters 4(4). 59. Brunet-Navarro, P., H. Jochheim, F. Kroiher and B. Muys (2018) Effect of cascade use on the carbon balance of the German and European wood sectors. Journal of Cleaner Production 170: 137-146. 60. Brunet-Navarro, P., H. Jochheim and B. Muys (2016) Modelling carbon stocks and fluxes in the wood product sector: a comparative review. Global Change Biology 22(7): 2555-2569. 61. Bucklin, O., R. Di Bari, F. Amtsberg and A. Menges (2023) Environmental Impact of a Mono-Material Timber Building Envelope with Enhanced Energy Performance. Sustainability 15(1). 62. Butarbutar, T., M. Kohl and P. R. Neupane (2016) Harvested wood products and REDD plus : looking beyond the forest border. Carbon Balance and Management 11. 63. Campbell, A. (2019) Mass timber in the circular economy: paradigm in practice?. Proceedings of the Institution of Civil Engineers-Engineering Sustainability 172(3): 141-152. 64. Castellano, J. M., M. Gomez, M. Fernandez, L. S. Esteban and J. E. Carrasco (2015) Study on the effects of raw materials composition and pelletization conditions on the quality and properties of pellets obtained from different woody and non woody biomasses. Fuel 139: 629-636. 65. Ceccherini, G., G. Duveiller, G. Grassi, G. Lemoine, V. Avitabile, R. Pilli, et al. (2020) Abrupt increase in harvested forest area over Europe after 2015. Nature 583(7814): 72-77 66. Çimen, Ö (2021) Construction and built environment in circular economy: A comprehensive literature review. Journal of Cleaner Production 2021 Vol. 305 67. Craven, J. M., J. Swithenbank, V. N. Sharifi, D. Peralta-Solorio, G. Kelsall and P. Sage (2015) Hydrophobic coatings for moisture stable wood pellets. Biomass & Bioenergy 80: 278-285. 68. Crawford, N. C., A. E. Ray, N. A. Yancey and N. Nagle (2015) Evaluating the pelletization of "pure" and blended lignocellulosic biomass feedstocks. Fuel Processing Technology 140: 46-56. 69. Devaru, D. G. and B. Gopalakrishnan (2020) Regression model to estimate the electrical energy consumption of lumber sawing based on the product, process, and system parameters. Energy Efficiency 13(8): 1799-1824. 70. Devaru, D. G., R. Maddula, S. T. Grushecky and B. Gopalakrishnan (2014) Motor-Based Energy Consumption in West Virginia Sawmills. Forest Products Journal 64(1-2): 33-40. 71. Didenko, N. I., Y. S. Klochkov and D. F. Skripnuk (2018) Ecological Criteria for Comparing Linear and Circular Economies. Resources-Basel 7(3). 72. Diffenbaugh, N. S. and M. Burke (2019) Global warming has increased global economic inequality. Proceedings of the National Academy of Sciences of the United States of America 116(20): 9808-9813. 73. E. Sjöström and U. Westermark (1999) Chemical Composition of Wood and Pulps: Basic Constituents and Their Distribution. Springer Series in Wood Science:1-19. https://link.springer.com/content/pdf/10.1007/978-3-662-03898-7.pdf 74. El-Sayed, S. A. and M. E. Mostafa (2014) Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG). Energy Conversion and Management 85: 165-172. 75. Eshun, J. F., J. Potting and R. Leemans (2012) Wood waste minimization in the timber sector of Ghana: a systems approach to reduce environmental impact. Journal of Cleaner Production 26: 67-78. 76. Filbakk, T., G. Skjevrak, O. Hoibo, J. Dibdiakova and R. Jirjis (2011) The influence of storage and drying methods for Scots pine raw material on mechanical pellet properties and production parameters. Fuel Processing Technology 92(5): 871-878. 77. FAO Yearbook of Forest Products (2020) المنتجات الحرجية | 林产品 | Forest Products | Produits Forestiers | Лесная продукция | Productos forestales 2020. https://www.fao.org/forestry/statistics/80570/en/ 78. Food and Agriculture Organization (2020) Global Forest Resources Assessment 2020: Main report. Rome.https://doi.org/10.4060/ca9825en 79. Geissdoerfer, M., S. N. Morioka, M. M. De Carvalho and S. Evans (2018) Business models and supply chains for the circular economy. Journal of Cleaner Production 190: 712-721. 80. Gopalakrishnan, B., Mardikar, Y., Gupta, D. (2012) Establishing Baseline Electrical Energy Consumption in Wood Processing Sawmills for Lean Energy Initiatives: A Model Based on Energy Analysis and Diagnostics. Energy Engineering., 109(5):40-80. 81. Georgii A. Alexandrov (2008) Climate Change 1: Short-Term Dynamics. Encyclopedia of Ecology 2008: 588-592. 82. Grêt-Regamey, Adrienne ; Hendrick, Eugene; Hetsch, Sebastian; Pingoud, Kim; Rüter, Sebastian (2008) Challenges and Opportunities of Accounting for Harvested Wood Products. 83. Hale, T., S. M. Smith, R. Black, K. Cullen, B. Fay, J. Lang, et al. (2022) Assessing the rapidly-emerging landscape of net zero targets. Climate Policy 22(1): 18-29. 84. Head, M., A. Levasseur, R. Beauregard and M. Margni (2020) Dynamic greenhouse gas life cycle inventory and impact profiles of wood used in Canadian buildings. Building and Environment 173. 85. Henriques, J., P. Ferrao and M. Iten (2022) Policies and Strategic Incentives for Circular Economy and Industrial Symbiosis in Portugal: A Future Perspective. Sustainability 14(11). 86. Hu, M. (2020) A Building Life-Cycle Embodied Performance Index-The Relationship between Embodied Energy, Embodied Carbon and Environmental Impact. Energies 13(8). 87. Ingerson, A. (2011) Carbon storage potential of harvested wood: summary and policy implications. Mitigation and Adaptation Strategies for Global Change 16(3): 307-323. 88. Islam, H., M. Jollands and S. Setunge (2015) Life cycle assessment and life cycle cost implication of residential buildings-A review. Renewable & Sustainable Energy Reviews 42: 129-140. 89. IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. https://www.ipcc-nggip.iges.or.jp/public/2006gl/ 90. IPCC (2019) 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 4 Agriculture, Forestry and Other Land Use. https://www.ipcc-nggip.iges.or.jp/public/2019rf/vol4.html 91. Jarosch, L., W. Zeug, A. Bezama, M. Finkbeiner and D. Thran (2020) A Regional Socio-Economic Life Cycle Assessment of a Bioeconomy Value Chain. Sustainability 12(3). 92. Jiang, L. B., X. Z. Yuan, Z. H. Xiao, J. Liang, H. Li, L. Cao, et al. (2016) A comparative study of biomass pellet and biomass-sludge mixed pellet: Energy input and pellet properties. Energy Conversion and Management 126: 509-515. 93. Johnston, C. M. T., J. G. Guo and J. P. Prestemon (2022) US and Global Wood Energy Outlook under Alternative Shared Socioeconomic Pathways. Forests 13(5). 94. Kang, K., L. Qiu, G. T. Sun, M. Q. Zhu, X. M. Yang, Y. Q. Yao, et al. (2019) Codensification technology as a critical strategy for energy recovery from biomass and other resources - A review. Renewable & Sustainable Energy Reviews 116. 95. Keyhani, M., A. Abbaspour, A. Bahadori-Jahromi, A. Mylona, A. Janbey, P. Godfrey, et al. (2023) Whole Life Carbon Assessment of a Typical UK Residential Building Using Different Embodied Carbon Data Sources. Sustainability 15(6). 96. Kiraly, E., Z. Borcsok, Z. Kocsis, G. Nemeth, A. Polgar and A. Borovics (2022) Carbon Sequestration in Harvested Wood Products in Hungary an Estimation Based on the IPCC 2019 Refinement. Forests 13(11). 97. Kirchherr, J., D. Reike and M. Hekkert (2017) Conceptualizing the circular economy: An analysis of 114 definitions. Resources Conservation and Recycling 127: 221-232. 98. Kurane, I. (2010) The effect of global warming on infectious diseases . Osong Public Health Res Perspect 1(1): 4-9. 99. Katsumasa Tanaka, Glen P Peters1 & Jan S Fuglestvedt (2010) Policy Update: Multicomponent climate policy: Why do emission metrics matter? Carbon Management Volume 1(2):191-197 100. Lam, P. S., S. Sokhansanj, X. T. Bi, C. J. Lim and S. Melin (2011) Energy input and quality of pellets made from steam-exploded douglas fir (Pseudotsuga menziesii). Energy & Fuels 25(4): 1521-1528. 101. Lausselet, C., J. P. F. Urrego, E. Resch and H. Brattebo (2021) Whole-life embodied carbon in multistory buildings: Steel, concrete and timber structures. Journal of Industrial Ecology 25(2): 419-434. 102. Lee, J. S., S. Sokhansanj, A. K. Lau and C. J. Lim (2020) Physical properties of wood pellets exposed to liquid water. Biomass & Bioenergy 142. 103. Lehtikangas, P. (2001) Quality properties of pelletised sawdust, logging residues and bark. Biomass & Bioenergy 20(5): 351-360. 104. Li, H., L. B. Jiang, C. Z. Li, J. Liang, X. Z. Yuan, Z. H. Xiao, et al. (2015) Co-pelletization of sewage sludge and biomass: The energy input and properties of pellets. Fuel Processing Technology 132: 55-61. 105. Li, L., X. Y. Wei, J. H. Zhao, D. Hayes, A. Daigneault, A. Weiskittel, et al. (2022) Technological advancement expands carbon storage in harvested wood products in Maine, USA. Biomass & Bioenergy 161. 106. Lin, B. Q. and J. M. Ge (2020) To harvest or not to harvest? Forest management as a trade-off between bioenergy production and carbon sink. Journal of Cleaner Production 268. 107. Lin, W. S., J. X. Wang, S. T. Grushecky, D. Summerfield and B. Gopalakrishnan (2012) Energy consumption and efficiency of appalachian hardwood sawmills. Forest Products Journal 62(1): 32-38. 108. Li, J., McCurdy, M., and Pang, S. (2006) Energy Demand in Wood Processing Plants.New Zealand Journal of Forestry 51(2):13-18. 109. Mair, C. and T. Stern (2017) Cascading utilization of wood: a matter of circular economy?. Current Forestry Reports 3(4): 281-295. 110. Maddula, Ramakrishna Babu (2014) Energy Intensity Determination in Wood Processing Sawmills. Graduate Theses, Dissertations, and Problem Reports. 611. 111. Masche, M., M. Puig-Arnavat, P. A. Jensen, J. K. Holm, S. Clausen, J. Ahrenfeldt, et al. (2019) From wood chips to pellets to milled pellets: The mechanical processing pathway of Austrian pine and European beech. Powder Technology 350: 134-145. 112. Milota, M. R., C. D. West and I. D. Hartley (2005) Gate-to-gate life-cycle inventory of softwood lumber production. Wood and Fiber Science 37: 47-57. 113. Mohebbi, G., A. Hasan, A. Blay-Armah, A. Bahadori-Jahromi, A. Mylona and M. Barthorpe (2023) Comparative analysis of the whole life carbon of three construction methods of a UK-based supermarket. Building Services Engineering Research & Technology. 114. Mostafa, M. E., S. Hu, Y. Wang, S. Su, X. Hu, S. A. Elsayed, et al. (2019) The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets. Renewable & Sustainable Energy Reviews 105: 332-348. 115. Nasir, M. H. A., A. Genovese, A. A. Acquaye, S. C. L. Koh and F. Yamoah (2017) Comparing linear and circular supply chains: A case study from the construction industry. International Journal of Production Economics 183: 443-457. 116. Nayha, A. (2019) Transition in the Finnish forest-based sector: Company perspectives on the bioeconomy, circular economy and sustainability. Journal of Cleaner Production 209: 1294-1306. 117. Nielsen, S. K., M. Mando and A. B. Rosenorn (2020) Review of die design and process parameters in the biomass pelleting process. Powder Technology 364: 971-985. 118. Parobek, J., H. Palus, M. Moravcik, M. Kovalcik, M. Dzian, V. Murgas, et al. (2019) Changes in Carbon Balance of Harvested Wood Products Resulting from DifferentWood Utilization Scenarios. Forests 10(7). 119. Petrovic, B., J. A. Myhren, X. X. Zhang, M. Wallhagen and O. Eriksson (2019) Life cycle assessment of a wooden single-family house in Sweden . Applied Energy 251. 120. Pilli, R., G. Fiorese and G. Grassi (2015) EU mitigation potential of harvested wood products. Carbon Balance Manag 10(1): 6. 121. Potting, José; Hekkert, M.P.; Worrell, E.; Hanemaaijer, Aldert (2017) Circular Economy: Measuring Innovation in the Product Chain. Planbureau voor de Leefomgeving, issue 2544 122. Pokhrel, G., Y. Han and D. J. Gardner (2021) Comparative Study of the Properties of Wood Flour and Wood Pellets Manufactured from Secondary Processing Mill Residues. Polymers 13(15). 123. Pradhan, P., S. M. Mahajani and A. Arora (2018) Production and utilization of fuel pellets from biomass: A review. Fuel Processing Technology 181: 215-232. 124. Quesada-Pineda, H., J. Wiedenbeck and B. Bond (2016) Analysis of electricity consumption: a study in the wood products industry. Energy Efficiency 9(5): 1193-1206. 125. Quinteiro, P., L. Tarelho, P. Marques, M. Martin-Gamboa, F. Freire, L. Arroja, et al. (2019) Life cycle assessment of wood pellets and wood split logs for residential heating. Science of the Total Environment 689: 580-589. 126. Reichstein, M., M. Bahn, P. Ciais, D. Frank, M. D. Mahecha, S. I. Seneviratne, et al. (2013) Climate extremes and the carbon cycle. Nature 500(7462): 287-295. 127. Reim, W., V. Parida and D. R. Sjodin (2019) Circular Business Models for the Bio-Economy: A Review and New Directions for Future Research. Sustainability 11(9). 128. Rentschler, J., F. Flachenecker and M. Kornejew (2020) Assessing carbon emission savings from corporate resource efficiency investments: an estimation indicator in theory and practice . Environment Development and Sustainability 22(2): 835-861. 129. Resch, G., M. Welisch, L. Liebmann, B. Breitschopf and A. Held (2016) A prospective assessment of costs and benefits of renewable energy use in the European union. Energy & Environment 27(1): 10-27. 130. Risse, M., G. Weber-Blaschke and K. Richter (2019) Eco-efficiency analysis of recycling recovered solid wood from construction into laminated timber products. Science of the Total Environment 661: 107-119. 131. Siwale, W., S. Frodeson, M. Finell, M. Arshadi, C. Jonsson, G. Henriksson, et al. (2022) Understanding Off-Gassing of Biofuel Wood Pellets Using Pellets Produced from Pure Microcrystalline Cellulose with Different Additive Oils. Energies 15(6). 132. Tanoue, M., R. Taguchi, S. Nakata, S. Watanabe, S. Fujimori and Y. Hirabayashi (2020) Estimation of direct and indirect economic losses caused by a flood with long-lasting inundation: application to the 2011 Thailand Flood. Water Resources Research 56(5). 133. Tarasov D, Shahi C, Leitch M (2013) Effect of additives on wood pellet physical and thermal characteristics: a review. Isrn Forestry 2013: 876939. 134. Timma, L., E. Dace and M. T. Knudsen (2020) Temporal Aspects in Emission Accounting-Case Study of Agriculture Sector. Energies 13(4). 135. Tonosaki, M. (2009) Harvested wood products accounting in the post Kyoto commitment period. Journal of Wood Science 55(6): 390-394. 136. Whittaker, C. and I. Shield (2017) Factors affecting wood, energy grass and straw pellet durability - A review. Renewable & Sustainable Energy Reviews 71: 1-11. 137. Yu, Z. H., H. Zhang, Q. S. Tu and H. Q. Yang (2022) Methodological comparison of the production approach 2013 and 2019 for quantifying the carbon stock in harvested wood products in China . Frontiers in Environmental Science 10. 138. Zamorano, M., V. Popov, M. L. Rodriguez and A. Garcia-Maraver (2011) A comparative study of quality properties of pelletized agricultural and forestry lopping residues. Renewable Energy 36(11): 3133-3140. 139. Zhao, C., B. Liu, S. L. Piao, X. H. Wang, D. B. Lobell, Y. Huang, et al. (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America 114(35): 9326-9331. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91413 | - |
dc.description.abstract | 本研究依據生命週期評估(Life cycle assessment,LCA)架構評估規格材生產過程中資源投入與產出,使用材積10.73 m3杉木(Cunninghamia lanceolata)原木,生產2 × 6與2 × 4等兩項規格材,尺寸依序為0.14 × 0.038 × 3.6 m3與0.09 × 0.038 × 3.6 m3,生產數量各為116與124支,總材積為3.77 m3,及三項絕乾木質剩餘資材:邊皮材202.34 kg/m3、木粉42.52 kg/m3與鉋屑92.94 kg/m3,最終材積利用率為35.12%,因採用隨機選取部分原木含有腐朽幹空,原木徑級與材積利用率並無直接關係;規格材與木質剩餘資材重量百分比分別為31.56與68.44%wt,三項木質剩餘資材絕乾重與重量百分比為:邊皮材1127.04 kg(34.83%wt)、木粉236.72 kg(7.31%wt)與鉋屑412.45 kg(26.30%wt)。
生產每立方公尺規格材須投入電力、柴油與用於乾燥階段鍋爐燃料-邊皮材,各為77.79 kWh/m3、21.45 L/m3與79.10 kg/m3,其中燃燒邊皮材為碳中和不列入碳排放計算,生產每立方公尺規格材會產生碳排放117.54 kgCO2e/m3,電力消耗與碳排放皆高於國內外研究,除生產規模與製程差異外,與原木形質、製品尺寸,及乾燥階段能源使用化石燃料或再生能源相關。 木顆粒生產過程皆不添加膠合劑,總生產電力消耗分別為木粉255.19 kWh/t、邊皮材203.92 kWh/t與鉋屑399.12kWh/t,三者生產速率偏低導致能源消耗高,尤其鉋屑因片狀、質輕易飄動不利造粒,操作時間長;三項木顆粒直徑皆為D08長度12.25 ~ 29.74 mm,邊皮材木顆粒為三者中最長;含水率皆小於10%;堆積密度分別為邊皮材686 kg/m3、木粉732 kg/m3與鉋屑784 kg/m3,熱值個別為18.73、18.75與18.76 MJ/kg;木顆粒灰份含量高到低:邊皮材(0.31%)>木粉(0.11%)>鉋屑(0.04%);三項木顆粒因機械堅牢度不足,皆無法用做產業用途木顆粒,作為商業與住宅用途僅有鉋屑木顆粒符合標準等級B。 | zh_TW |
dc.description.abstract | This paper uses Life cycle assessment (LCA) to calculate inputs and outputs of China fir (Cunninghamia lanceolate) primary timber products production process. A total of 10.73 m3 of China fir logs were used to produce two primary timber products: 2 × 6 (0.14 × 0.038 × 3.6 m3) and 2 × 4 (0.09 × 0.038 × 3.6 m3).The unmbers of 2 × 6 and 2 × 4 primary timber products of fir respectively are 116 and 124 (total utilizable volume of primary timber products is 3.77 m3, the final volume utilization rate is 35.12%) and three types of absolute dry weight wood residuals: Slab wood (202.34 kg/m3), Saw dust (42.52 kg/m3) and Four side planer shaving (92.94 kg/m3).
Some China fir logs are decayed and hollow trunk, so there is no direct relationship between log diameter grade and volume utilization rate. The weight percentages of primary timber products and wood residuals are 31.56 and 68.44%wt respectively. The dry weight and weight percentages of the three types of wood residuals: Slab wood 1127.04 kg (34.83%wt), Saw dust 236.72 kg (7.31%wt) and Four side planer shaving 412.45 kg (26.30%wt). The production of each cubic meter of primary timber products require electricity (77.79 kWh/m3), diesel (21.45 L/m3)and boiler fuel for drying stage - slab wood (79.10 kg/m3) and emit 117.54 kgCO2e/m3.The combustion of slab wood is considered carbon neutral and is not included in carbon emissions calculations.Electricity consumption and carbon emissions are both higher than previous researches.Production scale, process mode, properties of wood log, product size and categories of energy sources will all affect carbon emissions. No adhesive is added wood pellets in this study, and the total production electricity consumption is 255.19 kWh/t for saw dust, 203.92 kWh/t for slab wood, and 399.12 kWh/t for four side planer shaving. Low wood pellet production rate leads to high energy consumption. In particular, the shape and weight of four side planer shaving require longer operating times during the pellet production stage.The diameter of the three type of wood pellets is classified as D08 and the length ranges from 12.25 ~ 29.74 mm.The moisture content of the three types of wood pellets are less than 10%.The bulk densities of wood pellets: Slab wood (686 kg/m3), Saw dust (732 kg/m3) and Four side planer shaving (784 kg/m3), and the calorific values are 18.73, 18.75 and 18.76 MJ/kg respectively. The bark contains a high ash content. The ash content of wood pellets ranges from high to low: Slab wood (0.31%) > Saw dust Saw dust (0.11%) > Four side planer shaving (0.04%).Three types of wood pellets cannot be used for industrial purposes due to insufficient mechanical durability. Only four side planer shaving pellets comply with standard class B for commercial and residential use. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-26T16:23:47Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-01-26T16:23:47Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 目次
誌謝 i 中文摘要 ii Abstract iii 目次 v 表次 ix 圖次 xv 第一章 緒論 1 一、 研究動機 1 二、 研究架構 5 第二章 文獻回顧 6 一、 森林 6 (一) 中華民國國家溫室氣體排放清冊報告 11 (二) 我國森林資源 11 (三) 針葉樹人工林樹種 12 二、 收穫林產品(Harvested wood products, HWP) 14 (一) 估算HWP方法 21 (二) HWP計算方式 23 三、生命週期評估(LCA) 26 四、木建築生命週期 29 五、碳足跡(Carbon footprint) 36 六、鋸木廠 40 七、木顆粒(Wood pellet) 45 (一) 造粒理論 47 (二) 造粒參數 48 (三) 原料 48 (四) 粒徑 51 (五) 造粒機 53 (六) 膠合劑的添加 53 (七) 造粒壓力 55 (八) 原料含水率 56 (九) 木顆粒國際規範及檢測項目 57 第三章 材料與方法 59 一、試驗場所 59 二、試驗方法 59 (一) 製材與鋸切方法 59 (二) 等級分等 60 (三) 原木材積計算方式 61 (四) 製材材積計算 61 (五) 材積利用率 62 (六) 原木含水率 62 (七) 木材固碳量 62 (八) 溫室氣體種類 63 (九) 排放係數 64 (一〇)單位電力消耗與單位碳排放量 64 三、試驗流程 65 (一) 規格材製造(Primary timber products production) 66 1. 儀器 67 2. 製材 67 3. 乾燥 68 4. 毛料製品加工 69 5. 機械強度分等 70 (二) 木質剩餘資材製造木顆粒 71 (三) 顆粒燃料性質測定項目 73 1. 木顆粒尺寸-長度與直徑 73 2. 木顆粒含水率 74 3. 灰分 75 4. 機械堅牢度 76 5. 細顆粒含量 77 6. 崩解顆粒之粒徑分布 77 7. 容積密度 78 8. 淨熱值 79 第四章 結果與討論 80 一、 規格材 80 (一) 杉木原木性質 81 (二) 規格材製造-製材 81 (三) 規格材製造-乾燥 82 (四) 規格材製造-毛料製品加工 84 (五) 規格材製造-機械強度分等 85 (六) 規格材生產過程中製品與木質剩餘資材 86 (七) 規格材碳固定量與碳排放 89 二、木質剩餘資材製造木顆粒 93 (一) 木質剩餘資材-預處理流程 94 (二) 木質剩餘資材-生產木顆粒 97 (三) 木質剩餘資材生產木顆粒燃料CO2排放 98 三、假設情況 99 四、顆粒燃料性質測定項目 101 第五章 結論 104 第六章 研究限制 106 第七章 建議 107 參考文獻 108 | - |
dc.language.iso | zh_TW | - |
dc.title | 低碳生產造林規格材之研究 | zh_TW |
dc.title | Study of low carbon production for primary timber products from plantation forests | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 蔡明哲 | zh_TW |
dc.contributor.coadvisor | Ming-Jer Tsai | en |
dc.contributor.oralexamcommittee | 張芳志;莊閔傑 | zh_TW |
dc.contributor.oralexamcommittee | Fang-Chih Chang;Min-Jay Chung | en |
dc.subject.keyword | 木質剩餘資材,木顆粒,生命週期評估,杉木,規格材, | zh_TW |
dc.subject.keyword | life cycle assessment,wood residuals,wood pellet,Cunninghamia lanceolate,primary timber products, | en |
dc.relation.page | 122 | - |
dc.identifier.doi | 10.6342/NTU202400035 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-01-09 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 森林環境暨資源學系 | - |
dc.date.embargo-lift | 2029-01-07 | - |
顯示於系所單位: | 森林環境暨資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 目前未授權公開取用 | 6.31 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。