請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91335完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張育森 | zh_TW |
| dc.contributor.advisor | Yu-Sen Chang | en |
| dc.contributor.author | 張鈞瑜 | zh_TW |
| dc.contributor.author | Chun-Yu Chang | en |
| dc.date.accessioned | 2023-12-21T16:08:44Z | - |
| dc.date.available | 2023-12-22 | - |
| dc.date.copyright | 2023-12-21 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-09-13 | - |
| dc.identifier.citation | 參考文獻(References)
王宏遠. 2017. 不同肥料、溫度及水分對香蜂草生長及抗氧化力之影響. 國立臺灣大學生物資源暨農學院園藝暨景觀學系碩士論文. 臺北. 台灣 呂旋駗. 2019. 調缺灌溉及添加生物刺激劑對‘福山’萵苣及‘華珍’玉米生長之影響. 國立臺灣大學生物資源暨農學院園藝暨景觀學系碩士論文. 臺北. 台灣 林毓雯、郭鴻裕、劉滄棽. 2010. 外銷結球萵苣之合理化施肥. 技術服務. 21:16-19. 莊婉琪、張育森 、林淑怡. 2018. 都市農園蔬菜栽培之適用介質配方. 臺灣園藝 64:11-24. 陳令錫. 2018. 設施園藝作物蒸發散模式應用於智慧灌溉之研究. 國立中興大學生物產業機電工程學系所博士論文. 臺北. 台灣 黃琇鳳. 2020. 都市農業的推廣現況與永續性之探討-以臺北市田園城市為例. 國立臺灣大學農業經濟學研究所碩士論文. 臺北. 台灣 戴振洋. 1997. 夏季蔬菜栽培要領. 臺中區農業專訊:5-10. 鍾庭宇. 2022. 節水栽培及有色塑膠膜對青梗白菜和油菜生育之影響. 國立中興大學農學院藝學系碩士論文. 臺北. 台灣. 楊偉甫. 2010. 台灣地區水資源利用現況與未來發展問題. 發表於中技社舉辦之用水合理化與新生水水源開發論壇, 臺北市. 取自 http://www. ctci. org. tw/ct. asp. 經濟部水利署. 2021. 110年水庫營運概況. 謝明憲、馬哲儒. 2004. 節水省肥的滴灌栽培. 科學發展 496:20-26. 黃鎮海、郭福成2001. 作物施肥手冊. 行政院農業委員會, 農業試驗所, 中華永續農業協會. 臺北. 台灣 Acar, B., M. Paksoy, Ö. Türkmen, and M. Seymen. 2008. Irrigation and nitrogen level affect lettuce yield in greenhouse condition. Afr. H. Biotechnol. 7. Adeyemi, O., I. Grove, S. Peets, and T. Norton. 2017. Advanced monitoring and management systems for improving sustainability in precision irrigation. Sustainability 9:353. Aganchich, B., H. Tahi, S. Wahbi, C. Elmodaffar, and R. Serraj. 2007. Growth, water relations and antioxidant defence mechanisms of olive (Olea europaea L.) subjected to Partial Root Drying (PRD) and Regulated Deficit Irrigation (RDI). Plant Biosyst. 141:252-264. Al-Said, F., P. Hadley, S. Pearson, M.M. Khan, and Q. Iqbal. 2018. Effect of high temperature and exposure duration on stem elongation of iceberg lettuce. Pak. J. Agric. Sci. 55. Aleman, C.C., F.B. Campos, and E.C. Mantovani. 2020. Precision tools for irrigation management of tomato seedlings. Bioscience 36:421-428. Allan, A.C., M.D. Fricker, J.L. Ward, M.H. Beale, and A.J. Trewavas. 1994. Two transduction pathways mediate rapid effects of abscisic acid in Commelina guard cells. Plant Cell 6:1319-1328. Antony, E. and R. Singandhupe. 2004. Impact of drip and surface irrigation on growth, yield and WUE of capsicum (Capsicum annum L.). Agric. Water Manag. 65:121-132. Arya, S. 2021. Freshwater Biodiversity and Conservation Challenges: A Review. Int. J. Biol. Innov. 3. Barickman, T.C., K.-M. Ku, and C.E. Sams. 2020. Differing precision irrigation thresholds for kale (Brassica oleracea L. var. acephala) induces changes in physiological performance, metabolites, and yield. Environ. Exp. Bot. 180:104253. Bordovsky, J.P. and D.O. Porter. 2008. Effect of subsurface drip irrigation system uniformity on cotton production in the Texas High Plains. Appl. Eng. Agric. 24:465-472. Boyer, J.S. 1985. Water transport. Annu. Rev. Plant Physiol. 36:473-516. Bozkurt, S. and G. Bozkurt. 2011. The effects of drip line depths and irrigation levels on yield, quality and water use characteristics of lettuce under greenhouse condition. Afr. H. Biotechnol. 10:3370-3379. Bramley, H., N.C. Turner, and K.H. Siddique. 2013. Water use efficiency. Genomics and Breeding for Climate-Resilient Crops: Vol. 2 Target Traits:225-268. Buyukcangaz, H. 2018. Deficit irrigation effects on cabbage (Brassicaceae Oleracea var. capitata L. Grandslam F1) yield in unheated greenhouse condition. Turk. J. Agron. 6:1251. Campos, H.D., H.F.E. de Oliveira, M. Mesquita, L.E.V. de Castro, and R.S. Ferrarezi. 2021. Low-cost open-source platform for irrigation automation. Comput. Electron. Agric. 190:1-7. Çetin, O. and A. Kara. 2019. Assesment of water productivity using different drip irrigation systems for cotton. Agric. Water Manag. 223:105693. Chai, Q., Y. Gan, C. Zhao, H.-L. Xu, R.M. Waskom, Y. Niu, and K.H.M. Siddique. 2015. Regulated deficit irrigation for crop production under drought stress. A review. Agr. Sustain. Dev. 36:3. Chang, Y.-S., K.-H. Lin, Y.-J. Chen, C.-W. Wu, and Y.-J. Chang. 2021. Saving water used for vegetable production by applying regulated deficit irrigation practices. Acta Sci. Pol. Hortorum Cultus 20:27-36. Choi, J.-Y., S.-W. Cho, J.-B. Chun, S.J. Kwon, S.K. Roy, J.-K. Sung, S.-H. Woo, and J.-I. Sakagami. 2021. Morpho-physiological response of common buckwheat (Fagopyrum esculentum) to flooding stress at different growth stages. J. Crop. Sci. Biotechnol. 24:41-49. Chou, C. and J.D. Neelin. 2004. Mechanisms of Global Warming Impacts on Regional Tropical Precipitation. Journal of Climate 17:2688-2701. Clifton-Brown, J. and I. Lewandowski. 2000. Water use efficiency and biomass partitioning of three different Miscanthus genotypes with limited and unlimited water supply. Ann. Bot. 86:191-200. Coyago-Cruz, E., A.J. Meléndez-Martínez, A. Moriana, I.F. Girón, M.J. Martín-Palomo, A. Galindo, D. Pérez-López, A. Torrecillas, E. Beltrán-Sinchiguano, and M. Corell. 2019. Yield response to regulated deficit irrigation of greenhouse cherry tomatoes. Agric. Water Manag. 213:212-221. Currey, C.J., N.J. Flax, A.G. Litvin, and V.C. Metz. 2019. Substrate Volumetric Water Content Controls Growth and Development of Containerized Culinary Herbs. J. Agron. 9:667. Datta, S., S. Taghvaeian, and J. Stivers. 2017. “Understanding soil water content and thresholds for irrigation management.” Oklahoma Cooperative Extension Service. De Fraiture, C. and D. Wichelns. 2010. Satisfying future water demands for agriculture. Agric. Water Manag. 97:502-511. Debaeke, P. and A. Aboudrare. 2004. Adaptation of crop management to water-limited environments. Eur. J. Agron. 21:433-446. Dhawan, B. 2000. Drip irrigation: Evaluating returns. Econ. Polit. Wkly.:3775-3780. Dodd, I.C., J. Puértolas, K. Huber, J.G. Pérez-Pérez, H.R. Wright, and M.S. Blackwell. 2015. The importance of soil drying and re-wetting in crop phytohormonal and nutritional responses to deficit irrigation. J. Exp. Bot. 66:2239-2252. Dye, P.J. 2000. Water use efficiency in South African Eucalyptus plantations: a review. Southern African Forestry Journal 189:17-26. Ekinci, M., S. Ors, U. Sahin, E. Yildirim, and A. Dursun. 2015. Responses to the irrigation water amount of spinach supplemented with organic amendment in greenhouse conditions. Commun. Soil Sci. Plant Anal. 46:327-342. Enciso, J., J. Jifon, and B. Wiedenfeld. 2007. Subsurface drip irrigation of onions: Effects of drip tape emitter spacing on yield and quality. Agric. Water Manag. 92:126-130. Escobar-Gutiérrez, A.J. and L. Combe. 2012. Senescence in field-grown maize: From flowering to harvest. Flock, R., A. Pereira, F.-X. Wang, C.C. Shock, and E.P. Eldredge. 2013. Successful potato irrigation scheduling. Francaviglia, D., V. Farina, G. Avellone, and R.L. Bianco. 2013. Fruit yield and quality responses of apple cvars Gala and Fuji to partial rootzone drying under Mediterranean conditions. J. Agric. Sci. 151:556-569. Guo, S.-H., B.-H. Yang, X.-W. Wang, J.-N. Li, S. Li, X. Yang, R.-H. Ren, Y.-L. Fang, T.-F. Xu, and Z.-W. Zhang. 2021. ABA signaling plays a key role in regulated deficit irrigation-driven anthocyanins accumulation in ‘Cabernet Sauvignon’grape berries. Environ. Exp. Bot. 181:104290. Guoju, X., Z. Fengju, Q. Zhengji, Y. Yubi, W. Runyuan, and H. Juying. 2013. Response to climate change for potato water use efficiency in semi-arid areas of China. Agric. Water Manag. 127:119-123. Hachmann, T.L., R. Rezende, P.T. Matumoto-Pintro, R. Saath, F.A. Anjo, and C.S.L. Menezes. 2019. Yield, antioxidant activity and shelf-life of cauliflower inflorescences under drought stress and foliar spraying of selenium. Cienc. e Agrotecnologia 43:e017819. Haq, M.A., S. Das, N.S. Sharmin, S. Mondal, M.M. Miah, S. Parvin, and T. Sharmin. 2022. Effect of direction and distance of moringa oleifera on growth and yield of Cabbage (Brassica oleracea). Asian Res. J. Agric. 15:190-202. Huffaker, R., J. Hamilton, S.R. Evett, R.J. Lascano, J. Letey, G. Cardon, I. Kan, T.J. Trout, D.C. Kincaid, and G.W. Buchleiter. 2007. Irrigation of Agricultural Crops, Volume 30. Hussain, M. and S.P. Gupta. 2017. A field study on hydraulic performance of drip irrigation system for optimization of operating pressure. J. Appl. Nat. Sci. 9:2261-2263. Hwang, H.-H., P.-R. Chien, F.-C. Huang, P.-H. Yeh, S.-H.W. Hung, W.-L. Deng, and C.-C. Huang. 2022. A plant endophytic bacterium Priestia megaterium strainBP-R2 isolated from the Halophyte Bolboschoenus planiculmis enhances plant growth under salt and drought stresses. Microorganisms 10:2047. Ibragimov, N., S.R. Evett, Y. Esanbekov, B.S. Kamilov, L. Mirzaev, and J.P.A. Lamers. 2007. Water use efficiency of irrigated cotton in Uzbekistan under drip and furrow irrigation. Agric. Water Manag. 90:112-120. Iqbal, R., M.A.S. Raza, M. Valipour, M.F. Saleem, M.S. Zaheer, S. Ahmad, M. Toleikiene, I. Haider, M.U. Aslam, and M.A. Nazar. 2020. Potential agricultural and environmental benefits of mulches—a review. Bulletin of the National Research Centre 44:1-16. Joel, F., C.S. Clinton, I. Joey, B.G.F. Erik, and D.S. Lamont. 2015. Irrigation Criteria and Sweetpotato Cultivar Performance in the Treasure Valley of Eastern Oregon. HortScience 50:1011-1017. Ju, Y.L., B.H. Yang, S. He, T.Y. Tu, Z. Min, Y.L. Fang, and X.Y. Sun. 2019. Anthocyanin accumulation and biosynthesis are modulated by regulated deficit irrigation in Cabernet Sauvignon (Vitis Vinifera L.) grapes and wines. Plant Physiol. Biochem. 135:469-479. Juana, L., L. Rodr ı´ guez-Sinobas, and A. Losada. 2002. Determining minor head losses in drip irrigation laterals. I: Methodology. J. Irrig. Drain. Eng. 128:376-384. Kang, S., M.W. van Iersel, and J. Kim. 2019. Plant root growth affects FDR soil moisture sensor calibration. Sci. Hortic 252:208-211. Khorsandi, A., A. Hemmat, S.A. Mireei, R. Amirfattahi, and P. Ehsanzadeh. 2018. Plant temperature-based indices using infrared thermography for detecting water status in sesame under greenhouse conditions. Agric. Water Manag. 204:222-233. Kim, H.-H., G.D. Goins, R.M. Wheeler, and J.C. Sager. 2004. Stomatal conductance of lettuce grown under or exposed to different light qualities. Ann. Bot. 94:691-697. Kim, H.-J., L. Chen, M. Kim, and K. Leonhardt. 2014. Influence of soilless substrates on irrigation frequency and plant growth of Leucospermum. In “XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): 1104”, pp. 57-62. Kirnak, H. and M.N. Demirtas. 2006. Effects of different irrigation regimes and mulches on yield and macronutrition levels of drip-irrigated cucumber under open field conditions. J. Plant Nutr. 29:1675-1690. Kriedemann, P.E. and I. Goodwin. 2003. Regulated deficit irrigation and partial rootzone drying. Canberra: Land & Water Australia:51-55. Kunze, A., W. Spreer, R. Dangtungee, C. Boonrahong, U. Sanguangpong, and J. Max. 2021. Comparison of an innovative porous pipe irrigation system to drip irrigation under controlled conditions. In “The 1st International Conference on Science Technology & Innovation, Maejo University, Chiang Mai, Thailand”, Vol. 1, pp. 38-46. Leininger, S.D., L.J. Krutz, J.M. Sarver, J. Gore, A. Henn, C.J. Bryant, R.L. Atwill, and G.D. Spencer. 2019. Establishing irrigation thresholds for furrow-irrigated peanuts. Crop. Forage Turfgrass Manag. 5:180059. Li, F., J. Yu, M. Nong, S. Kang, and J. Zhang. 2010. Partial root-zone irrigation enhanced soil enzyme activities and water use of maize under different ratios of inorganic to organic nitrogen fertilizers. Agric. Water Manag. 97:231-239. Lin, F.-W., K.-H. Lin, C.-W. Wu, and Y.-S. Chang. 2020. Effects of betaine and chitin on water use efficiency in lettuce (Lactuca sativa var. capitata). HortScience 55:89-95. Liu, F., C.R. Jensen, and M.N. Andersen. 2003. Hydraulic and chemical signals in the control of leaf expansion and stomatal conductance in soybean exposed to drought stress. Funct. Plant Biol. 30:65-73. Liu, F., A. Shahnazari, M.N. Andersen, S.-E. Jacobsen, and C.R. Jensen. 2006. Effects of deficit irrigation (DI) and partial root drying (PRD) on gas exchange, biomass partitioning, and water use efficiency in potato. Sci. Hortic 109:113-117. Lobos, T., J. Retamales, S. Ortega-Farías, E. Hanson, R. López-Olivari, and M. Mora. 2016. Pre-harvest regulated deficit irrigation management effects on post-harvest quality and condition of V. corymbosum fruits cv. Brigitta. Sci. Hortic 207:152-159. Lu, Z., R.G. Percy, C.O. Qualset, and E. Zeiger. 1998. Stomatal conductance predicts yields in irrigated Pima cotton and bread wheat grown at high temperatures. J. Exp. Bot.:453-460. Mahmoodi, R., H. Maralian, and A. Aghabarati. 2008. Effects of limited irrigation on root yield and quality of sugar beet (Beta vulgaris L.). Afr. H. Biotechnol. 7:4475-4478. Maisiri, N., A. Senzanje, J. Rockstrom, and S. Twomlow. 2005. On farm evaluation of the effect of low cost drip irrigation on water and crop productivity compared to conventional surface irrigation system. Phys. Chem. Earth (2002) 30:783-791. Mansour, H.A., S.S. Abdelghani, A. Al-Jughaiman, and S.S. Saad. 2020. Economic evaluation of subsurface drip irrigation pipe fitting machine. Plant Arch. 20:3565-3572. Marouelli, W.A. and W.L.C. Silva. 2007. Water tension thresholds for processing tomatoes under drip irrigation in Central Brazil. Irrig. Sci. 25:411-418. Mateos, L., E. Mantovani, and F. Villalobos. 1997. Cotton response to non-uniformity of conventional sprinkler irrigation. Irrig. Sci. 17:47-52. Maynard, D. and G. Hochmuth. 2007. Knott's Handbook for Vegetable Growers. . Inc., Hoboken, NJ, USA. Metwaly, E. and R. El-Shatoury. 2017. An Attempt to Alleviation of Irrigation Water Deficit Stress in Cabbage (Brassica oleracea var. capitata L.) by Exogenous Foliar Application with some Antioxidant. j. plant prod. 8:1315-1322. Mielke, M., B. Schaffer, and C. Li. 2010. Use of a SPAD meter to estimate chlorophyll content in Eugenia uniflora L. leaves as affected by contrasting light environments and soil flooding. Photosynthetica 48:332-338. Mistry, P., M. Akil, T. Suryanarayana, and F. Parekh. 2017. Evaluation of drip irrigation system for different operating pressures. IJAERD 72:2348-4470. Mohawesh, O. 2016. Utilizing deficit irrigation to enhance growth performance and water-use efficiency of eggplant in arid environments. J. Agric. Sci. Technol. 18:265-276. Nackley, L.L., E.F. de Sousa, B.J. Pitton, J. Sisneroz, and L.R. Oki. 2020. Developing a water-stress index for potted poinsettia production. HortScience 55:1295-1302. Nemeskéri, E., A. Neményi, A. Bőcs, Z. Pék, and L. Helyes. 2019. Physiological factors and their relationship with the productivity of processing tomato under different water supplies. Water 11:586. Niu, S., G. Jiang, S. Wan, Y. Li, L. Gao, and M. Liu. 2006. A sand-fixing pioneer C3 species in sandland displays characteristics of C4 metabolism. Environ. Exp. Bot. 57:123-130. O’Shaughnessy, S.A. and R. Sui. 2018. Advanced tools for irrigation scheduling. CRC Press. Parkash, V., S. Singh, S.K. Deb, G.L. Ritchie, and R.W. Wallace. 2021. Effect of deficit irrigation on physiology, plant growth, and fruit yield of cucumber cultivars. Plant Stress 1. Parthasarathi, T., K. Vanitha, S. Mohandass, and E. Vered. 2018. Evaluation of Drip Irrigation System for Water Productivity and Yield of Rice. J. Agron. 110:2378-2389. Pascual-Seva, N., A. San Bautista, S. López-Galarza, J. Maroto, and B. Pascual. 2015. Response of nutsedge (Cyperus esculentus L. var sativus Boeck.) tuber production to drip irrigation based on volumetric soil water content. Irrig. Sci. 33:31-42. Placidi, P., R. Morbidelli, D. Fortunati, N. Papini, F. Gobbi, and A. Scorzoni. 2021. Monitoring soil and ambient parameters in the iot precision agriculture scenario: An original modeling approach dedicated to low-cost soil water content sensors. Sensors 21:5110. Poh, B.L., A. Gazula, E.H. Simonne, R.C. Hochmuth, and M.R. Alligood. 2011. Use of Reduced Irrigation Operating Pressure in Irrigation Scheduling. II. Effect of Reduced Irrigation System Operating Pressure on Drip-tape Flow Rate, Water Application Uniformity, and Soil Wetting Pattern on a Sandy Soil. Hort Technology 21:22-29. Ruan, Y.-L., Y. Jin, Y.-J. Yang, G.-J. Li, and J.S. Boyer. 2010. Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol. Plant 3:942-955. Sammis, T., B. Kratky, and I. Wu. 1988. Effects of limited irrigation on lettuce and Chinese cabbage yields. Irrig. Sci. 9:187-198. Seciu, A.-M., A. Oancea, A. Gaspar, L. Moldovan, O. Craciunescu, L. Stefan, V. Petrus, and F. Georgescu. 2016. Water use efficiency on cabbage and cauliflower treated with a new biostimulant composition. Agric. Agric. Sci. Proc. 10:475-484. Senyigit, U. and D. Kaplan. 2013. Impact of different irrigation water levels on yield and some quality parameters of lettuce (Lactuca sativa L. var. longifolia cv.) under unheated greenhouse condition. Infrast. Eco Ecol. Rural. Shao, G.-C., Z.-Y. Zhang, N. Liu, S.-E. Yu, and W.-G. Xing. 2008. Comparative effects of deficit irrigation (DI) and partial rootzone drying (PRD) on soil water distribution, water use, growth and yield in greenhouse grown hot pepper. Sci. Hortic 119:11-16. Shedeed, S.I., S.M. Zaghloul, and A. Yassen. 2009. Effect of method and rate of fertilizer application under drip irrigation on yield and nutrient uptake by tomato. Ozean J. Applied Sci. 2:139-147. Shock, C.C. and F.-X. Wang. 2011. Soil water tension, a powerful measurement for productivity and stewardship. HortScience 46:178-185. Sivanappan, R. 1994. Prospects of micro-irrigation in India. Irrig. Drain. 8:49-58. Standards, A. 2015. S526. 4: Soil and water terminology. ASABE St. Joseph, MI, USA. Stanhill, G. 1986. Water Use Efficiency, p. 53-85. In: N. C. Brady (ed.). Advances in Agronomy. Vol. 39. Academic Press. Stegman, E., B. Schatz, and J. Gardner. 1990. Yield sensitivities of short season soybeans to irrigation management. Irrig. Sci. 11:111-119. Stern, J. and E. Bresler. 1983. Nonuniform sprinkler irrigation and crop yield. Irrig. Sci. 4:17-29. Sui, R. and E.D. Vories. 2020. Comparison of sensor-based and weather-based irrigation scheduling. Appl. Eng. Agric. 36:375-386. Sun, Y., H. Feng, and F. Liu. 2013a. Comparative effect of partial root-zone drying and deficit irrigation on incidence of blossom-end rot in tomato under varied calcium rates. J. Exp. Bot. 64:2107-2116. Sun, Y., F. Yan, and F. Liu. 2013b. Drying/rewetting cycles of the soil under alternate partial root-zone drying irrigation reduce carbon and nitrogen retention in the soil–plant systems of potato. Agric. Water Manag. 128:85-91. Surendran, U., M. Jayakumar, and S. Marimuthu. 2016. Low cost drip irrigation: Impact on sugarcane yield, water and energy saving in semiarid tropical agro ecosystem in India. Sci. Total Environ. 573:1430-1440. Sutton, K.F., W.T. Lanini, J.P. Mitchell, E.M. Miyao, and A. Shrestha. 2006. Weed control, yield, and quality of processing tomato production under different irrigation, tillage, and herbicide systems. Weed Technol. 20:831-838. Taghvaeian, S., A.A. Andales, L.N. Allen, I. Kisekka, S.A. O’Shaughnessy, D.O. Porter, R. Sui, S. Irmak, A. Fulton, and J. Aguilar. 2020. Irrigation scheduling for agriculture in the United States: The progress made and the path forward. Trans. ASABE 63:1603-1618. Thorburn, P.J., F.J. Cook, and K.L. Bristow. 2003. Soil-dependent wetting from trickle emitters: implications for system design and management. Irrig. Sci. 22:121-127. Trewavas, A. and H. Jones. 1991. An assessment of the role of ABA in plant development. Abscisic acid: physiology and biochemistry:169-188. Vories, E. and K. Sudduth. 2021. Determining sensor-based field capacity for irrigation scheduling. Agric. Water Manag. 250:106860. Wamser, A.F., I. Morales, J.E. Álvaro, and M. Urrestarazu. 2015. Effect of the drip flow rate with multiple manifolds on the homogeneity of the delivered volume. J. Irrig. Drain. Eng. 141:04014048. Wang, L., W. Wu, J. Xiao, Q. Huang, and Y. Hu. 2021. Effects of different drip irrigation modes on water use efficiency of pear trees in Northern China. Agric. Water Manag. 245:106660. Wang, Y., F. Liu, L.S. Jensen, A. de Neergaard, and C.R. Jensen. 2013. Alternate partial root-zone irrigation improves fertilizer-N use efficiency in tomatoes. Irrig. Sci. 31:589-598. Wilhite, D.A. and M. Buchanan-Smith. 2005. Drought as hazard: understanding the natural and social context. Wolf, M.J., J.W. Emerson, D.C. Etsy, Z.A. Wendling, and et al. 2022. “Environmental Performance Index 2022.” Yale Center for Environmental Law and Policy, New Haven, CT. Wu, L., X. Guo, and A. Harivandi. 2001. Salt tolerance and salt accumulation of landscape plants irrigated by sprinkler and drip irrigation systems. J. Plant Nutr. 24:1473-1490. Wu, W. and B. Ma. 2015. Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: A review. Sci. Total Environ. 512:415-427. Wu, Y., Z. Zhao, S. Liu, X. Huang, and W. Wang. 2020. Does partial root-zone drying have advantages over regulated deficit irrigation in pear orchard under desert climates? Sci. Hortic 262:109099. Xu, C. and D. Leskovar. 2014. Growth, physiology and yield responses of cabbage to deficit irrigation. Hortic. Sci. 41:138-146. Xu, C. and D.I. Leskovar. 2015. Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Sci. Hortic 183:39-47. Yale Center for Environmental Law + Policy - YCELP - Yale University and Center for International Earth Science Information Network - CIESIN - Columbia University. 2022. 2022 Environmental Performance Index (EPI). NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, New York. Yan, Z., D. He, G. Niu, and H. Zhai. 2019. Evaluation of growth and quality of hydroponic lettuce at harvest as affected by the light intensity, photoperiod and light quality at seedling stage. Sci. Hortic 248:138-144. Yohannes, F. and T. Tadesse. 1998. Effect of drip and furrow irrigation and plant spacing on yield of tomato at Dire Dawa, Ethiopia. Agric. Water Manag. 35:201-207. Zegbe-Domínguez, J., M. Behboudian, A. Lang, and B. Clothier. 2004. Water relations, growth, and yield of processing tomatoes under partial rootzone drying. J. Veg. Crop Prod. 9:31-40. Zhang, G. 2012. Method of determining locations of branch pipe on slope with paired capillaries in micro-irrigation system. TCSAE 28:98-104. Zhang, W., A. Dong, F. Liu, W. Niu, and K.H. Siddique. 2022. Effect of film mulching on crop yield and water use efficiency in drip irrigation systems: A meta-analysis. Soil tillage res. 221:105392. Zhao, W., J. Li, Y. Li, and J. Yin. 2012. Effects of drip system uniformity on yield and quality of Chinese cabbage heads. Agric. Water Manag. 110:118-128. Ziska, L. and A. Hall. 1983. Seed yields and water use of cowpeas (Vigna unguiculata L. Walp.) subjected to planned-water-deficit irrigation. Irrig. Sci. 3:237-245. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91335 | - |
| dc.description.abstract | 氣候變遷下全球水資源分佈改變,出現氣候極端化、降水區域改變等問題,導致缺水問題日益嚴重。如何在有限水資源中提高農業水分利用效率(water use efficiency, WUE)成為重要目標。滴灌系統為最省水之管路灌溉系統,不僅節水效益高,亦可以促進作物生長。調缺灌溉(regulated deficit irrigation, RDI)為現今常用的節水方式,利用適度乾旱促進植物生長,提高作物用水效率。
本研究以自行組裝之滴灌系統連接WatchDog 2400 series微電腦迷你氣象站,將介質含水量維持在不同設定值。第一階段探討不同短期葉菜適合的介質含水量及水分利用效率、第二階段比較不同滴灌系統在盆栽栽培上的給水差異、第三階段利用兩種滴灌系統比較作物在不同季節的產量及水分利用效率。 第一階段利用自動化滴灌系統栽培‘早生華京’青梗白菜(Brassica chinensis L.‘Zao shen ghua jing’)和皺葉萵苣(Lactuca sativa var. crispa)實生幼苗。除瞭解作物適合的介質含水量,也比較兩作物的節水效益。以飽和田間容水量(Field capacity, FC)為對照組,對兩作物分別維持FC 80%、60%和40%,以測定不同介質含水量對作物的影響。結果顯示給與FC 40%的‘早生華京’青梗白菜雖具最高WUEyield,但鮮重為所有處理最低;FC 60% 產量僅次於FC 100%,WUEyield達41.72 kg·m-3。將皺葉萵苣栽培於FC 60%可獲得最高產量,且WUEyield亦為最高,達30.84 kg·m-3。故推薦當水資源有限時,給予‘早生華京’青梗白菜田間容水量60%,皺葉萵苣田間容水量60%為最適節水策略,並且‘早生華京’青梗白菜的WUEyield較高,可優先選擇栽培。 第二階段以自行組裝之滴灌帶與箭型滴片系統,對五吋盆植株進行灌溉試驗。首先測量滴灌帶與箭形滴片系統各出水孔之供水均勻度,結果發現滴灌帶前後端供水量較低,受水壓影響較大,但系統中的各滴頭出水量差異不大;箭形滴片系統中單一出水孔的出水量較不受水壓影響,管路前後水壓無較低趨勢,但出水量標準偏差較大,推測因零件較多而使各滴頭出水量差異大。此外,二種滴灌系統供水方式對五吋盆中的介質水分分佈亦有不同。使用滴灌帶系統灌溉後使五吋盆中的介質含水量差異較大,較不均勻,滴灌位置與周圍介質含水量以WET測量之VWC(Volumetric water content, VWC)差異可達20%;而箭形滴片系統差異約11%,表示灌溉後介質均勻度高。滴灌帶出水量較平均但灌溉均勻度較差,若用於介質含水量控制的自動灌溉系統中耗水量普遍較低。比較兩系統之優缺點可得以下建議:架設滴灌帶系統的人力及花費成本較低,適合應用於傳統農地耕種,而箭形滴片系統的灌溉靈活性及較高成本較適合應用小範圍盆栽栽培中。 在春季及秋季對‘福山’萵苣(Lactuca sativa ‘Fu San’)、冬季對‘綠愛’青梗白菜(Brassica chinensis L. ‘Lu ai’)及春季對'巨無霸耐熱’青梗白菜以兩種滴灌系統進行調缺灌溉,比較不同滴灌系統對作物的影響及各作物適合之介質含水量。試驗結果顯示,在秋季栽培‘福山’萵苣,以兩種滴灌系統維持FC 60% 可獲得與FC 100%相當的地上部鮮重,但春季的溫度更適合‘福山’萵苣生長,以箭形滴片給予FC 60%可以獲得較高的產量52.99 g·plant-1且WUEyield 為29.23 kg·m-3,節水效益最高。‘綠愛’青梗白菜在冬季以滴灌帶維持FC 80%產量達33.90 g·plant-1,與充足灌溉FC 100%相當;以箭形滴片維持FC 60%獲得與FC 80%相當的產量表現,但FC 60%的WUEyield更高,更具節水效益。春季的溫度使'巨無霸耐熱’青梗白菜有更高的產量和WUEyield,若以箭形滴片維持FC 80 %,單株地上部鮮重可達63.46 g·plant-1,WUEyield則為23.72 kg·m-3,為最推薦的節水灌溉方式。 綜合言之,滴灌系統的選擇、介質含水量的調整及合適的灌溉策略對實現最佳產量與節水效益至關重要,同時考量栽培者的生產目的、種植方式及栽培季節,通過仔細考量這些因素生產者可更有效率管理水資源並促進農業的高效用水,應對水資源有限和氣候變遷帶來的挑戰,同時確保永續性與高產力。 | zh_TW |
| dc.description.abstract | Under climate change, the distribution of global water resources has changed. Problems such as climate extremes and changes in precipitation patterns have emerged, leading to increasingly severe water shortages. Improving agricultural water use efficiency (WUE) in limited water resources has thus become an important goal. The drip irrigation system is the most water-saving pipeline irrigation system, conserving water and enhancing crop growth. Regulated deficit irrigation (RDI) is a commonly used water-saving method nowadays, which employs controlled drought conditions to promote plant growth and improve crop water use efficiency.
In this study, a self-assembled drip irrigation system was connected to a WatchDog 2400 series microcomputer mini-weather station to maintain the water content of the medium at different set values. The research was conducted in three stages. The first stage explores the suitable medium water content and WUE of different short-term leafy vegetables. The second stage compared the water supply differences of various drip irrigation systems in pot cultivation. The third stage compared the yield and WUE of crops using two different drip irrigation systems in different seasons. Brassica chinensis L. ‘Zao shen ghua jing’ and Lactuca sativa var. crispa seedlings were cultivated using the automated drip irrigation system in the first stage. The study aimed to determine the suitable water content of the medium for these crops and compare their water-saving benefits. Taking the saturated field capacity (FC) as the control group, the two crops were maintained at FC 80%, FC 60%, and FC 40%, respectively, to determine the effect of different medium water contents on the crops. The results indicated that Brassica chinensis L. ‘Zao shen ghua jing’ treated with FC 40% exhibited the highest WUEyield but had the lowest fresh weight among all treatments. The yield of FC 60% was second only to FC 100%, with a WUEyield of 41.72 kg·m-3. Lactuca sativa var. crispa cultivated with FC 60% achieved the highest yield and WUEyield of 30.84 kg·m-3. Consequently, when water resources are limited, it is recommended to utilize 60% of the field water capacity for Brassica chinensis L. ‘Zao shen ghua jing’ and Lactuca sativa var. crispa as the most suitable water-saving strategy. In the second stage, irrigation experiments were conducted using self-assembled drip tape and an arrow dripper on plants in five-inch round pots, measuring the water supply uniformity of each dripper. The water supply at the front and rear ends of the drip tape was observed that was relatively low, primarily due to water pressure influences. However, the water output of each dripper in the system exhibited little difference. On the other hand, the water output of a single dripper in the arrow-shaped drip system is relatively unaffected by the water pressure, and the water pressure before and after the pipeline does not tend to be lower. But the standard deviation of the water output of each dripper is relatively large. Additionally, the two drip irrigation systems differed in the distribution of medium moisture within the five-inch pots. After irrigation with the drip tape system, there was significant variation and unevenness in the water content of the medium. The difference in water content between the drip irrigation location and the surrounding medium could reach 20%, while the arrow-shaped drip sheet system demonstrated only 11%, indicating a higher level of uniformity in medium moisture distribution post-irrigation. For the drip tape system, the water output of the drip irrigation zone was stable, but the irrigation uniformity was poor. It generally has low water consumption if used in automatic irrigation systems for substrate water content control. After comparing the advantages and disadvantages of the two systems, the following suggestions can be drawn: the drip tape system requires relatively low manpower and cost, making it suitable for traditional farmland cultivation, while the arrow-shaped drip system, despite its higher cost and irrigation flexibility, is more suitable for small-scale potted plant cultivation. The Lactuca sativa ‘Fu San’ in spring and autumn, the Brassica chinensis L. ‘Lu ai’ in winter, and the Brassica chinensis L ‘Ju wu ba nai re’ in spring were irrigated with two different drip irrigation systems. The results of the tests showed that during autumn cultivation of 'Fu San' lettuce, both drip irrigation systems could maintain FC 60% to achieve the fresh weight of above-ground parts equivalent to FC 100%. However, the temperature during spring is more suitable for the growth of 'Fu shan' lettuce. By maintaining a water content of FC 60% using an arrow-shaped drip system, a higher yield of 52.99 g·plant-1 and a WUEyield of 29.33 kg·m-3 could be obtained, resulting in the highest water-saving benefits. The yield of Brassica chinensis L. ‘Lu ai’ was 33.90 g·plant-1 in winter with FC 80% maintained by drip tape system, which was equivalent to FC 100% under sufficient irrigation; the yield was comparable to FC 80% by keeping FC 60% with arrow-shaped drip irrigation performance, but the WUEyield of FC 60% is higher and more water-saving. If the arrow-shaped system maintains the FC 80%, the fresh weight of the aboveground part of a single plant can reach 63.46 g, and the WUE yield will be 23.72 kg·m-3 in spring, because of the temperature. It is the most recommended water-saving irrigation method. In summary, the selection of drip irrigation systems, adjustment of the water content in the growing substrate, and implementation of suitable irrigation strategies are crucial for achieving optimal yields and water-saving benefits, taking into account the specific goals of the grower, the chosen planting method, and the prevailing cultivation season. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-21T16:08:43Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-12-21T16:08:44Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract V 目錄 VIII 表目錄 X 圖目錄 XII 第一章、前言 1 第二章、前人研究 4 第三章、評估耐熱白菜與萵苣於夏季之水分利用效率 15 摘要 15 一、前言(Introduction) 15 二、材料與方法(Material and Methods) 16 試驗一、介質田間容水量之體積含水量測定 16 試驗二、應用調缺灌溉技術對‘早生華京’青梗白菜與皺葉萵苣生長與產量之影響 18 三、結果與討論(Results and Discussion) 21 試驗一、介質飽和田間容水量之體積含水量測定 21 試驗二、應用調缺灌溉技術對‘早生華京’青梗白菜與皺葉萵苣生長與產量之影響 23 四、結論(Conclusion) 27 第四章、鑲片式滴灌帶與箭形滴片系統差異 44 摘要 44 一、前言(Introduction) 44 二、材料與方法(Material and Methods) 45 試驗一、滴灌系統供水量差異性 45 試驗二、以滴灌系統灌溉後五吋盆內介質含水量分佈差異 46 三、結果與討論(Result and Discussion) 47 試驗一、滴灌系統供水量差異性 47 試驗二、以滴灌系統灌溉後五吋盆內介質含水量分佈差異 49 滴灌系統討論與比較 49 四、結論(Conclusion) 51 第五章、評估不同作物之水分利用效率 61 摘要 61 一、前言(Introduction) 61 二、材料與方法(Material and Methods) 62 試驗一、評估不同滴灌系統與介質含水量對秋季‘福山’萵苣生長之影響 62 試驗二、評估不同滴灌系統與介質含水量對冬季‘綠愛’青梗白菜生長之影響 65 試驗三、評估不同滴灌系統對春季‘福山’萵苣與‘巨無霸耐熱’青梗白菜生長之影響 68 三、結果與討論(Results and Discussion) 70 試驗一、評估不同滴灌系統對秋季‘福山’萵苣生長之影響 70 試驗二、評估不同滴灌系統對冬季‘綠愛’青梗白菜生長之影響 73 試驗三、評估不同滴灌系統對春季‘福山’萵苣與‘巨無霸耐熱’青梗白菜生長之影響 77 四、結論(Conclusion) 85 第六章、結論(Conclusion) 132 參考文獻(References) 133 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 箭形滴片 | zh_TW |
| dc.subject | 調缺灌溉 | zh_TW |
| dc.subject | 水分利用效率 | zh_TW |
| dc.subject | 滴灌帶 | zh_TW |
| dc.subject | 滴灌帶 | zh_TW |
| dc.subject | 滴灌系統 | zh_TW |
| dc.subject | 調缺灌溉 | zh_TW |
| dc.subject | 水分利用效率 | zh_TW |
| dc.subject | 滴灌系統 | zh_TW |
| dc.subject | 箭形滴片 | zh_TW |
| dc.subject | Regulated deficit irrigation (RDI) | en |
| dc.subject | drip irrigation system | en |
| dc.subject | arrow dripper | en |
| dc.subject | drip tape | en |
| dc.subject | water use efficiency (WUE) | en |
| dc.subject | drip tape | en |
| dc.subject | arrow dripper | en |
| dc.subject | drip irrigation system | en |
| dc.subject | Regulated deficit irrigation (RDI) | en |
| dc.subject | water use efficiency (WUE) | en |
| dc.title | 高效節水系統於葉菜類栽培之應用 | zh_TW |
| dc.title | Application of Efficient Water Saving System in Leafy Vegetable Cultivation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 林淑怡 | zh_TW |
| dc.contributor.coadvisor | Shu-I Lin | en |
| dc.contributor.oralexamcommittee | 黃三光;吳俊偉 | zh_TW |
| dc.contributor.oralexamcommittee | San-Gwang Hwang;Chun-Wei Wu | en |
| dc.subject.keyword | 滴灌系統,箭形滴片,滴灌帶,水分利用效率,調缺灌溉, | zh_TW |
| dc.subject.keyword | drip irrigation system,arrow dripper,drip tape,water use efficiency (WUE),Regulated deficit irrigation (RDI), | en |
| dc.relation.page | 142 | - |
| dc.identifier.doi | 10.6342/NTU202303741 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-09-14 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 園藝暨景觀學系 | - |
| dc.date.embargo-lift | 2028-09-11 | - |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 2.55 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
