Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91399
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張皓巽zh_TW
dc.contributor.advisorHao-Xun Changen
dc.contributor.author潘冠妤zh_TW
dc.contributor.authorKuan-Yu Panen
dc.date.accessioned2024-01-26T16:20:00Z-
dc.date.available2024-01-27-
dc.date.copyright2024-01-26-
dc.date.issued2024-
dc.date.submitted2024-01-11-
dc.identifier.citation謝廷芳。1998。菌核類真菌之鑑定。
Aguirre, J., Ríos-Momberg, M., Hewitt, D., and Hansberg, W. 2005. Reactive oxygen species and development in microbial eukaryotes. Trends in Microbiology 13:111-118.
Ait, R. Y., Douira, A., Tahiri, A. I., Cherkaoui, E. M., Benkirane, R., and Meddich, A. 2022. Application of plant growth-promoting rhizobacteria combined with compost as a management strategy against Verticillium dahliae in tomato. Canadian Journal of Plant Pathology 44:806-827.
Altenhoff, A. M., Train, C. M., Gilbert, K. J., Mediratta, I., Mendes de Farias, T., Moi, D., Nevers, Y., Radoykova, H., Rossier, V., Vesztrocy, A. W., Glover, N. M., and Dessimoz, C. 2021. OMA orthology in 2021: website overhaul, conserved isoforms, ancestral gene order and more. Nucleic Acids Research 49:373-379.
An, B., Li, B., Qin, G., and Tian, S. 2015. Function of small GTPase Rho3 in regulating growth, conidiation and virulence of Botrytis cinerea. Fungal Genetics and Biology 75:46-55.
Andrews, S. 2010. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Angelova, M. B., Pashova, S. B., Spasova, B. K., Vassilev, S. V., and Slokoska, L. S. 2005. Oxidative stress response of filamentous fungi induced by hydrogen peroxide and paraquat. Mycological Research 109:150-158.
Aslam, S., Gul, N., Mir, M. A., Asgher, M., Al-Sulami, N., Abulfaraj, A. A., and Qari, S. 2021. Role of jasmonates, calcium, and glutathione in plants to combat abiotic stresses through precise signaling cascade. Frontiers in Plant Science 12:668029.
Aycock, R. 1966. Stem rot and other diseases caused by Sclerotium rolfsii. North Carolina Agricultural Experiment Station Techical Bulletin 175:1-202.
Ayed, F., Jabnoun-Khiareddine, H., Aydi-Ben-Abdallah, R., and Daami-Remadi, M. 2018. Effects of pH and aeration on Sclerotium rolfsii sacc. mycelial growth, sclerotial production and germination. International Journal of Phytopathology 7:123-129.
Bai, T., Wang, T., Li, Y., Gao, N. L., Zhang, L., Chen, W. H., and Yin, X. 2021. Optimization of scleroglucan production by Sclerotium rolfsii by lowering pH during fermentation via oxalate metabolic pathway manipulation using CRISPR/Cas9. Fungal Biology and Biotechnology 8:1-9.
Bai, Z., Harvey, L. M., and McNeil, B. 2003. Oxidative stress in submerged cultures of fungi. Critical Reviews in Biotechnology 23:267-302.
Bandara, A. R., Rapior, S., Bhat, D. J., Kakumyan, P., Chamyuang, S., Xu, J., and Hyde, K. D. 2015. Polyporus umbellatus, an edible-medicinal cultivated mushroom with multiple developed health-care products as food, medicine and cosmetics: a review. Cryptogamie, Mycologie 36:3-42.
Barrientos, A., and Moraes, C. T. 1999. Titrating the effects of mitochondrial complex I impairment in the cell physiology. Journal of Biological Chemistry 274:16188-16197.
Bary, A. 1887. Comparative morphology and biology of the fungi, mycetozoa and bacteria. Clarendon press, Oxford. United Kingdom.
Batandier, C., Leverve, X., and Fontaine, E. 2004. Opening of the mitochondrial permeability transition pore induces reactive oxygen species production at the level of the respiratory chain complex I. Journal of Biological Chemistry 279:17197-17204.
Bateman, D. F. 1965. Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis by Sclerotium rolfsii. Phytophalology 55:204-211.
Bateman, D. F. 1969. Some characteristics of the cellulase system produced by Sclerotium rolfsii Sacc. Phytopathology 59:37-42.
Bateman, D. F. 1972. The polygalacturonase complex produced by Sclerotium rolfsii. Physiological Plant Pathology 2:175-184.
Bedard, K., Lardy, B., and Krause, K. H. 2007. NOX family NADPH oxidases: not just in mammals. Biochimie 89:1107-1112.
Bell, A. A., and Wheeler, M. H. 1986. Biosynthesis and functions of fungal melanins. Annual Review of Phytopathology 24:411-451.
Berridge, M. J., Lipp, P., and Bootman, M. D. 2000. The versatility and universality of calcium signaling. Nature Reviews Molecular Cell Biology 1:11-21.
Bian, S., and Jiang, Y. 2009. Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery. Scientia Horticulturae 120:264-270.
Bolton, M. D., Thomma, B. P., and Nelson, B. D. 2006. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology 7:1-16.
Bowen, K. L., Hagan, A. K., and Weeks, R. 1992. Seven years of Sclerotium rolfsii in peanut fields: yield losses and means of minimization. Plant Disease 76:982-985.
Bray, N. L., Pimentel, H., Melsted, P., and Pachter, L. 2016. Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology 34:525-527.
Brookes, P. S., and Darley-Usmar, V. M. 2004. Role of calcium and superoxide dismutase in sensitizing mitochondria to peroxynitrite-induced permeability transition. American Journal of Physiology-Heart and Circulatory Physiology 286:39-46.
Caddick, M. X., Brownlee, A. G., and Arst, H. N. 1986. Regulation of gene expression by pH of the growth medium in Aspergillus nidulans. Molecular and General Genetics 203:346-353.
Calvo, A. M., Bok, J., Brooks, W., and Keller, N. P. 2004. veA is required for toxin and sclerotial production in Aspergillus parasiticus. Applied and Environmental Microbiology 70:4733-4739.
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T. L. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:1-9.
Cano-Domínguez, N., Álvarez-Delfín, K., Hansberg, W., and Aguirre, J. 2008. NADPH oxidases NOX-1 and NOX-2 require the regulatory subunit NOR-1 to control cell differentiation and growth in Neurospora crassa. Eukaryotic Cell 7:1352-1361.
Cary, J. W., Ehrlich, K. C., Wright, M., Chang, P. K., and Bhatnagar, D. 2000. Generation of aflR disruption mutants of Aspergillus parasiticus. Applied Microbiology and Biotechnology 53:680-684.
Chandel, A., Das, K. K., and Bachhawat, A. K. 2016. Glutathione depletion activates the yeast vacuolar transient receptor potential channel, Yvc1p, by reversible glutathionylation of specific cysteines. Molecular Biology of the Cell 27:3913-3925.
Chaudhary, S., Kumar, M., Sengar, R. S., Chand, P., Mishra, P., and Tomar, A. 2018. Effect of nutrient status, temperature and pH on mycelial growth, sclerotial production and germination of Rhizoctonia solani Isolated from paddy fields. Progressive Agriculture 18:82-91.
Chen, C., and Dickman, M. B. 2005. cAMP blocks MAPK activation and sclerotial development via Rap‐1 in a PKA‐independent manner in Sclerotinia sclerotiorum. Molecular Microbiology 55:299-311.
Chen, Z. X., and Pervaiz, S. 2010. Involvement of cytochrome c oxidase subunits Va and Vb in the regulation of cancer cell metabolism by Bcl-2. Cell Death & Differentiation 17:408-420.
Chi, M. H., and Craven, K. D. 2016. RacA-mediated ROS signaling is required for polarized cell differentiation in conidiogenesis of Aspergillus fumigatus. PLOS ONE 11: e0149548.
Coley-Smith, J. R., and Cooke, R. C. 1971. Survival and germination of fungal sclerotia. Annual Review of Phytopathology 9:65-92.
Cvetkovska, M., and Vanlerberghe, G. C. 2012. Alternative oxidase modulates leaf mitochondrial concentrations of superoxide and nitric oxide. New Phytologist 195:32-39.
Demidchik, V., and Shabala, S. 2017. Mechanisms of cytosolic calcium elevation in plants: The role of ion channels, calcium extrusion systems and NADPH oxidase-mediated ‘ROS-Ca2+ Hub’. Functional Plant Biology 45:9-27.
Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T. R. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 29:15-21.
Doley, K., and Jite, P. K. 2013. Management of stem-rot of groundnut (Arachis hypogaea L.) cultivar in field. Notulae Scientia Biologicae 5:316-324.
Duran, R. M., Cary, J. W., and Calvo, A. M. 2007. Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation. Applied Microbiology and Biotechnology 73:1158-1168.
Emms, D. M., and Kelly, S. 2015. OrthoF inder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biology 16:1-14.
Fan, L. L., Yong, M. L., Li, D. Y., Liu, Y. J., Lai, C. H., Chen, H. M., Cheng, F, M., and Hu, D. W. 2016. Effect of temperature on the development of sclerotia in Villosiclava virens. Journal of Integrative Agriculture 15:2550-2555.
Fang, G. C., Hanau, R. M., and Vaillancourt, L. J. 2002. The SOD2 gene, encoding a manganese-type superoxide dismutase, is up-regulated during conidiogenesis in the plant-pathogenic fungus Colletotrichum graminicola. Fungal Genetics and Biology 36:155-165.
Feissner, R. F., Skalska, J., Gaum, W. E., and Sheu, S. S. 2009. Crosstalk signaling between mitochondrial Ca2+ and ROS. Frontiers in Bioscience: A Journal and Virtual Library 14:1197.
Flores-Moctezuma, H. E., Montes-Belmont, R., Jimenez-Perez, A., and Nava-Juarez, R. 2006. Pathogenic diversity of Sclerotium rolfsii isolates from Mexico, and potential control of southern blight through solarization and organic amendments. Crop Protection 25:195-201.
Gao, T., Shi, L., Zhang, T., Ren, A., Jiang, A., Yu, H., and Zhao, M. 2018. Cross talk between calcium and reactive oxygen species regulates hyphal branching and ganoderic acid biosynthesis in Ganoderma lucidum under copper stress. Applied and Environmental Microbiology 84:00438-18.
Georgiou, C. D. 1997. Lipid peroxidation in Sclerotium rolfsii: a new look into the mechanism of sclerotial biogenesis in fungi. Mycological Research 101:460-464.
Georgiou, C. D., Patsoukis, N., Papapostolou, I., and Zervoudakis, G. 2006. Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress. Integrative and Comparative Biology 46:691-712.
Godoy, G., Steadman, J. R., Dickman, M. B., and Dam, R. 1990. Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiological and Molecular Plant Pathology 37:179-191.
Gomez, L. D., Noctor, G., Knight, M. R., and Foyer, C. H. 2004. Regulation of calcium signaling and gene expression by glutathione. Journal of Experimental Botany 55:1851-1859.
Grintzalis, K., Vernardis, S. I., Klapa, M. I., and Georgiou, C. D. 2014. Role of oxidative stress in sclerotial differentiation and aflatoxin B1 biosynthesis in Aspergillus flavus. Applied and Environmental Microbiology 80:5561-5571.
Halliwell, B., and Gutteridge, J. M. 2015. Free radicals in biology and medicine. Oxford university press, New York, USA.
Hansberg, W., and Aguirre, J. 1990. Hyperoxidant states cause microbial cell differentiation by cell isolation from dioxygen. Journal of Theoretical Biology 142:201-221.
Hansberg, W., De Groot, H., and Sies, H. 1993. Reactive oxygen species associated with cell differentiation in Neurospora crassa. Free Radical Biology and Medicine 14:287-293.
Harel, A., Bercovich, S., and Yarden, O. 2006. Calcineurin is required for sclerotial development and pathogenicity of Sclerotinia sclerotiorum in an oxalic acid-independent manner. Molecular Plant-Microbe Interactions 19:682-693.
He, L., He, T., Farrar, S., Ji, L., Liu, T., and Ma, X. 2017. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cellular Physiology and Biochemistry 44:532-553.
Heller, J., and Tudzynski, P. 2011. Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease. Annual Review of Phytopathology 49:369-390.
Hou, Y., Na, R., Li, M., Jia, R., Zhou, H., Jing, L., and Zhao, J. 2017. H2O2 is involved in cAMP-induced inhibition of sclerotia initiation and maturation in the sunflower pathogen Sclerotinia sclerotiorum. Journal of Plant Pathology 99:17-26.
Huang, Z., Lu, J., Liu, R., Wang, P., Hu, Y., Fang, A., Yang. Y., Qing. L., Bi. C., and Yu, Y. 2021. SsCat2 encodes a catalase that is critical for the antioxidant response, QoI fungicide sensitivity, and pathogenicity of Sclerotinia sclerotiorum. Fungal Genetics and Biology 149:103530.
Iquebal, M. A., Tomar, R. S., Parakhia, M. V., Singla, D., Jaiswal, S., Rathod, V. M., Padhiyar. S. M., Kumar. N., Rai. A., and Kumar, D. 2017. Draft whole genome sequence of groundnut stem rot fungus Athelia rolfsii revealing genetic architect of its pathogenicity and virulence. Scientific Reports 7:1-10.
Jadon, K. S., Thirumalaisamy, P. P., Kumar, V., Koradia, V. G., and Padavi, R. D. 2015. Management of soil borne diseases of groundnut through seed dressing fungicides. Crop Protection 78:198-203.
Jurick Ii, W. M., Dickman, M. B., and Rollins, J. A. 2004. Characterization and functional analysis of a cAMP-dependent protein kinase A catalytic subunit gene (pka1) in Sclerotinia sclerotiorum. Physiological and Molecular Plant Pathology 64:155-163.
Ju, Y. M., Hsieh, H. M., and He, X. S. 2022. Wulingshen, the massive Xylaria sclerotia used as traditional Chinese medicine, is produced by multiple species. Mycologia 114:175-189.
Kanwal, H. K., and Reddy, M. S. 2012. The effect of carbon and nitrogen sources on the formation of sclerotia in Morchella spp. Annals of microbiology 62:165-168.
Kator, L., Hosea, Z. Y., and Oche, O. D. 2015. Sclerotium rolfsii: Causative organism of southern blight, stem rot, white mold and sclerotia rot disease. Annals of Biological Research 6:78-89.
Kudin, A. P., Bimpong-Buta, N. Y. B., Vielhaber, S., Elger, C. E., and Kunz, W. S. 2004. Characterization of superoxide-producing sites in isolated brain mitochondria. Journal of Biological Chemistry 279: 4127-4135.
Kudin, A. P., Debska-Vielhaber, G., and Kunz, W. S. 2005. Characterization of superoxide production sites in isolated rat brain and skeletal muscle mitochondria. Biomedicine & Pharmacotherapy 59:163-168.
Kühn, H., and Borchert, A. 2002. Regulation of enzymatic lipid peroxidation: the interplay of peroxidizing and peroxide reducing enzymes. Free Radical Biology and Medicine 33:154-172.
Konjengbam, R., Singh, N. I., and Devi, R. T. 2021. In-vitro assessment of fungicides and pH levels on the mycelial growth and sclerotia production of Sclerotium rolfsii Sacc. causing white rot of onion in manipur. Journal of Current Opinion in Crop Science 2:60-67.
Kou, Y., Qiu, J., and Tao, Z. 2019. Every coin has two sides: reactive oxygen species during Rice–Magnaporthe oryzae interaction. International Journal of Molecular Sciences 20:1191.
Kowaltowski, A. J., Castilho, R. F., and Vercesi, A. E. 2001. Mitochondrial permeability transition and oxidative stress. FEBS Letters 495:12-15.
Kushwaha, S. K., Kumar, S., Chaudhary, B., and Sahu, R. 2019. Effect of different media, ph and temperature on growth and sclerotia formation of Sclerotium rolfsii Sacc. causing collar rot of lentil. Chemical Science Review and Letters 8:1-5.
Lange, M., and Peiter, E. 2020. Calcium transport proteins in fungi: the phylogenetic diversity of their relevance for growth, virulence, and stress resistance. Frontiers in Microbiology 10:3100.
Lara‐Ortíz, T., Riveros‐Rosas, H., and Aguirre, J. 2003. Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Molecular Microbiology 50:1241-1255.
Le, C. N., Mendes, R., Kruijt, M., and Raaijmakers, J. M. 2012. Genetic and phenotypic diversity of Sclerotium rolfsii in groundnut fields in central Vietnam. Plant Disease 96:389-397.
Lehner, M. S., Paula Júnior, T. J., Silva, R. A., Vieira, R. F., Carneiro, J. E. S., and Mizubuti, E. S. 2014. Sclerotia morphology traits and mycelial growth rate are not informative variables for population studies of Sclerotinia sclerotiorum. Tropical Plant Pathology 39:471-477.
Li, C., Shi, L., Chen, D., Ren, A., Gao, T., and Zhao, M. 2015. Functional analysis of the role of glutathione peroxidase (GPx) in the ROS signaling pathway, hyphal branching and the regulation of ganoderic acid biosynthesis in Ganoderma lucidum. Fungal Genetics and Biology 82:168-180.
Li, M., and Rollins, J. A. 2010. The development-specific ssp1 and ssp2 genes of Sclerotinia sclerotiorum encode lectins with distinct yet compensatory regulation. Fungal Genetics and Biology 47:531-538.
Li, Y., Zhang, Y., Zhang, C., Wang, H., Wei, X., Chen, P., and Lu, L. 2020. Mitochondrial dysfunctions trigger the calcium signaling-dependent fungal multidrug resistance. Proceedings of the National Academy of Sciences 117:1711-1721.
Liang, Y., Strelkov, S. E., and Kav, N. N. 2010. The proteome of liquid sclerotial exudates from Sclerotinia sclerotiorum. Journal of Proteome Research 9:3290-3298.
Lin, Y. C., Liu, H. H., Tseng, M. N., and Chang, H. X. 2023. Heritability and gene functions associated with sclerotia formation of Rhizoctonia solani AG-7 using whole genome sequencing and genome-wide association study. Microbial Genomics 9(3).
Liu, B., Wang, H., Ma, Z., Gai, X., Sun, Y., He, S., Liu, X., Wang. Y., Xuan Y., and Gao, Z. 2018. Transcriptomic evidence for involvement of reactive oxygen species in Rhizoctonia solani AG1 IA sclerotia maturation. PeerJ 6: e5103.
Liu, H. H., Huang, C. C., Lin, Y. H., Tseng, M. N., and Chang, H. X. 2022. Superoxide initiates the hyphal differentiation to microsclerotia formation of Macrophomina phaseolina. Microbiology Spectrum 10: e02084-21.
Liu, Y., and Bell-Pedersen, D. 2006. Circadian rhythms in Neurospora crassa and other filamentous fungi. Eukaryotic Cell 5:1184-1193.
Liu, Y. Y., and Guo, S. X. 2010. Involvement of Ca2+ channel signalling in sclerotial formation of Polyporus umbellatus. Mycopathologia 169:139-150.
López‐Climent, M. F., Arbona, V., Pérez‐Clemente, R, M., Zandalinas, S. I., and Gómez‐Cadenas, A. 2014. Effect of cadmium and calcium treatments on phytochelatin and glutathione levels in citrus plants. Plant Biology 16:79-87.
Luna, C. M., Pastori, G. M., Driscoll, S., Groten, K., Bernard, S., and Foyer, C. H. 2005. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. Journal of Experimental Botany 56:417-423
Malagnac, F., Bidard, F., Lalucque, H., Brun, S., Lambou, K., Lebrun, M. H., and Silar, P. 2008. Convergent evolution of morphogenetic processes in fungi: role of tetraspanins and NADPH oxidases 2 in plant pathogens and saprobes. Communicative & Integrative Biology 1:180-181.
Malagnac, F., Lalucque, H., Lepère, G., and Silar, P. 2004. Two NADPH oxidase isoforms are required for sexual reproduction and ascospore germination in the filamentous fungus Podospora anserina. Fungal Genetics and Biology 41:982-997.
Marquez, N., Giachero, M. L., Declerck, S., and Ducasse, D. A. 2021. Macrophomina phaseolina: General characteristics of pathogenicity and methods of control. Frontiers in Plant Science 12:634397.
Martin, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal 17:10-12.
Maurya, S., Singh, U., Singh, R., Singh, A., and Singh, H. 2010. Role of air and light in sclerotial development and basidiospore formation in Sclerotium rolfsii. Journal of Plant Protection Research 50:206-209.
Maxwell, D. P., and Bateman, D. F. 1968. Influence of carbon source and pH on oxalate accumulation in culture filtrates of Sclerotium rolfsii. Phytopathology 58:1351-1355.
Mayee, C. D., and Datar, V. V. 1988. Diseases of groundnut in the tropics. Review of Tropical Plant Pathology 5:85-118.
Meng, L., Mestdagh, H., Ameye, M., Audenaert, K., Höfte, M., and Van Labeke, M. C. 2020. Phenotypic variation of Botrytis cinerea isolates is influenced by spectral light quality. Frontiers in Plant Science 11:1233.
Muthukumar, A., and Venkatesh, A. 2013. Effect of light and aeration on the growth of Sclerotium rolfsii in vitro. African Journal of Biotechnology 12:6843-6846.
Nagy, P., and Fischl, G. 2002. Effect of UV and visible light irradiation on mycelial growth and sclerotium formation of Sclerotinia sclerotiorum. Acta Phytopathologica et Entomologica Hungarica 37:83-89.
Nolfi-Donegan, D., Braganza, A., and Shiva, S. 2020. Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biology 37:101674.
Osato, T., Park, P., and Ikeda, K. 2017. Cytological analysis of the effect of reactive oxygen species on sclerotia formation in Sclerotinia minor. Fungal Biology 121:127-136.
Panaccione, D. G. 2005. Origins and significance of ergot alkaloid diversity in fungi. FEMS Microbiology Letters 251:9-17.
Papapostolou, I., and Georgiou, C. D. 2010a. Hydrogen peroxide is involved in the sclerotial differentiation of filamentous phytopathogenic fungi. Journal of Applied Microbiology 109:1929-1936.
Papapostolou, I., and Georgiou, C. D. 2010b. Superoxide radical is involved in the sclerotial differentiation of filamentous phytopathogenic fungi: identification of a fungal xanthine oxidase. Fungal Biology 114:387-395.
Papapostolou, I., Sideri, M., and Georgiou, C. D. 2014. Cell proliferating and differentiating role of H2O2 in Sclerotium rolfsii and Sclerotinia sclerotiorum. Microbiological Research 169:527-532.
Paparu, P., Acur, A., Kato, F., Acam, C., Nakibuule, J., Nkuboye, A., Musoke, S., and Mukankusi, C. 2020. Morphological and pathogenic characterization of Sclerotium rolfsii, the causal agent of southern blight disease on common bean in Uganda. Plant Disease 104:2130-2137.
Paul, N. C., Hwang, E. J., Nam, S. S., Lee, H. U., Lee, J. S., Yu, G. D., Kang, Y. G., Lee, K. B., Go, S., and Yang, J. W. 2017. Phylogenetic placement and morphological characterization of Sclerotium rolfsii (Teleomorph: Athelia rolfsii) associated with blight disease of Ipomoea batatas in Korea. Mycobiology 45:129-138.
Pimentel, H., Bray, N. L., Puente, S., Melsted, P., and Pachter, L. 2017. Differential analysis of RNA-seq incorporating quantification uncertainty. Nature Methods 14:687-690.
Punja, Z. K. 1985. The biology, ecology, and control of Sclerotium rolfsii. Annual Review of Phytopathology 23:97-127.
Qin, N., Olcese, R., Bransby, M., Lin, T., and Birnbaumer, L. 1999. Ca2+-induced inhibition of the cardiac Ca2+ channel depends on calmodulin. Proceedings of the National Academy of Sciences 96:2435-2438.
Quinn, J., Findlay, V. J., Dawson, K., Millar, J. B., Jones, N., Morgan, B. A., and Toone, W. M. 2002. Distinct regulatory proteins control the graded transcriptional response to increasing H2O2 levels in fission yeast Schizosaccharomyces pombe. Molecular Biology of the Cell 13:805-816.
Rai, R. A., and Agnihotri, J. P. 1971. Influence of nutrition and pH on growth and sclerotia formation of Sclerotinia sclerotiorum (Lib.) De Bary from Gaillardia pulchella Foug. Mycopathologia et Mycologia Applicata 43:89-95.
Reichert, I., and Hellinger, E. 1947. On the occurrence, morphology and parasitism of Sclerotium bataticola. Palestine Journal of Botany 6:107-147.
Ritchie, F., Bain, R. A., and McQuilken, M. P. 2009. Effects of nutrient status, temperature and pH on mycelial growth, sclerotial production and germination of Rhizoctonia solani from potato. Journal of Plant Pathology 589-596.
Rollins, J. A., and Dickman, M. B. 2001. pH signaling in Sclerotinia sclerotiorum: identification of a pacC/RIM1 homolog. Applied and Environmental Microbiology 67:75-81.
Roy, A., Kumar, A., Baruah, D., and Tamuli, R. 2021. Calcium signaling is involved in diverse cellular processes in fungi. Mycology 12:10-24.
Schumacher, J., de Larrinoa, I. F., and Tudzynski, B. 2008. Calcineurin-responsive zinc finger transcription factor CRZ1 of Botrytis cinerea is required for growth, development, and full virulence on bean plants. Eukaryotic Cell 7:584-601.
Scott, B., and Eaton, C. J. 2008. Role of reactive oxygen species in fungal cellular differentiations. Current Opinion in Microbiology 11:488-493.
Senapati, M., Tiwari, A., Sharma, N., Chandra, P., Bashyal, B. M., Ellur, R. K., Bhowmick, P. K., Bollinedi, H., Vinod, K. K., Singh, A. K., and Krishnan, S. G. 2022. Rhizoctonia solani Kühn pathophysiology: Status and prospects of sheath blight disease management in rice. Frontiers in Plant Science 13:881116.
Sharma, P., Meena, P. D., Gupta, N. C., Prasad, L., and Rai, P. K. 2018. Nutritional and morpho-physiological studies of Sclerotinia sclerotiorum causing stem rot of Indian Mustard (Brassica juncea). Annals of Plant Protection Sciences 26:113-116.
Sheng, Y., Abreu, I. A., Cabelli, D. E., Maroney, M. J., Miller, A. F., Teixeira, M., and Valentine, J. S. 2014. Superoxide dismutases and superoxide reductases. Chemical Reviews 114:3854-3918.
Sideri, M., and Georgiou, C. D. 2000. Differentiation and hydrogen peroxide production in Sclerotium rolfsii are induced by the oxidizing growth factors, light and iron. Mycologia 92: 1033-1042.
Sies, H. 2017. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biology 11:613-619.
Sies, H., and Jones, D. P. 2020. Reactive oxygen species (ROS) as pleiotropic physiological signaling agents. Nature Reviews Molecular Cell Biology 21:363-383.
Singh, P., Mazumdar, P., Harikrishna, J. A., and Babu, S. 2019. Sheath blight of rice: a review and identification of priorities for future research. Planta 250:1387-1407.
Smith, M. E., Henkel, T. W., and Rollins, J. A. 2015. How many fungi make sclerotia? Fungal Ecology 13:211-220.
Song, N. N., Zheng, Y., E, S. J., and Li, D. C. 2009. Cloning, expression, and characterization of thermostable manganese superoxide dismutase from Thermoascus aurantiacus var. levisporus. The Journal of Microbiology 47:123-130.
Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., and Morgenstern, B. 2006. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Research 34:435-439.
Stathopoulos-Gerontides, A., Guo, J. J., and Cyert, M. S. 1999. Yeast calcineurin regulates nuclear localization of the Crz1p transcription factor through dephosphorylation. Genes & development 13:798-803.
Supek, F., Bošnjak, M., Škunca, N., and Šmuc, T. 2011. REVIGO summarizes and visualizes long lists of gene ontology terms. PLOS ONE 6: e21800.
Suzuki, Y., and Oda, Y. 1978. Two types of sclerotial development in Botrytis cinerea. Japanese Journal of Phytopathology 44:493-498.
Tan, B. H., Leow, T. C., Foo, H. L., and Rahim, R. A. 2014. Molecular characterization of a recombinant manganese superoxide dismutase from Lactococcus lactis M4. BioMed Research International 2014:469298.
Tang, C., Jin, X., Klosterman, S. J., and Wang, Y. 2020. Convergent and distinctive functions of transcription factors VdYap1, VdAtf1, and VdSkn7 in the regulation of nitrosative stress resistance, microsclerotia formation, and virulence in Verticillium dahliae. Molecular Plant Pathology 21:1451-1466.
Tang, C., Xiong, D., Fang, Y., Tian, C., and Wang, Y. 2017. The two-component response regulator VdSkn7 plays key roles in microsclerotial development, stress resistance and virulence of Verticillium dahliae. Fungal Genetics and Biology 108:26-35.
Torralba, S., and Heath, I. B. 2001. Cytoskeletal and Ca2+ regulation of hyphal tip growth and initiation. Current Topics in Developmental Biology 51:135-187.
Townsend, B. B., and Willetts, H. J. 1954. The development of sclerotia of certain fungi. Transactions of the British Mycological Society 37:213-221.
Trevethick, J., and Cooke, R. C. 1973. Non-nutritional factors influencing sclerotium formation in some Sclerotinia and Sclerotium species. Transactions of the British Mycological Society 60:559-566.
Tu, C. C., Hsieh, T. F., Tsai, W. H., and Kimbrough, J. W. 1992. Induction of basidia and morphological comparison among isolates of Athelia (Sclerotium) rolfsii. Mycologia 84:695-704.
Tudzynski, P., Heller, J., and Siegmund, U. 2012. Reactive oxygen species generation in fungal development and pathogenesis. Current Opinion in Microbiology 15:653-659.
Turrens, J. F. 2003. Mitochondrial formation of reactive oxygen species. The Journal of Physiology 552:335-344.
Veluchamy, S., Williams, B., Kim, K., and Dickman, M. B. 2012. The CuZn superoxide dismutase from Sclerotinia sclerotiorum is involved with oxidative stress tolerance, virulence, and oxalate production. Physiological and Molecular Plant Pathology 78:14-23.
Verkhratsky, A., and Parpura, V. 2014. Calcium signaling and calcium channels: evolution and general principles. European Journal of Pharmacology 739:1-3.
Weidinger, A., and Kozlov, A. V. 2015. Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules 5:472-484.
Wheeler, B. E. J., and Sharan, N. 1965. The production of sclerotia by Sclerotium rolfsii: I. Effects of varying the supply of nutrients in an agar medium. Transactions of the British Mycological Society 48:291-301.
Wikström, M., and Saari, H. 1975. A spectral shift in cytochrome an induced by calcium ions. Biochimica et Biophysica Acta 408:170-179.
Willetts, H. J. 1972. The morphogenesis and possible evolutionary origins of fungal sclerotia. Biological Reviews 47:515-536.
Xie, C., Huang, C. H., and Vallad, G. E. 2014. Mycelial compatibility and pathogenic diversity among Sclerotium rolfsii isolates in the southern United States. Plant Disease 98:1685-1694.
Xing, Y. M., Li, B., Zeng, X., Zhou, L. S., Lee, T. S., Lee, M. W., Chen, X. M., and Guo, S. X. 2021. Use of transcriptomic profiling to identify candidate genes involved in Polyporus umbellatus sclerotial formation affected by oxalic acid. Scientific Reports 11:17326.
Xiong, D., Wang, Y., Ma, J., Klosterman, S. J., Xiao, S., and Tian, C. 2014. Deep mRNA sequencing reveals stage-specific transcriptome alterations during microsclerotia development in the smoke tree vascular wilt pathogen, Verticillium dahliae. BMC Genomics 15:1-19.
Xu, L., and Chen, W. 2013. Random T-DNA mutagenesis identifies a Cu/Zn superoxide dismutase gene as a virulence factor of Sclerotinia sclerotiorum. Molecular Plant-Microbe Interactions 26:431-441.
Yaakoub, H., Mina, S., Calenda, A., Bouchara, J. P., and Papon, N. 2022. Oxidative stress response pathways in fungi. Cellular and Molecular Life Sciences 79:333-427.
Yager, L. N. 1992. Early developmental events during asexual and sexual sporulation in Aspergillus nidulans. Biotechnology 23:19-41.
Yan, L., Wang, Z., Song, W., Fan, P., Kang, Y., Lei, Y., Wan, L., Huai, D., Chen, Y., Wang, X., Sudini, H., and Liao, B. 2021. Genome sequencing and comparative genomic analysis of highly and weakly aggressive strains of Sclerotium rolfsii, the causal agent of peanut stem rot. BMC Genomics 22:1-15.
Yang, T., and Poovaiah, B. W. 2002. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proceedings of the National Academy of Sciences 99:4097-4102.
Yarden, O., Veluchamy, S., Dickman, M. B., and Kabbage, M. 2014. Sclerotinia sclerotiorum catalase SCAT1 affects oxidative stress tolerance, regulates ergosterol levels and controls pathogenic development. Physiological and Molecular Plant Pathology 85:34-41.
Yu, G., Wang, L. G., Han, Y., and He, Q. Y. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics: A Journal of Integrative Biology 16:284-287.
Yu, J. H., and Keller, N. 2005. Regulation of secondary metabolism in filamentous fungi. Annual Review. Phytopathology 43:437-458.
Zhang, J., Wang, Y., Du, J., Huang, Z., Fang, A., Yang, Y., Bi, C., Qing, L., and Yu, Y. 2019. Sclerotinia sclerotiorum thioredoxin reductase is required for oxidative stress tolerance, virulence, and sclerotial development. Frontiers in Microbiology 10:233.
Zhang, Z., Chen, Y., Li, B., Chen, T., and Tian, S. 2020. Reactive oxygen species: A generalist in regulating development and pathogenicity of phytopathogenic fungi. Computational and Structural Biotechnology Journal 18:3344-3349.
Zhao, Y. Y. 2013. Traditional uses, phytochemistry, pharmacology, pharmacokinetics and quality control of Polyporus umbellatus (Pers.) Fries: a review. Journal of Ethnopharmacology 149:35-48.
Zheng, B., He, D., Liu, P., Wang, R., Li, B., and Chen, Q. 2021. Occurrence of collar rot caused by Athelia rolfsii on soybean in China. Canadian Journal of Plant Pathology 43:43-47.
Zhou, J., Lin. Y., Fu. Y., Xie, J., Jiang, D., and Cheng, J. 2020. A cinnamyl alcohol dehydrogenase required for sclerotial development in Sclerotinia sclerotiorum. Phytopathology Research 2:1-11.
Zhou, L., Xu. Q., Zhang. Y., Zhou, Z., Guan, W., and Li, Y. 2010. Purification, characterization and in vitro anthelmintic activity of a neutral metalloprotease from Laccocephalum mylittae. Chinese Journal of Chemical Engineering 18:122-128.
Zoberi, M. H. 1980. Some nutritional factors regulating formation of sclerotia of Sclerotium rolfsii. Canadian Journal of Botany 58:2484-2490.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91399-
dc.description.abstract菌核 (sclerotia) 為真菌菌絲發育形成的特殊構造,對環境逆境的耐受性高,可於田間殘存並作為初次感染源。菌核的形成受到養分、光、酸鹼值、溫度及活性氧 (reactive oxygen species, ROS) 等多種因子影響,目前多數研究支持ROS在誘導菌核數量、大小及色素累積具重要性。除了ROS外,作為細胞訊息傳遞信使的鈣離子(calcium ion, Ca2+) 也會影響菌核形成,雖有諸多研究指出ROS及Ca2+在細胞內調節路徑相互影響,但兩者在真菌菌核形成過程中的角色及其交互作用仍有待探討。本研究以白絹病菌 (Athelia rolfsii) 作為材料,針對菌核形成的四個時期 (包含菌絲期、初始菌核期、菌核發展期、及菌核成熟期) 進行轉錄體分析,分析結果顯示ROS解毒基因大量表現於菌核發展期和成熟期,且後續實驗的結果亦顯示氧化壓力的變動不會誘導菌核的形成,僅有添加抗氧化劑二硫蘇糖醇 (DTT) 和穀胱氨酸 (glutathione) 會導致菌核色素沈澱的能力下降,故認為ROS主要影響在A. rolfsii菌核形成後期。ROS抑制試驗中,僅在添加glutathione的處理下會抑制A. rolfsii菌核形成數量,因文獻指出glutathione亦會誘導Ca2+釋放,故後續實驗藉由調整培養基中CaCl2濃度以測試Ca2+對菌核數量的影響,並於結果中發現CaCl2添加濃度提高會導致A. rolfsii、Macrophomina phaseolina、和Sclerotinia sclerotiorum菌核或微菌核的數量下降。此外,在探討ROS及Ca2+交互影響的實驗中,發現僅有Ca2+會降低A. rolfsii的菌核形成數量,反觀ROS則對後期發育和成熟階段影響較大;而在M. phaseolina之微菌核和S. sclerotiorum之菌核形成,ROS及Ca2+皆參與其中,且ROS及Ca2+交互影響模式在兩種真菌之間有所差異。總結上述,本研究針對A. rolfsii之菌核形成階段進行轉體學分析,另藉由改變氧化壓力的實驗驗證ROS參與在菌核形成後期,且以Ca2+作為抑制A. rolfsii菌絲發育成菌核之主要因子,並發現雖然ROS及Ca2+皆參與在菌核形成路徑,但其功能及機制因真菌種類而異。zh_TW
dc.description.abstractSclerotia are specialized structures formed by various fungi, and they serve as the long-term survival structures and primary inoculum in the subsequent season. Sclerotia formation is influenced by several factors, including nutrients, light, pH, temperature, and reactive oxygen species (ROS). Among these factors, ROS is one of the most studied factors and its importance in affecting the number, size, and melanin accumulation of sclerotia has been supported. In addition to ROS, calcium ion (Ca2+) acts as the second messenger and participates in sclerotia formation. Several studies revealed that ROS and Ca2+ interact with each other in many pathways, but the individual effects and crosstalk between ROS and Ca2+ during sclerotia formation remain to be explored. In this study, RNA-Sequencing was performed on four stages of sclerotia formation, including the mycelial stage, initiation stage, developmental stage, and maturation stage of Athelia rolfsii. Transcriptome analysis revealed that ROS detoxification genes are highly expressed in the developmental and mature stages. Consistently, changing the ROS stress in growth media did not affect the sclerotia number, and the addition of antioxidants DTT and glutathione affected only pigmentation of sclerotia. The observations suggested that ROS are involved in the later stages of A. rolfsii sclerotia formation. However, in the treatment of glutathione, which is known to induce Ca2+ influx, resulted in the reduction of sclerotia number. The subsequent experiments with amended CaCl2 in culture media revealed a significant decrease in the sclerotia number of not only A. rolfsii, but also Macrophomina phaseolina and Sclerotinia sclerotiorum. Investigating the individual effect and the crosstalk between ROS and Ca2+ revealed that only Ca2+ is involved in the sclerotia formation of A. rolfsii, acting as the suppression signal for hyphal differentiation into sclerotia, while ROS may play roles in the latter developmental and mature stages. On the other hand, both ROS and Ca2+ are participated in the sclerotia formation of M. phaseolina and S. sclerotiorum. However, the crosstalk between ROS and Ca2+ cause different results on these two fungi. Collectively, this study completed the transcriptomic analysis to investigate the sclerotia formation of A. rolfsii. It validated the involvement of ROS in the later stages of sclerotia formation and confirmed that Ca2+ acts as a negative stimulus for hyphal differentiation into sclerotia. This study also pointed out that ROS and Ca2+ both play roles in sclerotia formation pathway, with unique mechanisms depending on the fungal species.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-26T16:20:00Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-01-26T16:20:00Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 I
Abstract II
目次 III
表次 V
圖次 VI
第壹章、前人研究 1
1-1 可產生菌核之真菌 1
1-2 白絹病菌的基本特性 2
1-3 影響菌核形成的因子 3
1-3.1 遺傳組成 3
1-3.2 環境因子 4
1-4 活性氧 (ROS) 6
1-5 ROS於真菌生長的角色及影響 7
1-6 ROS於菌核形成的影響 8
1-7 真菌中的鈣離子 (Ca2+) 及其於菌核形成的影響 10
1-8 ROS與Ca2+的交互作用 11
1-9 研究動機 12
第貳章、材料與方法 13
2-1 菌株與培養條件 13
2-2 菌核四個形成階段之純化 13
2-3 菌核RNA萃取 14
2-4 核糖核酸定序 (RNA-Sequencing) 15
2-5 抗氧化物及ROS誘導物對菌核形成測試 16
2-6 ROS染色試驗 17
2-7 Ca2+對菌核形成影響之測試及其與ROS誘導物之交互作用 18
2-8 數據統計與分析 19
第參章、結果 20
3-1 菌核形成階段區分及轉錄體模板組建 20
3-2 菌核形成階段間之轉錄體分析 21
3-3 ROS影響白絹病菌菌核形成後期 22
3-4 Ca2+抑制菌核及微菌核形成 24
3-5 ROS與Ca2+於菌核形成期間的交互作用 25
第肆章 討論 27
4-1 抗氧化劑及ROS誘導物不會影響Athelia rolfsii之菌核形成 27
4-2 ROS在A. rolfsii菌核形成後期具重要性 29
4-3 Ca2+影響不同真菌菌核或微菌核之形成 30
4-4 ROS與Ca2+於不同真菌之菌核形成路徑調控相異 31
4-5 研究總結與未來展望 32
參考文獻 33
表 53
圖 65
附錄 87
-
dc.language.isozh_TW-
dc.subject白絹病菌zh_TW
dc.subject菌核zh_TW
dc.subject活性氧zh_TW
dc.subject轉錄體分析zh_TW
dc.subject鈣離子zh_TW
dc.subjectReactive oxygen species (ROS)en
dc.subjectCalcium ion (Ca2+)en
dc.subjectTranscriptomic analysisen
dc.subjectAthelia rolfsiien
dc.subjectSclerotiaen
dc.title探討活性氧及鈣離子在白絹病菌菌核形成之功能zh_TW
dc.titleFunctions of Reactive Oxygen Species and Calcium Ion in Sclerotia Formation of Athelia rolfsiien
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee曾敏南;朱宇敏zh_TW
dc.contributor.oralexamcommitteeMin-Nan Tseng;Yu-Ming Juen
dc.subject.keyword白絹病菌,活性氧,菌核,鈣離子,轉錄體分析,zh_TW
dc.subject.keywordAthelia rolfsii,Calcium ion (Ca2+),Reactive oxygen species (ROS),Sclerotia,Transcriptomic analysis,en
dc.relation.page93-
dc.identifier.doi10.6342/NTU202400055-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-01-12-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept植物病理與微生物學系-
dc.date.embargo-lift2029-01-09-
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
15.38 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved