請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91392完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱靜雯 | zh_TW |
| dc.contributor.advisor | Ching-Wen Chiu | en |
| dc.contributor.author | 顏碩霆 | zh_TW |
| dc.contributor.author | Shuo-Ting Yan | en |
| dc.date.accessioned | 2024-01-26T16:18:09Z | - |
| dc.date.available | 2024-01-27 | - |
| dc.date.copyright | 2024-01-26 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-01-10 | - |
| dc.identifier.citation | 1. Ma, Y.; Wang, B.; Zhang, L.; Hou, Z. Boron-Catalyzed Aromatic C–H Bond Silylation with Hydrosilanes. J. Am. Chem. Soc. 2016, 138, 3663–3666.
2. Ma, Y.; Lou, S. J.; Luo, G.; Luo, Y.; Zhan, G.; Nishiura, M.; Luo, Y.; Hou, Z. B(C6F5)3/Amine-Catalyzed C(sp)–H Silylation of Terminal Alkynes with Hydrosilanes: Experimental and Theoretical Studies. Angew. Chem. Int. Ed. 2018, 57, 15222–15226. 3. Yin, Q.; Klare, H. F.; Oestreich, M. Catalytic Friedel–Crafts C–H Borylation of Electron-Rich Arenes: Dramatic Rate Acceleration by Added Alkenes. Angew. Chem. Int. Ed. 2017, 56, 3712–3717. 4. Lyaskovskyy, V.; de Bruin, B. Redox Non-Innocent Ligands: Versatile New Tools to Control Catalytic Reactions. ACS Catal. 2012, 2, 270–279. 5. Chirik, P. J. Preface: Forum on Redox-Active Ligands. Inorg. Chem. 2011, 50, 9737–9740. 6. Greb, L.; Ebner, F.; Ginzburg, Y.; Sigmund, L. M. Element–Ligand Cooperativity with p‐Block Elements. Eur. J. Inorg. Chem. 2020, 2020, 3030–3047. 7. Chirik, P. J.; Wieghardt, K. Radical Ligands Confer Nobility on Base-Metal Catalysts. Science 2010, 327, 794–795. 8. Bart, S. C.; Lobkovsky, E.; Chirik, P. J. Preparation and Molecular and Electronic Structures of Iron(0) Dinitrogen and Silane Complexes and Their Application to Catalytic Hydrogenation and Hydrosilation. J. Am. Chem. Soc. 2004, 126, 13794–13807. 9. Sylvester, K. T.; Chirik, P. J. Iron-Catalyzed, Hydrogen-Mediated Reductive Cyclization of 1,6-Enynes and Diynes: Evidence for Bis(imino)pyridine Ligand Participation. J. Am. Chem. Soc. 2009, 131, 8772–8774. 10. Gunanathan, C.; Milstein, D. Metal–Ligand Cooperation by Aromatization–Dearomatization: A New Paradigm in Bond Activation and “Green” Catalysis. Acc. Chem. Res. 2011, 44, 588–602. 11. Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. Facile Conversion of Alcohols into Esters and Dihydrogen Catalyzed by New Ruthenium Complexes. J. Am. Chem. Soc. 2005, 127, 10840–10841. 12. Ben-Ari, E.; Leitus, G.; Shimon, L. J. W.; Milstein, D. Metal–Ligand Cooperation in C–H and H2 Activation by an Electron-Rich PNP Ir(I) System: Facile Ligand Dearomatization–Aromatization as Key Steps. J. Am. Chem. Soc. 2006, 128, 15390–15391. 13. Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. Efficient Homogeneous Catalytic Hydrogenation of Esters to Alcohols. Angew. Chem. Int. Ed. 2006, 45, 1113–1115. 14. Gunanathan, C.; Ben-David, Y.; Milstein, D. Direct Synthesis of Amides from Alcohols and Amines with Liberation of H2. Science 2007, 317, 790–792. 15. Langer, R.; Leitus, G.; Ben-David, Y.; Milstein, D. Efficient Hydrogenation of Ketones Catalyzed by an Iron Pincer Complex. Angew. Chem. Int. Ed. 2011, 50, 2120–2124. 16. Liang, Y.; Luo, J.; Diskin-Posner, Y.; Milstein, D. Designing New Magnesium Pincer Complexes for Catalytic Hydrogenation of Imines and N-Heteroarenes: H2 and N–H Activation by Metal–Ligand Cooperation as Key Steps. J. Am. Chem. Soc. 2023, 145, 9164–9175. 17. Radzewich, C. E.; Coles, M. P.; Jordan, R. F. Reversible Ethylene Cycloaddition Reactions of Cationic Aluminum β-Diketiminate Complexes. J. Am. Chem. Soc. 1998, 120, 9384–9385. 18. Myers, T. W.; Berben, L. A. Aluminum–Ligand Cooperative N–H Bond Activation and an Example of Dehydrogenative Coupling. J. Am. Chem. Soc. 2013, 135, 9988–9990. 19. Myers, T. W.; Berben, L. A. Aluminium–Ligand Cooperation Promotes Selective Dehydrogenation of Formic Acid to H2 and CO2. Chem. Sci. 2014, 5, 2771–2777. 20. Swamy, V.; Raj, K. V.; Vanka, K.; Sen, S. S.; Roesky, H. W. Silylene Induced Cooperative B–H Bond Activation and Unprecedented Aldehyde C–H Bond Splitting with Amidinate Ring Expansion. Chem. Commun. 2019, 55, 3536–3539. 21. Yao, S.; van Wullen, C.; Driess, M. Striking Reactivity of Ylide-Like Germylene Toward Terminal Alkynes: [4+2] Cycloaddition Versus C–H Bond Activation. Chem. Commun. 2008, 5393–5395. 22. Jana, A.; Objartel, I.; Roesky, H. W.; Stalke, D. Cleavage of a N–H Bond of Ammonia at Room Temperature by a Germylene. Inorg. Chem. 2009, 48, 798–800. 23. Zhao, W.; McCarthy, S. M.; Lai, T. Y.; Yennawar, H. P.; Radosevich, A. T. Reversible Intermolecular E–H Oxidative Addition to a Geometrically Deformed and Structurally Dynamic Phosphorous Triamide. J. Am. Chem. Soc. 2014, 136, 17634–17644. 24. Lin, Y. C.; Hatzakis, E.; McCarthy, S. M.; Reichl, K. D.; Lai, T. Y.; Yennawar, H. P.; Radosevich, A. T. P–N Cooperative Borane Activation and Catalytic Hydroboration by a Distorted Phosphorous Triamide Platform. J. Am. Chem. Soc. 2017, 139, 6008–6016. 25. Kořenková, M.; Hejda, M.; Erben, M.; Jirásko, R.; Jambor, R.; Růžička, A.; Rychagova, E.; Ketkov, S.; Dostál, L. Reversible C=C Bond Activation by an Intramolecularly Coordinated Antimony(I) Compound. Chem. Eur. J. 2019, 25, 12884–12888. 26. Kořenková, M.; Kremláček, V.; Hejda, M.; Turek, J.; Khudaverdyan, R.; Erben, M.; Jambor, R.; Růžička, A.; Dostál, L. Hetero Diels–Alder Reactions of Masked Dienes Containing Heavy Group 15 Elements. Chem. Eur. J. 2020, 26, 1144–1154. 27. Dureen, M. A.; Stephan, D. W. Reactions of Boron Amidinates with CO2 and CO and Other Small Molecules. J. Am. Chem. Soc. 2010, 132, 13559–13568. 28. Theuergarten, E.; Schluns, D.; Grunenberg, J.; Daniliuc, C. G.; Jones, P. G.; Tamm, M. Intramolecular Heterolytic Dihydrogen Cleavage by a Bifunctional Frustrated Pyrazolylborane Lewis Pair. Chem. Commun. 2010, 46, 8561–8563. 29. Theuergarten, E.; Schlosser, J.; Schluns, D.; Freytag, M.; Daniliuc, C. G.; Jones, P. G.; Tamm, M. Fixation of Carbon Dioxide and Related Small Molecules by a Bifunctional Frustrated Pyrazolylborane Lewis Pair. Dalton Trans 2012, 41, 9101–9110. 30. Lu, G.; Li, H.; Zhao, L.; Huang, F.; Schleyer, P.; Wang, Z. X. Designing Metal-Free Catalysts by Mimicking Transition-Metal Pincer Templates. Chem. Eur. J. 2011, 17, 2038–2043. 31. Gellrich, U.; Diskin-Posner, Y.; Shimon, L. J.; Milstein, D. Reversible Aromaticity Transfer in a Bora-Cycle: Boron–Ligand Cooperation. J. Am. Chem. Soc. 2016, 138, 13307–13313. 32. Gellrich, U. Reversible Hydrogen Activation by a Pyridonate Borane Complex: Combining Frustrated Lewis Pair Reactivity with Boron–Ligand Cooperation. Angew. Chem. Int. Ed. 2018, 57, 4779–4782. 33. Chen, X.; Yang, Y.; Wang, H.; Mo, Z. Cooperative Bond Activation and Catalytic CO2 Functionalization with a Geometrically Constrained Bis(silylene)-Stabilized Borylene. J. Am. Chem. Soc. 2023, 145, 7011–7020. 34. Koelle, P.; Noeth, H. The Chemistry of Borinium and Borenium Ions. Chem. Rev. 1985, 85, 399–418. 35. Weber, L.; Dobbert, E.; Stammler, H.-G.; Neumann, B.; Boese, R.; Bläser, D. Reaction of 1,3-Dialkyl-4,5-dimethylimidazol-2-ylidenes with 2-Bromo-2,3-dihydro-1H-1,3,2-diazaboroles (Alkyl = iPr and tBu). Chem. Ber. 1997, 130, 705–710. 36. Matsumoto, T.; Gabbaï, F. P. A Borenium Cation Stabilized by an N-Heterocyclic Carbene Ligand. Organometallics 2009, 28, 4252–4253. 37. Farrell, J. M.; Hatnean, J. A.; Stephan, D. W. Activation of Hydrogen and Hydrogenation Catalysis by a Borenium Cation. J. Am. Chem. Soc. 2012, 134, 15728–15731. 38. Clarke, J. J.; Devaraj, K.; Bestvater, B. P.; Kojima, R.; Eisenberger, P.; DeJesus, J. F.; Crudden, C. M. Hydrosilylation and Mukaiyama Aldol-Type Reaction of Quinolines and Hydrosilylation of Imines Catalyzed by a Mesoionic Carbene-Stabilized Borenium Ion. Org. Biomol. Chem. 2021, 19, 6786–6791. 39. Clarke, J. J.; Maekawa, Y.; Nambo, M.; Crudden, C. M. Borenium-Catalyzed Reduction of Pyridines through the Combined Action of Hydrogen and Hydrosilane. Org. Lett. 2021, 23, 6617–6621. 40. Xu, Y.; Yang, Y.; Liu, Y.; Li, Z. H.; Wang, H. Boron-Catalysed Hydrogenolysis of Unactivated C(Aryl)–C(Alkyl) Bonds. Nat. Catal. 2022, 6, 16–22. 41. Su, Y.; Kinjo, R. Boron-Containing Radical Species. Coord. Chem. Rev. 2017, 352, 346–378. 42. Chiu, C. W.; Gabbai, F. P. A 9-Borylated Acridinyl Radical. Angew. Chem. Int. Ed. 2007, 46, 1723–1725. 43. Bissinger, P.; Braunschweig, H.; Damme, A.; Krummenacher, I.; Phukan, A. K.; Radacki, K.; Sugawara, S. Isolation of a Neutral Boron-Containing Radical Stabilized by a Cyclic (Alkyl)(Amino)Carbene. Angew. Chem. Int. Ed. 2014, 53, 7360–7363. 44. Dahcheh, F.; Martin, D.; Stephan, D. W.; Bertrand, G. Synthesis and Reactivity of a CAAC-Aminoborylene Adduct: A Hetero-Allene or an Organoboron Isoelectronic with Singlet Carbenes. Angew. Chem. Int. Ed. 2014, 53, 13159–13163. 45. Huang, J. S.; Lee, W. H.; Shen, C. T.; Lin, Y. F.; Liu, Y. H.; Peng, S. M.; Chiu, C. W. Cp*-Substituted Boron Cations: The Effect of NHC, NHO, and CAAC Ligands. Inorg. Chem. 2016, 55, 12427–12434. 46. Silva Valverde, M. F.; Schweyen, P.; Gisinger, D.; Bannenberg, T.; Freytag, M.; Kleeberg, C.; Tamm, M. N-Heterocyclic Carbene Stabilized Boryl Radicals. Angew. Chem. Int. Ed. 2017, 56, 1135–1140. 47. Paetzold, P. Iminoboranes. In Advances in Inorganic Chemistry, Vol. 31; Elsevier, 1987; pp 123–170. 48. Eisch, J. J.; Kotowicz, B. W. Novel Organoborane Lewis Acids via Selective Boron-Tin Exchange Processes Steric Constraints to Electrophilic Initiation by the Boron Halide. Eur. J. Inorg. Chem. 1998, 1998, 761–769. 49. Westerhausen, M.; Bollwein, T.; Makropoulos, N.; Schneiderbauer, S.; Suter, M.; Nöth, H.; Mayer, P.; Piotrowski, H.; Polborn, K.; Pfitzner, A. Zinc- and Tin-Mediated C−C Coupling Reactions of Metalated (2-Pyridylmethyl)(trialkylsilyl)amines − Mechanistic, NMR Spectroscopic, and Structural Studies. Eur. J. Inorg. Chem. 2002, 2002, 389–404. 50. Aldridge, S.; Calder, R. J.; Coombs, D. L.; Jones, C.; Steed, J. W.; Coles, S.; Hursthouse, M. B. Intramolecular Base-Stabilised Adducts of Main Group Halides. New J. Chem. 2002, 26, 677–686. 51. Chen, K.-H. Non-innocent Ligand Supported Germylenes and Stannylenes. Master Thesis, National Taiwan University, Taipei, Taiwan, 2021. https://hdl.handle.net/11296/p9tk77. 52. Haubold, W.; Kraatz, U. Reaktionen von Bortrihalogeniden mit Tris-(trimethylsily)-amin. Z. Anorg. Allg. Chem. 1976, 421, 105–110. 53. Weber, L.; Schnieder, M.; Boese, R.; Bläser, D. 1,2-Dihydro[1,3,2]diazaborolo[1,5-a]pyridines: A Novel Class of Heterocycles. J. Chem. Soc., Dalton Trans. 2001, 378–382. 54. Hicks, J.; Juckel, M.; Paparo, A.; Dange, D.; Jones, C. Multigram Syntheses of Magnesium(I) Compounds Using Alkali Metal Halide Supported Alkali Metals as Dispersible Reducing Agents. Organometallics 2018, 37, 4810–4813. 55. Su, B.; Li, Y.; Ganguly, R.; Kinjo, R. Ring Expansion, Photoisomerization, and Retrocyclization of 1,4,2-Diazaboroles. Angew. Chem. Int. Ed. 2017, 56, 14572–14576. 56. Meyer, E. A.; Castellano, R. K.; Diederich, F. Interactions with Aromatic Rings in Chemical and Biological Recognition. Angew. Chem. Int. Ed. 2003, 42, 1210–1250. 57. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. Tables of Bond Lengths Determined by X-Ray and Neutron Diffraction. Part 1. Bond Lengths in Organic Compounds. J. Chem. Soc. Perkin Trans. 1987, S1–S19. 58. Braunschweig, H.; Krummenacher, I.; Legare, M. A.; Matler, A.; Radacki, K.; Ye, Q. Main-Group Metallomimetics: Transition Metal-like Photolytic CO Substitution at Boron. J. Am. Chem. Soc. 2017, 139, 1802–1805. 59. Légaré, M.-A.; Bélanger-Chabot, G.; Dewhurst, R. D.; Welz, E.; Krummenacher, I.; Engels, B.; Braunschweig, H. Nitrogen Fixation and Reduction at Boron. Science 2018, 359, 896–900. 60. Arrowsmith, M.; Schweizer, J. I.; Heinz, M.; Harterich, M.; Krummenacher, I.; Holthausen, M. C.; Braunschweig, H. Synthesis and Reduction Chemistry of Mixed-Lewis-Base-Stabilised Chloroborylenes. Chem. Sci. 2019, 10, 5095–5103. 61. Lin, Y. J.; Liu, W. C.; Liu, Y. H.; Lee, G. H.; Chien, S. Y.; Chiu, C. W. A Linear Di-Coordinate Boron Radical Cation. Nat. Commun. 2022, 13, 7051. 62. Li, Y.; Mondal, K. C.; Stollberg, P.; Zhu, H.; Roesky, H. W.; Herbst-Irmer, R.; Stalke, D.; Fliegl, H. Unusual Formation of a N-Heterocyclic Germylene via Homolytic Cleavage of a C–C Bond. Chem. Commun. 2014, 50, 3356–3358. 63. Myers, T. W.; Kazem, N.; Stoll, S.; Britt, R. D.; Shanmugam, M.; Berben, L. A. A Redox Series of Aluminum Complexes: Characterization of Four Oxidation States Including a Ligand Biradical State Stabilized via Exchange Coupling. J. Am. Chem. Soc. 2011, 133, 8662–8672. 64. Myers, T. W.; Berben, L. A. A Sterically Demanding Iminopyridine Ligand Affords Redox-Active Complexes of Aluminum(III) and Gallium(III). Inorg. Chem. 2012, 51, 1480–1488. 65. Mayer, U.; Gutmann, V.; Gerger, W. The acceptor number — A quantitative empirical parameter for the electrophilic properties of solvents. Monatsh. Chem. 1975, 106, 1235–1257. 66. Beckett, M. A.; Strickland, G. C.; Holland, J. R.; Sukumar Varma, K. A convenient n.m.r. method for the measurement of Lewis acidity at boron centres: correlation of reaction rates of Lewis acid initiated epoxide polymerizations with Lewis acidity. Polymer 1996, 37, 4629–4631. 67. Heiden, Z. M.; Lathem, A. P. Establishing the Hydride Donor Abilities of Main Group Hydrides. Organometallics 2015, 34, 1818–1827. 68. Rossin, A.; Peruzzini, M. Ammonia–Borane and Amine–Borane Dehydrogenation Mediated by Complex Metal Hydrides. Chem. Rev. 2016, 116, 8848–8872. 69. Ding, M.; Chang, J.; Mao, J.-X.; Zhang, J.; Chen, X. Noncatalyzed Reduction of Nitriles to Primary Amines with Ammonia Borane. J. Org. Chem. 2022, 87, 16230–16235. 70. Chen, X.; Zhang, Y.; Wang, Y.; Zhou, W.; Knight, D. A.; Yisgedu, T. B.; Huang, Z.; Lingam, H. K.; Billet, B.; Udovic, T. J.; et al. Structure Determination of an Amorphous Compound AlB4H11. Chem. Sci. 2012, 3, 3183–3191. 71. Clark, E. R.; Ingleson, M. J. N-Methylacridinium Salts: Carbon Lewis Acids in Frustrated Lewis Pairs for σ-Bond Activation and Catalytic Reductions. Angew. Chem. Int. Ed. 2014, 53, 11306–11309. 72. Dovgaliuk, I.; Le Duff, C. S.; Robeyns, K.; Devillers, M.; Filinchuk, Y. Mild Dehydrogenation of Ammonia Borane Complexed with Aluminum Borohydride. Chem. Mater. 2015, 27, 768–777. 73. Monot, J.; Solovyev, A.; Bonin-Dubarle, H.; Derat, É.; Curran, D. P.; Robert, M.; Fensterbank, L.; Malacria, M.; Lacôte, E. Generation and Reactions of an Unsubstituted N-Heterocyclic Carbene Boryl Anion. Angew. Chem. Int. Ed. 2010, 49, 9166–9169. 74. Ueng, S.-H.; Makhlouf Brahmi, M.; Derat, É.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Curran, D. P. Complexes of Borane and N-Heterocyclic Carbenes: A New Class of Radical Hydrogen Atom Donor. J. Am. Chem. Soc. 2008, 130, 10082–10083. 75. Xie, W.; Hayashi, M.; Matsubara, R. Borylfuroxans: Synthesis and Applications. Org. Lett. 2021, 23, 4317–4321. 76. Weber, L.; Schnieder, M.; Maciel, T. C.; Wartig, H. B.; Schimmel, M.; Boese, R.; Bläser, D. Reaction of 2,3-Dihydro-1H-1,3,2-diazaboroles and Diphenylketene: A Novel Synthesis of 1,3,2-Oxazaborolidines. Organometallics 2000, 19, 5791–5794. 77. Barnard, J. H.; Yruegas, S.; Huang, K.; Martin, C. D. Ring Expansion Reactions of Anti-Aromatic Boroles: A Promising Synthetic Avenue to Unsaturated Boracycles. Chem. Commun. 2016, 52, 9985–9991. 78. Kuhn, N.; Kratz, T. Synthesis of Imidazol-2-ylidenes by Reduction of Imidazole-2(3H)-thiones. Synthesis 1993, 1993, 561–562. 79. Lavallo, V.; Canac, Y.; Präsang, C.; Donnadieu, B.; Bertrand, G. Stable Cyclic (Alkyl)(Amino)Carbenes as Rigid or Flexible, Bulky, Electron-Rich Ligands for Transition–Metal Catalysts: A Quaternary Carbon Atom Makes the Difference. Angew. Chem. Int. Ed. 2005, 44, 5705–5709. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91392 | - |
| dc.description.abstract | 具有non-innocent配基的過渡金屬錯合物在化學鍵的活化與催化反應中有許多應用的例子,近年來也有許多將主族元素引入non-innocent配基體系的文獻報導。然而,由三配位有機硼化物和non-innocent配基衍生的路易士酸卻很少被研究。我們認為或許可以結合天生缺電子的硼原子與non-innocent配基,藉由硼原子-配基協同作用來進行化學鍵的活化,並將此反應應用於化學合成上。因此,本研究工作闡述了由non-innocent配基與碳烯穩定的硼陽離子的合成,以及硼陽離子與硼烷氨、苯甲醛和還原劑之間的反應性測試。其中,我們發現含氮雜環碳烯穩定的硼陽離子與硼烷氨的反應產生了氫化硼陽離子以及環硼氮烷。此外,我們還觀察到含氮雜環碳烯穩定的硼陽離子會與苯甲醛進行1,2-碳硼化反應,形成含氮雜環碳烯穩定的惡唑硼烷陽離子。最後,在對含氮雜環碳烯及環烷基氨基碳烯穩定的硼陽離子進行還原後,相關的EPR訊號也被偵測到,不過自由基產物的結構仍在鑑定當中。 | zh_TW |
| dc.description.abstract | Non-innocent ligand supported transition metal complexes have found numerous applications in bond activation and catalysis. In recent years, the incorporation of main-group element into the non-innocent ligand system has also emerged. However, Lewis acids derived from the combination of tri-coordinate organoboron and non-innocent ligand were much less explored. As the combination of non-innocent ligand with highly electron deficient boron atom may be beneficial for synthetic application through heterolytic boron-ligand cooperative bond activation. Accordingly, synthetic plans of non-innocent ligand and carbenes supported boron cations are reported in this work. Reactivities of borenium with ammonia-borane, benzaldehyde, and reductant are also examined. The reaction of IMe4-borenium with ammonia-borane leads to the generation of hydrido-boronium and borazine. Additionally, we observed the 1,2-carboboration of benzaldehyde with IMe4-borenium, resulting in the formation of an IMe4-coordinated oxazaborolidinium. Furthermore, we detected EPR signals upon treatment of NHC- and cAAC-boreniums with reductants. The structures of the resulting radical species are still under investigation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-26T16:18:09Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-01-26T16:18:09Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書
誌謝 i 摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF SCHEMES xiv LIST OF TABLES xvi Chapter 1 Introduction 1 1.1 Boron Lewis acids 1 1.2 Bond activation by metal–ligand cooperation 2 1.2.1 Non-innocent ligand 2 1.2.2 Transition metal–ligand cooperation 4 1.2.3 s-Block and p-block element–ligand cooperation 5 1.2.4 Boron–ligand cooperation 8 1.3 Boron cations 10 1.4 Molecular design 14 Chapter 2 Results and Discussion 16 2.1 Synthesis and characterization of borenium 16 2.1.1 Route A: from pyridine-amine ligand and BCl3 17 2.1.2 Route B: via boron–tin exchange reaction 19 2.1.3 Route C: from pyridine-imine ligand and BBr3 20 2.2 Reactivity study of borenium 29 2.2.1 Lewis acidity of borenium ions 29 2.2.2 Transfer hydrogenation of borenium 31 2.2.3 1,2-Carboboration of benzaldehyde with borenium 37 2.2.4 Reduction of borenium 41 Chapter 3 Conclusion 47 Chapter 4 Experimental Section 48 4.1 General Consideration 48 4.2 Synthesis of Compounds 49 REFERENCE 71 APPENDIX 81 Crystal data 81 NMR spectra 106 Theoretical calculations 196 | - |
| dc.language.iso | en | - |
| dc.subject | 路易士酸 | zh_TW |
| dc.subject | non-innocent配基 | zh_TW |
| dc.subject | 硼陽離子 | zh_TW |
| dc.subject | 硼烷氨脫氫反應 | zh_TW |
| dc.subject | 硼自由基 | zh_TW |
| dc.subject | boryl radicals | en |
| dc.subject | non-innocent ligand | en |
| dc.subject | Lewis acid | en |
| dc.subject | boron cations | en |
| dc.subject | dehydrogenation of ammonia-borane | en |
| dc.title | 具Non-Innocent配基之硼路易士酸 | zh_TW |
| dc.title | Non-Innocent Ligand Supported Boron Lewis Acids | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王華冬;方頡睿 | zh_TW |
| dc.contributor.oralexamcommittee | Huadong Wang;Jeffrey M. Farrell | en |
| dc.subject.keyword | non-innocent配基,路易士酸,硼陽離子,硼烷氨脫氫反應,硼自由基, | zh_TW |
| dc.subject.keyword | non-innocent ligand,Lewis acid,boron cations,dehydrogenation of ammonia-borane,boryl radicals, | en |
| dc.relation.page | 226 | - |
| dc.identifier.doi | 10.6342/NTU202400052 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-01-11 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | 2029-01-10 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 16.09 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
