Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 商學組
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91383
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭佳瑋zh_TW
dc.contributor.advisorChia-Wei Kuoen
dc.contributor.author林重榮zh_TW
dc.contributor.authorChung-Jung Linen
dc.date.accessioned2024-01-26T16:15:42Z-
dc.date.available2024-01-27-
dc.date.copyright2024-01-26-
dc.date.issued2023-
dc.date.submitted2024-01-10-
dc.identifier.citation一. Chinese reference
內政部統計處. (2017). 我國生命表. Retrieved from https://www.moi.gov.tw/News_Content.aspx?n=4&sms=9009&s=264811
台大醫院健康管理中心. (2023, November 1). 健檢套裝介紹. Retrieved from https://hmc.ntuh.gov.tw/examination-items-and-pricing
張冠群. (2010). 醫療健檢排程問題及其遺傳演算優化法. 成功大學.
張宏名, & 董和銳. (2008). 中老年人自費健康檢查之利用行為及其相關因素探討. 臺灣老人保健學刊, 4 卷 2 期 (200812), 88–109.
楊基譽. (2003). 健康檢查作業排程之探討 : 以台大醫院健康管理中心為例 / 楊基譽撰 - 國立臺灣大學.
簡佩思. (2004). 健康檢查作業排程模式之研究. 碩士論文--國立臺灣大學資訊管理學研究所.
行政院. (2021). COVID relief and stimulus for industry. Taipei: Department of Information Services, Executive Yuan.
衛生福利部國民健康署. (2023). 行政院性別平等會 國人接受健康檢查情形. Retrieved from https://www.gender.ey.gov.tw/gecdb/Stat_Statistics_DetailData.aspx?sn=IokSYwX3 SUOfMF33ctQcKg%40%40&d=194q2o4!otzoYO!8OAMYew%40%40

二. English Reference
Adams, S. J., Stone, E., Baldwin, D. R., Vliegenthart, R., Lee, P., & Fintelmann, F. J. (2023). Lung cancer screening. The Lancet, 401, 390–408.
Al-Jaroodi, J., Mohamed, N., & Abukhousa, E. (2020). Health 4.0: On the Way to Realizing the Healthcare of the Future. IEEE Access, 8, 211189-211210
Berger, B., & Cowen, L. (1995). Scheduling with Concurrency-Based Constraints. Journal of Algorithms, 18, 98–123.
Bistline, W. G., Banerjee, S., & Banerjee, A. (1998). RTSS: An interactive decision support system for solving real time scheduling problems considering customer and job priorities with schedule interruptions. Computers & Operations Research, 25, 981–995.
Brady, A. P., Beets-Tan, R. G., Brkljačić, B., Catalano, C., Rockall, A., & Fuchsjäger, M. (2022). The role of radiologist in the changing world of healthcare: a White Paper of the European Society of Radiology (ESR). Insights into Imaging, 13, 100.
Bragin, M. A. (2023). Survey on Lagrangian Relaxation for MILP: Importance, Challenges, Historical Review, Recent Advancements, and Opportunities. Annals of Operations Research.
Brah, S. A., & Loo, L. L. (1999). Heuristics for scheduling in a flow shop with multiple processors. European Journal of Operational Research, 113, 113–122.
Cancer, N. I. of. (2021). Screening Tests to Detect Colorectal Cancer and Polyps. Retrieved from https://www.cancer.gov/types
Chern, C.-C., Chien, P.-S., & Chen, S.-Y. (2008). A heuristic algorithm for the hospital health examination scheduling problem. European Journal of Operational Research, 186, 1137–1157.
Choksi, E. J., Mukherjee, K., Sadigh, G., & Duszak, R. (2023). Out-of-Pocket Expenditures for Imaging Examinations: Perspectives From National Patient Surveys Over Two Decades. Journal of the American College of Radiology, 20, 18– 28.
Chu, C.-L., & Lawana, N. (2021). Decomposition of income-related inequality in health check-ups services participation among elderly individuals across the 2008 financial crisis in Taiwan. PLoS ONE, 16, e0252942.
Crescenzio, G., & Vito, C. (2019). A Simulated Annealing Algorithm for Scheduling Problems. Journal of Applied Mathematics and Physics, 07, 2579–2594.
Dash, S., Shakyawar, S. K., Sharma, M., & Kaushik, S. (2019). Big data in healthcare: management, analysis and future prospects. Journal of Big Data, 6, 54.
Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6, 94–98.
(ESR), E. S. of R. (2015). Medical imaging in personalised medicine: a white paper of the research committee of the European Society of Radiology (ESR). Insights into Imaging, 6, 141–155.
Force, the U. S. P. S. T. (2014). The Guide to Clinical Preventive Services 2014. 126
Fujita, M., Sato, Y., Nagashima, K., Takahashi, S., & Hata, A. (2017). Impact of geographic accessibility on utilization of the annual health check-ups by income level in Japan: A multilevel analysis. PLoS ONE, 12, e0177091.
Haleel, A. J., & Dawood, L. M. (2023). Maintenance Scheduling Optimization using Artificial Intelligence Techniques: A Review. 2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), 00, 1–6.
Hall, L. A. (1998). Approximability of flow shop scheduling. Mathematical Programming, 82, 175–190.
Huete-Alcocer, N. (2017). A Literature Review of Word of Mouth and Electronic Word of Mouth: Implications for Consumer Behavior. Frontiers in Psychology, 8, 1256.
Januszewicz, W., Turkot, M. H., Malfertheiner, P., & Regula, J. (2023). A Global Perspective on Gastric Cancer Screening: Which Concepts Are Feasible, and When? Cancers, 15, 664.
Jazieh, A. R., & Kozlakidis, Z. (2020). Healthcare Transformation in the Post- Coronavirus Pandemic Era. Frontiers in Medicine, 7, 429.
Liebowitz, J., & Potter, W. E. (1995). Scheduling objectives, requirements, resources, constraints, and processes: Implications for a generic expert scheduling system architecture and toolkit. Expert Systems with Applications, 9, 423–432.
Liss, D. T., Uchida, T., Wilkes, C. L., Radakrishnan, A., & Linder, J. A. (2021). General Health Checks in Adult Primary Care. JAMA, 325, 2294–2306.
Liu, C.-Y., & Chang, S.-C. (2000). Scheduling flexible flow shops with sequence- dependent setup effects. IEEE Transactions on Robotics and Automation, 16, 408– 419.
Lu, J. (2022). Ningen Dock: Japan’s unique comprehensive health checkup system for early detection of disease. Global Health & Medicine, 4, 9–13.
Marinagi, C. C., Spyropoulos, C. D., Papatheodorou, C., & Kokkotos, S. (2000). Continual planning and scheduling for managing patient tests in hospital laboratories. Artificial Intelligence in Medicine, 20, 139–154.
Marquez, B., Elder, J. P., Arredondo, E. M., Madanat, H., Ji, M., & Ayala, G. X. (2014). Social Network Characteristics Associated With Health Promoting Behaviors Among Latinos. Health Psychology, 33, 544–553.
Mitra, A. (2016). Fundamentals of Quality Control and Improvement. New Jersey, USA: John Wiley & Sons.
Mosadeghrad, A. M. (2014). Factors Influencing Healthcare Service Quality. International Journal of Health Policy and Management, 3, 77–89.
Nielsen, S. M., & Cummings, S. (2016). Genetic Diagnosis of Endocrine Disorders (Second Edition). XI: Miscellaneous, 397–408.
Oddi, A., & Cesta, A. (2000). Toward interactive scheduling systems for managing medical resources. Artificial Intelligence in Medicine, 20, 113–138.
Park, S. J., Kim, J. W., & Kang, H. W. (1996). Heuristic knowledge representation of production scheduling: An integrated modeling approach. Expert Systems with Applications, 10, 325–339.
Rückert, F., Pilarsky, C., & Grützmann, R. (2010). Serum Tumor Markers in Pancreatic Cancer—Recent Discoveries. Cancers, 2, 1107–1124.
Schäfer, W. L. A., Boerma, W. G. W., Schellevis, F. G., & Groenewegen, P. P. (2018). GP Practices as a One‐Stop Shop: How Do Patients Perceive the Quality of Care? A Cross‐Sectional Study in Thirty‐Four Countries. Health Services Research, 53, 2047–2063.
Schmidt, C. O., Sierocinski, E., Hegenscheid, K., Baumeister, S. E., Grabe, H. J., & Völzke, H. (2016). Impact of whole-body MRI in a general population study. European Journal of Epidemiology, 31, 31–39.
Smith, S. F. (1994). Integrating Planning and Scheduling Towards Effective Coordination in Complex Resource -------Constrained Domains.
Suppiah, Y. (2023). An Integer Programming Model for a Nurse Scheduling Problem. International Journal of Membrane Science and Technology, 10, 1180–1185.
Tollens, F., Baltzer, P. A. T., Dietzel, M., Schnitzer, M. L., Schwarze, V., Kunz, W. G., ... Kaiser, C. G. (2022). Economic potential of abbreviated breast MRI for screening women with dense breast tissue for breast cancer. European Radiology, 32, 7409–7419.
Valouxis, C., & Housos, E. (2000). Hybrid optimization techniques for the workshift and rest assignment of nursing personnel. Artificial Intelligence in Medicine, 20, 155–175.
Verily, Abernethy, A., Adams, L., Medicine, N. A. of, Barrett, M., ResMed, ... Valdes, K. (2022). The Promise of Digital Health: Then, Now, and the Future. NAM Perspectives, 6. https://doi.org/10.31478/202206e
Zhang, J., Chen, G., Zhang, P., Zhang, J., Li, X., Gan, D., ... Ye, Y. (2020). The threshold of alpha-fetoprotein (AFP) for the diagnosis of hepatocellular carcinoma: A systematic review and meta-analysis. PLoS ONE, 15, e0228857.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91383-
dc.description.abstract背景介紹:自費影像健檢是醫療業的一個利潤豐厚的領域,涉及一系列的檢查。為了提高顧客滿意度和維護穩定的顧客基礎,有效的工作流程整合至關重要。手動排程基於經驗數據,相對較不靈活,但容易監控工作流程。但是,每次排程的最佳化會因多種變量而異,例如檢查類型、顧客合作和員工協調,這在臨床實踐中很難管理。此研究主旨在利用導入整數規劃(Integral Programming)改善優化顧客等待時間和工作流程的可行性。
材料和方法:我們基於整體規劃算法設計了一種排程方法。而人工手動排程方法則作為對造組。磁振造影(MR)和醫師(MD)分別被視為主要的機器資源和人力資源;時間限制包括工作時間,前置時間等限制。基於工作經驗,我們提供5種場景包含不同顧客數和不同健檢組套來測試兩種方法的性能。客人可以選取六種不同組套之一,其中總時長超過100分的為大程序包,反之為小程序包。目標式為最小化顧客閒置時間和資源超時時間。MR閒置和MD閒置時間則列為資源使用率作為參考指標。
結果:相較於手動方法,整數規劃方法在各種情境中通常導致整體客戶閒置時間略有增加。可能的原因是我們限制了整數規劃程式尋找最佳解決方案的運行時間為20分鐘。在客戶較少的情況下,整數規劃方法在減少客戶超時時間方面比手動方法更有效率,在20分鐘就達到接近100%的最佳化結果,比手動方式約2小時明顯較省時。相反,在客戶數量爆量的場景中,手動方法在減少客戶超時方面反而更為有效。經內部分析,主要衝突是由於MD解釋時間的重疊所引起的,凸顯了MD可用性的重要性。在MR閒置時間方面,整數規劃方法在5個場景中的3個場景表現比手動方法優越。另一方面,對於減少MD閒置時間,手動方法在5個案例中有3個比整數規劃方法更為有效。不過,值得注意的是,這些差異通常都是微小的。整體而言,隨機案例場景的目的是測試整數規劃方法對於不可預測狀況的適應能力,和手動方法比較顯示出相對穩定的結果。
結論:我們首次嘗試在有限時間內使用整數規劃方法安排影像健康檢查排程,雖然比傳統人工方法稍微遜色一些,但是不失為一個減少對人工勞力的依賴,並量化資源利用等有效方法,這樣的數位化有助於我們能夠適應動態的不可預見因素,如緊急情況或設備故障,為更精密和以顧客為中心的解決方案展開解決之道。通過縮短等待時間,我們最終能提升當代健康檢查服務中的顧客體驗。
zh_TW
dc.description.abstractIntroduction: Out-of-pocket Imaging health checkups are a lucrative aspect of the medical industry that involves a range of examinations. Effective workflow integration is crucial for enhancing customer satisfaction and maintaining a consistent customer base. Manual scheduling is based on empirical data and is relatively inflexible, allowing for easy monitoring of workflow. However, the duration of each examination varies depending on multiple variables, such as the type of examination, customer cooperation, and staff coordination, making it difficult to manage in clinical practice. This study aims to utilize integral programming (IP) to design a workflow that optimizes customer waiting time and workflow simultaneously.
Materials and Methods: We designed a IP scheduling method based on the overall planning algorithm, with the manual scheduling method as a control method. Magnetic Resonance (MR) and Medical Doctors (MD) are considered as the main machine resources and human resources respectively; time constraints include working hours, lead time, etc. Based on work experience, we provide 5 scenarios that contain different numbers of customers and different health check-up packages to test the performance of the two methods. Customers can select one of six different packages, where those with a total duration of over 100 minutes are considered large packages, and those less are small packages. The objective is to minimize customer idle time and resource overtime. MR idle and MD idle times are listed as resource utilization rates for reference.
Results: Results: Compared to the manual method, the IP method typically leads to a slight increase in overall customer idle time across various scenarios. A possible reason is that we limited the run time of the IP process to find the best solution to 20 minutes. In cases with fewer customers, the IP method is more effective in reducing customer overtime and reaches close to 100% optimization in just 20 minutes, which is significantly more time-efficient than the manual method that takes about 2 hours. Conversely, in scenarios with a large number of customers, the manual method is actually more effective in reducing customer overtime. Internal analysis revealed that the main conflict was caused by the overlap of MD interpretation times, highlighting the importance of MD availability. In terms of MR idle time, the IP method performed better than the manual method in 3 out of 5 scenarios. On the other hand, for reducing MD idle time, the manual method was more effective in 3 out of 5 cases. However, it's worth noting that these differences are usually minimal. Overall, the purpose of the random case scenarios is to test the adaptability of the IP method to unpredictable situations, and when compared with the manual method, it demonstrates relatively stable results.
Conclusion: This is our first attempt to use the IP method to arrange imaging health check-up scheduling within a limited time, and although it is slightly inferior to the traditional manual method, it is still an effective way to reduce reliance on manual labor and quantify resource utilization. Such digitization helps us adapt to dynamic unforeseen factors such as emergencies or equipment failures, paving the way for more precise and customer-centered solutions. By shortening waiting times, we ultimately improve the customer experience in contemporary health check services.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-26T16:15:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-01-26T16:15:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsOral examination committee approval letter i
Acknowledgement ii
Chinese Abstract iii
THESIS ABSTRACT v
Table of Contents viii
List of Figures x
List of Tables xi
Chapter 1 Introduction 1
1.1 Evolution of health checkups in Taiwan 1
1.2 External environmental analysis of RMIC 7
1.3 Core competence of RMIC 11
1.4 Business canvas 15
1.5 Cost Analysis of RMIC 18
1.6 SWOT Analysis of Imaging Health Check-up Center in a Public Medical Center 20
1.7 Study Initiative 25
1.8 Study purpose 27
1.9 Scope of study 29
Chapter 2 literature review 31
2.1 Medical Scheduling 31
2.2 Similar medial scenarios for comparisons 34
Chapter 3 Methodology 41
3.1 Definition of Health check-up scheduling 41
3.2 Logistic Design 46
3.3 Descriptions of Problems &Constraints 52
3.4 Manual Scheduling for Imaging checkups 57
3.5 Integral programming algorithm for Imaging checkups 61
Chapter 4 Result 66
Scenario 1 (Demonstration) 70
Scenario 2: Random cases with random MD working hours 74
Scenario 3: Random cases with adequate MDs 78
Scenario 4: Eight large packages with two small packages 83
Scenario 5: Ten large packages with 2 small packages 88
Scenario 6: All small packages 93
Summary of Result 98
Chapter 5 Conclusion and suggestions 100
5.1 Summary of Key findings 100
5.2 Strategies in Imaging Health Check-up Scheduling 104
5.3 Factors not considered 109
5.4 Future direction 111
5.5 Conclusion 114
Reference 116
一. Chinese reference 116
二. English Reference 116
-
dc.language.isoen-
dc.title健康檢查中心的磁振造影排程優化:榮科醫學影像中心個案研究zh_TW
dc.titleOptimization of Scheduling in Imaging Health Checkups: High-Tech Imaging Center Case Studyen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee孔令傑;余峻瑜;黃奎隆zh_TW
dc.contributor.oralexamcommitteeLing-Chieh Kung;Jiun-Yu Yu;Kuei-Long Huangen
dc.subject.keyword健康檢查,影像學,整數規劃,磁振造影,定量分析,排程,zh_TW
dc.subject.keywordHealth checkup,Heuristic algorithm,Imaging,Integral programming,MR,Quantitative analysis,Scheduling,en
dc.relation.page119-
dc.identifier.doi10.6342/NTU202400044-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-01-11-
dc.contributor.author-college管理學院-
dc.contributor.author-dept碩士在職專班商學組-
顯示於系所單位:商學組

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf3.25 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved