Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91324
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor關肇正zh_TW
dc.contributor.advisorChao-Cheng Kaunen
dc.contributor.author賈韋德zh_TW
dc.contributor.authorMuhammad Usman Javeden
dc.date.accessioned2023-12-20T16:29:45Z-
dc.date.available2023-12-21-
dc.date.copyright2023-12-20-
dc.date.issued2023-
dc.date.submitted2023-12-14-
dc.identifier.citationReferences
1. Barnes, W.L., A. Dereux, and T.W. Ebbesen, Surface plasmon subwavelength optics. nature, 2003. 424(6950): p. 824-830.
2. Ozbay, E., Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science, 2006. 311(5758): p. 189-193.
3. Lal, S., S. Link, and N.J. Halas, Nano-optics from sensing to waveguiding. Nanoscience And Technology: A Collection of Reviews from Nature Journals, 2010: p. 213-220.
4. Guler, U., A. Boltasseva, and V.M. Shalaev, Refractory plasmonics. Science, 2014. 344(6181): p. 263-264.
5. Boltasseva, A. and V.M. Shalaev, All that glitters need not be gold. Science, 2015. 347(6228): p. 1308-1310.
6. Shaltout, A.M., et al., Ultrathin and multicolour optical cavities with embedded metasurfaces. Nature communications, 2018. 9(1): p. 2673.
7. Kawata, S., A. Ono, and P. Verma, Subwavelength colour imaging with a metallic nanolens. Nature Photonics, 2008. 2(7): p. 438-442.
8. Atwater, H.A. and A. Polman, Plasmonics for improved photovoltaic devices. Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, 2011: p. 1-11.
9. Birkholz, M., et al., Ultrathin TiN membranes as a technology platform for CMOS‐integrated MEMS and BioMEMS devices. Advanced Functional Materials, 2011. 21(9): p. 1652-1656.
10. Ohya, S., et al., Room temperature deposition of sputtered TiN films for superconducting coplanar waveguide resonators. Superconductor Science and Technology, 2013. 27(1): p. 015009.
11. Jaim, H.I., et al., Superconducting TiN films sputtered over a large range of substrate DC bias. IEEE Transactions on Applied Superconductivity, 2014. 25(3): p. 1-5.
12. Zhu, D., et al., A scalable multi-photon coincidence detector based on superconducting nanowires. Nature nanotechnology, 2018. 13(7): p. 596-601.
13. Gutiérrez, Y., A.S. Brown, F. Moreno, and M. Losurdo, Plasmonics beyond noble metals: Exploiting phase and compositional changes for manipulating plasmonic performance. Journal of Applied Physics, 2020. 128(8): p. 080901.
14. Blaber, M.G., M.D. Arnold, and M.J. Ford, Designing materials for plasmonic systems: the alkali–noble intermetallics. Journal of Physics: Condensed Matter, 2010. 22(9): p. 095501.
15. Scholl, J.A., A.L. Koh, and J.A. Dionne, Quantum plasmon resonances of individual metallic nanoparticles. Nature, 2012. 483(7390): p. 421-427.
16. Ferrera, M., et al., Dynamic nanophotonics. JOSA B, 2017. 34(1): p. 95-103.
17. Yu, M.-J., et al., Plasmon-enhanced solar-driven hydrogen evolution using titanium nitride metasurface broadband absorbers. ACS Photonics, 2021. 8(11): p. 3125-3132.
18. Lu, Y.-J., et al., Upconversion plasmonic lasing from an organolead trihalide perovskite nanocrystal with low threshold. ACS Photonics, 2020. 8(1): p. 335-342.
19. Lu, Y.-J., et al., Dynamically controlled Purcell enhancement of visible spontaneous emission in a gated plasmonic heterostructure. Nature communications, 2017. 8(1): p. 1631.
20. Kumar, M., N. Umezawa, S. Ishii, and T. Nagao, Examining the performance of refractory conductive ceramics as plasmonic materials: a theoretical approach. Acs Photonics, 2016. 3(1): p. 43-50.
21. Naik, G.V., V.M. Shalaev, and A. Boltasseva, Alternative plasmonic materials: beyond gold and silver. Advanced Materials, 2013. 25(24): p. 3264-3294.
22. Naik, G.V., J. Kim, and A. Boltasseva, Oxides and nitrides as alternative plasmonic materials in the optical range. Optical materials express, 2011. 1(6): p. 1090-1099.
23. Guo, W.-P., et al., Titanium nitride epitaxial films as a plasmonic material platform: alternative to gold. ACS Photonics, 2019. 6(8): p. 1848-1854.
24. Diroll, B.T., et al., Broadband ultrafast dynamics of refractory metals: TiN and ZrN. Advanced Optical Materials, 2020. 8(19): p. 2000652.
25. Jaffray, W., et al., Transparent conducting oxides: from all-dielectric plasmonics to a new paradigm in integrated photonics. Advances in Optics and Photonics, 2022. 14(2): p. 148-208.
26. Ramaseshan, R., F. Jose, S. Dash, and A. Tyagi, Investigation of temperature dependent dielectric constant of a sputtered TiN thin film by spectroscopic ellipsometry. Journal of Applied Physics, 2014. 115(3).
27. Reddy, H., et al., Temperature-dependent optical properties of plasmonic titanium nitride thin films. ACS photonics, 2017. 4(6): p. 1413-1420.
28. Sundgren, J.E. and H.G. Hentzell, A review of the present state of art in hard coatings grown from the vapor phase. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1986. 4(5): p. 2259-2279.
29. Setoura, K. and S. Ito, Quantifying the durability of transition metal nitrides in thermoplasmonics at the single-nanoparticle level. AIP Advances, 2021. 11(11): p. 115027.
30. Faraday, M., X. The Bakerian Lecture.—Experimental relations of gold (and other metals) to light. Philosophical transactions of the Royal Society of London, 1857(147): p. 145-181.
31. Wang, T., et al., Colloidal superparticles from nanoparticle assembly. Chemical Society Reviews, 2013. 42(7): p. 2804-2823.
32. Scodeller, P., et al., Wired-enzyme core− shell Au nanoparticle biosensor. Journal of the American Chemical Society, 2008. 130(38): p. 12690-12697.
33. Ahmed, A.M. and M. Shaban, Highly sensitive Au–Fe2O3–Au and Fe2O3–Au–Fe2O3 biosensors utilizing strong surface plasmon resonance. Applied Physics B, 2020. 126(4): p. 57.
34. Lee, C.-K., et al., Characterizing the localized surface plasmon resonance behaviors of Au nanorings and tracking their diffusion in bio-tissue with optical coherence tomography. Biomedical optics express, 2010. 1(4): p. 1060-1074.
35. Gray, E.P., et al., Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry. Environmental science & technology, 2013. 47(24): p. 14315-14323.
36. Das, C.M., K.V. Kong, and K.-T. Yong, Diagnostic plasmonic sensors: Opportunities and challenges. Chemical Communications, 2022.
37. Blaber, M., M. Arnold, and M. Ford, Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material. Journal of Physics: Condensed Matter, 2009. 21(14): p. 144211.
38. Blaber, M.G., M.D. Arnold, and M.J. Ford, Search for the ideal plasmonic nanoshell: the effects of surface scattering and alternatives to gold and silver. The Journal of Physical Chemistry C, 2009. 113(8): p. 3041-3045.
39. West, P.R., et al., Searching for better plasmonic materials. Laser & photonics reviews, 2010. 4(6): p. 795-808.
40. Soref, R., The past, present, and future of silicon photonics. IEEE Journal of selected topics in quantum electronics, 2006. 12(6): p. 1678-1687.
41. Dionne, J.A., et al., Silicon-based plasmonics for on-chip photonics. IEEE Journal of Selected Topics in Quantum Electronics, 2010. 16(1): p. 295-306.
42. Soref, R., Mid-infrared photonics in silicon and germanium. Nature photonics, 2010. 4(8): p. 495-497.
43. Jun, Y.C., K.C. Huang, and M.L. Brongersma, Plasmonic beaming and active control over fluorescent emission. Nature communications, 2011. 2(1): p. 283.
44. Maekawa, S.-i., Diffusion of phosphorus into silicon. Journal of the Physical Society of Japan, 1962. 17(10): p. 1592-1597.
45. Kooi, E., Formation and composition of surface layers and solubility limits of phosphorus during diffusion in silicon. Journal of the Electrochemical Society, 1964. 111(12): p. 1383.
46. Barber, H.D., Effective mass and intrinsic concentration in silicon. Solid-State Electronics, 1967. 10(11): p. 1039-1051.
47. Takamura, Y., S. Jain, P. Griffin, and J. Plummer, Thermal stability of dopants in laser annealed silicon. Journal of Applied Physics, 2002. 92(1): p. 230-234.
48. Cleary, J., et al., IR permittivities for silicides and doped silicon. JOSA B, 2010. 27(4): p. 730-734.
49. Soref, R., et al., Silicon plasmonic waveguides, in Silicon Photonics for Telecommunications and Biomedicine. 2016, CRC Press. p. 69-94.
50. Haynes, J. and W. Shockley, The mobility and life of injected holes and electrons in germanium. Physical Review, 1951. 81(5): p. 835.
51. Colace, L., G. Masini, and G. Assanto, Ge-on-Si approaches to the detection of near-infrared light. IEEE Journal of Quantum Electronics, 1999. 35(12): p. 1843-1852.
52. Fidaner, O., et al., Ge–SiGe quantum-well waveguide photodetectors on silicon for the near-infrared. IEEE Photonics Technology Letters, 2007. 19(20): p. 1631-1633.
53. Assefa, S., F. Xia, and Y.A. Vlasov, Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature, 2010. 464(7285): p. 80-84.
54. Michel, J., J. Liu, and L.C. Kimerling, High-performance Ge-on-Si photodetectors. Nature photonics, 2010. 4(8): p. 527-534.
55. Ng, G.I., Strained indium (0.52) aluminum (0.48) arsenide/indium (x) gallium (1-x) arsenide (x greater than 0.53) high electron mobility transistors (HEMT's) for microwave/millimeter-wave applications. 1990: University of Michigan.
56. Zolper, J., A review of junction field effect transistors for high-temperature and high-power electronics. Solid-State Electronics, 1998. 42(12): p. 2153-2156.
57. Law, S., D. Adams, A. Taylor, and D. Wasserman, Mid-infrared designer metals. Optics express, 2012. 20(11): p. 12155-12165.
58. Adams, D., et al., Funneling light through a subwavelength aperture with epsilon-near-zero materials. Physical review letters, 2011. 107(13): p. 133901.
59. Jun, Y.C., et al., Active tuning of mid-infrared metamaterials by electrical control of carrier densities. Optics express, 2012. 20(2): p. 1903-1911.
60. Hangleiter, A., III–V nitrides: A new age for optoelectronics. Mrs Bulletin, 2003. 28(5): p. 350-353.
61. Kim, D.-H., M.-R. Park, H.-J. Lee, and G.-H. Lee, Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering. Applied Surface Science, 2006. 253(2): p. 409-411.
62. Santiago, K., et al., Nanopatterning of atomic layer deposited Al: ZnO films using electron beam lithography for waveguide applications in the NIR region. Optical Materials Express, 2012. 2(12): p. 1743-1750.
63. Choi, S.-I., et al., Preparation and optical properties of colloidal, monodisperse, and highly crystalline ITO nanoparticles. Chemistry of Materials, 2008. 20(8): p. 2609-2611.
64. Kanehara, M., H. Koike, T. Yoshinaga, and T. Teranishi, Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. Journal of the American Chemical Society, 2009. 131(49): p. 17736-17737.
65. Naik, G.V. and A. Boltasseva, A comparative study of semiconductor-based plasmonic metamaterials. Metamaterials, 2011. 5(1): p. 1-7.
66. Mishra, S.K. and B.D. Gupta, Surface plasmon resonance-based fiber-optic hydrogen gas sensor utilizing indium–tin oxide (ITO) thin films. Plasmonics, 2012. 7: p. 627-632.
67. Noginov, M., et al., Transparent conductive oxides: Plasmonic materials for telecom wavelengths. Applied Physics Letters, 2011. 99(2).
68. Cheng, Y.-L., C.-Y. Lee, and Y.-L. Huang, Copper metal for semiconductor interconnects. Noble and Precious Metals-Properties, Nanoscale Effects and Applications, 2018: p. 220-221.
69. Chakraborty, T. and E.T. Eisenbraun, Microstructure analysis of plasma enhanced atomic layer deposition-grown mixed-phase RuTaN barrier for seedless copper electrodeposition. Journal of Vacuum Science & Technology A, 2012. 30(2).
70. Chau, R., et al., High-/spl kappa//metal-gate stack and its MOSFET characteristics. IEEE Electron Device Letters, 2004. 25(6): p. 408-410.
71. Xiao, X., et al., Two‐dimensional arrays of transition metal nitride nanocrystals. Advanced Materials, 2019. 31(33): p. 1902393.
72. Cheng, Z., et al., Recent advances in transition metal nitride‐based materials for photocatalytic applications. Advanced Functional Materials, 2021. 31(26): p. 2100553.
73. Eklund, P., S. Kerdsongpanya, and B. Alling, Transition-metal-nitride-based thin films as novel energy harvesting materials. Journal of Materials Chemistry C, 2016. 4(18): p. 3905-3914.
74. Guler, U., V.M. Shalaev, and A. Boltasseva, Nanoparticle plasmonics: going practical with transition metal nitrides. Materials Today, 2015. 18(4): p. 227-237.
75. Kobayashi, K., First-principles study of the electronic properties of transition metal nitride surfaces. Surface science, 2001. 493(1-3): p. 665-670.
76. Fix, R., R.G. Gordon, and D.M. Hoffman, Chemical vapor deposition of vanadium, niobium, and tantalum nitride thin films. Chemistry of materials, 1993. 5(5): p. 614-619.
77. Ensinger, W., K. Volz, and M. Kiuchi, Ion beam-assisted deposition of nitrides of the 4th group of transition metals. Surface and Coatings Technology, 2000. 128: p. 81-84.
78. Hu, J., et al., Low‐Temperature Synthesis of Nanocrystalline Titanium Nitride via a Benzene–Thermal Route. Journal of the American Ceramic Society, 2000. 83(2): p. 430-432.
79. Li, J., et al., Synthesis of nanocrystalline titanium nitride powders by direct nitridation of titanium oxide. Journal of the American Ceramic Society, 2001. 84(12): p. 3045-3047.
80. Javed, M.U., et al., Tailoring the plasmonic properties of complex transition metal nitrides: A theoretical and experimental approach. Applied Surface Science, 2023. 641: p. 158486.
81. Chimata, R., Optical properties of materials calculated from first principles theory. 2010.
82. Kohn, W. and L.J. Sham, Self-consistent equations including exchange and correlation effects. Physical review, 1965. 140(4A): p. A1133.
83. Langreth, D.C. and J.P. Perdew, Theory of nonuniform electronic systems. I. Analysis of the gradient approximation and a generalization that works. Physical Review B, 1980. 21(12): p. 5469.
84. Langreth, D.C. and M. Mehl, Beyond the local-density approximation in calculations of ground-state electronic properties. Physical Review B, 1983. 28(4): p. 1809.
85. Perdew, J.P. and W. Yue, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Physical review B, 1986. 33(12): p. 8800.
86. Perdew, J.P., Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Physical Review B, 1986. 33(12): p. 8822.
87. Ambrosch-Draxl, C. and J.O. Sofo, Linear optical properties of solids within the full-potential linearized augmented planewave method. Computer physics communications, 2006. 175(1): p. 1-14.
88. Gajdos, M., K. Hummer, and G. Kresse, J. Furthm üller, and F. Bechstedt. Phys. Rev. B, 2006. 73: p. 045112.
89. Dash, L., et al., Electronic structure and electron energy-loss spectroscopy of ZrO 2 zirconia. Physical Review B, 2004. 70(24): p. 245116.
90. Hellgren, M., et al., Static correlation and electron localization in molecular dimers from the self-consistent RPA and g w approximation. Physical Review B, 2015. 91(16): p. 165110.
91. Görling, A., Density-functional theory beyond the Hohenberg-Kohn theorem. Physical Review A, 1999. 59(5): p. 3359.
92. Gritsenko, O., R. van Leeuwen, E. van Lenthe, and E.J. Baerends, Self-consistent approximation to the Kohn-Sham exchange potential. Physical Review A, 1995. 51(3): p. 1944.
93. Ziesche, P., S. Kurth, and J.P. Perdew, Density functionals from LDA to GGA. Computational materials science, 1998. 11(2): p. 122-127.
94. Perdew, J., E. McMullen, and A. Zunger, Density-functional theory of the correlation energy in atoms and ions: a simple analytic model and a challenge. Physical Review A, 1981. 23(6): p. 2785.
95. Ceperley, D.M. and B.J. Alder, Ground state of solid hydrogen at high pressures. Physical Review B, 1987. 36(4): p. 2092.
96. 摇BL and 魻CHL, P E. Projector augmented 鄄 wave method. Phys Rev B, 1994. 50(24): p. 17953.
97. Korringa, J., On the calculation of the energy of a Bloch wave in a metal. Physica, 1947. 13(6-7): p. 392-400.
98. Migdal, K. and A. Yanilkin, Cold and hot uranium in DFT calculations: Investigation by the GTH pseudopotential, PAW, and APW+ lo methods. Computational Materials Science, 2021. 199: p. 110665.
99. Kresse, G. and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B, 1996. 54(16): p. 11169.
100. Perdew, J.P., et al., Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 1993. 48(7): p. 4978.
101. Perdew, J.P., et al., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical review B, 1992. 46(11): p. 6671.
102. Gražulis, S., et al., Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic acids research, 2012. 40(D1): p. D420-D427.
103. Drachev, V.P., et al., The Ag dielectric function in plasmonic metamaterials. Optics express, 2008. 16(2): p. 1186-1195.
104. N.D.Mermin, N.W.A.a., Solid State Physics. 1.ed. ed. 1976, Philadelphia: Harcourt College Publisher.
105. Fröhlich, H., General theory of the static dielectric constant. Transactions of the Faraday Society, 1948. 44: p. 238-243.
106. Savrasov, S.Y. and D.Y. Savrasov, Electron-phonon interactions and related physical properties of metals from linear-response theory. Physical Review B, 1996. 54(23): p. 16487.
107. Brunin, G., et al., Phonon-limited electron mobility in Si, GaAs, and GaP with exact treatment of dynamical quadrupoles. Physical Review B, 2020. 102(9): p. 094308.
108. Gonze, X. and C. Lee, Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Physical Review B, 1997. 55(16): p. 10355.
109. Mahan, G.D., Many-particle physics. 2013: Springer Science & Business Media.
110. Wang, Y., A. Capretti, and L. Dal Negro, Wide tuning of the optical and structural properties of alternative plasmonic materials. Optical Materials Express, 2015. 5(11): p. 2415-2430.
111. Jackson, J.D., Classical Electrodynamics. 3 ed. 1999, New York: Wiley.
112. Karlsson, B., R. Shimshock, B. Seraphin, and J. Haygarth, Optical properties of CVD-coated TiN, ZrN and HfN. Physica Scripta, 1982. 25(6A): p. 775.
113. Cooper, B., H. Ehrenreich, and H. Philipp, Optical properties of noble metals. II. Physical Review, 1965. 138(2A): p. A494.
114. Johnson, P.B. and R.-W. Christy, Optical constants of the noble metals. Physical review B, 1972. 6(12): p. 4370.
115. Wang, F. and Y.R. Shen, General properties of local plasmons in metal nanostructures. Physical review letters, 2006. 97(20): p. 206806.
116. Esaka, F., et al., Comparison of surface oxidation of titanium nitride and chromium nitride films studied by x-ray absorption and photoelectron spectroscopy. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1997. 15(5): p. 2521-2528.
117. Li, W., et al., Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Advanced Materials, 2014. 26(47): p. 7959-7965.
118. Shah, D., et al., Controlling the plasmonic properties of ultrathin TiN films at the atomic level. ACS Photonics, 2018. 5(7): p. 2816-2824.
119. Wells, M.P., et al., Temperature stability of thin film refractory plasmonic materials. Optics express, 2018. 26(12): p. 15726-15744.
120. Schlegel, A., P. Wachter, J. Nickl, and H. Lingg, Optical properties of TiN and ZrN. Journal of Physics C: Solid State Physics, 1977. 10(23): p. 4889.
121. Xie, W., et al., Manganese-doped layered double hydroxide: a biodegradable theranostic nanoplatform with tumor microenvironment response for magnetic resonance imaging-guided photothermal therapy. ACS Applied Bio Materials, 2020. 3(9): p. 5845-5855.
122. Leng, Y., et al., High-yield synthesis and fine-tuning aspect ratio of (200) faceted gold nanorods by the pH-adjusting method. RSC advances, 2017. 7(41): p. 25469-25474.
123. Shalaev, V.M., Optical negative-index metamaterials. Nature photonics, 2007. 1(1): p. 41-48.
124. Boriskina, S.V., H. Ghasemi, and G. Chen, Plasmonic materials for energy: From physics to applications. Materials Today, 2013. 16(10): p. 375-386.
125. Chen, H.-T., Interference theory of metamaterial perfect absorbers. Optics express, 2012. 20(7): p. 7165-7172.
126. Li, Z., S. Butun, and K. Aydin, Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. Acs Photonics, 2015. 2(2): p. 183-188.
127. Liu, J., J. Guo, G. Meng, and D. Fan, Superstructural raman nanosensors with integrated dual functions for ultrasensitive detection and tunable release of molecules. Chemistry of Materials, 2018. 30(15): p. 5256-5263.
128. Köker, T., et al., Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds. Nature communications, 2018. 9(1): p. 607.
129. García, M.A., Surface plasmons in metallic nanoparticles: fundamentals and applications. Journal of Physics D: Applied Physics, 2011. 44(28): p. 283001.
130. Atwater, H.A. and A. Polman, Plasmonics for improved photovoltaic devices. Nature materials, 2010. 9(3): p. 205-213.
131. Wang, X., et al., Investigation of photothermal heating enabled by plasmonic nanofluids for direct solar steam generation. Solar Energy, 2017. 157: p. 35-46.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91324-
dc.description.abstract電漿子學為凝態物理學中的先進概念,其探討的是表面電漿共振——受光激發的金屬和介電質界面之電子密度波。在新穎光子元件的開發中,過渡金屬氮化物(TMNs)為極具潛力的材料。由於表面電漿子與材料特性的相關,使半導體、金屬、以及存在量子侷限效應的二維材料等皆擁有不同的電漿效應。而利用不同的化學組成造成電漿性質的變化能夠使TMNs有更卓越的特性。在本論文中,我們從理論計算與實驗的角度來研究過渡金屬氮化物的電子能帶結構與光學特性。利用第一原理計算作為分析材料介電性質的理論方法,Drude-Lorentz模型使我們得以用直觀的角度研電漿子方面的應用。透過介電常數與品質因數的計算,以及50奈米厚TMNs薄膜在藍寶石基板上的量測,我們發現TMNs的特性可以良好地被其元素組成調控。其中Ti0.25Hf0.75N與Ti0.50Zr0.50N在金屬和介電質之界面展現優於二元TMNs的介電響應。在近紅外光波段,Ti0.50Hf0.50N則具有在高能量吸收率與更強的調變應用中的潛力。因此,三元化合物的形式使TMNs在可見光及近紅外光波段的電漿子特性可以有所變化,研究成果可應用在針對頻率調控的積體光子元件。zh_TW
dc.description.abstractPlasmonics, an advanced concept in condensed matter physics, studies surface plasmon resonance - the collective electron oscillations at the dielectric-metal interface, revealing significant plasmonic properties when interacting with light. Transition metal nitrides (TMNs) are promising materials for developing next-generation photonic devices. Surface plasmons are influenced by nanomaterial characteristics, resulting in distinct plasmonic effects in semiconductors, metals, and 2D nanomaterials due to their unique confinement properties. A practical way toward high-performance TMNs is to tune their plasmonic properties through different compositions. Here, we investigate the electronic structures and optical properties of TMNs (Ti1-xZrxN and Ti1-xHfxN, x = 0, 0.25, 0.50, 0.75, and 1) computationally and experimentally. The Drude-Lorentz model which gives a theoretical insight into a material and can be employed in plasmonic applications is an intuitive way to study the underlying dielectric characteristics of solids. Our calculated dielectric permittivities and quality factors suggest that the overall performance of TMNs is well-tuned by their compositions, supported by our measured data obtained from the 50-nm thick TMN films deposited on sapphire (0001). Particularly, at the dielectric-metallic interface, Ti0.25Hf0.75N (ENZ of 401 nm) and Ti0.50Zr0.50N (ENZ of 406 nm) show a better dielectric response than the binary TMNs. Ti0.50Hf0.50N (ENZ of 457 nm) holds promise for applications requiring efficient energy absorption and enhanced wave manipulation in the near-infrared range. Using mixed ternary TMNs to tune plasmonic properties in the visible and near-infrared regions can thus achieve frequency-targeting photonics applications.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-20T16:29:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-12-20T16:29:45Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTable of Contents
Chapter 1 Literature Review 1
1.1 Introduction 1
1.2 Nobel Metals 4
1.3 Alternative Materials Beyond Gold and Sliver 6
1.4 Transition Metal Nitrites 9
1.5 Thesis Overview 12
Chapter2 First Principles Methods 14
2.1 Theoretical Background 16
2.2 The Many Body Problem 17
2.3 Density Functional Theory 18
2.3.1 The Hohenberg-Khon theorems 20
2.4 Kohn-Sham Approximation 21
2.4.1 Exchange Correlation Functional Approximation 23
2.4.2 LDA 24
2.4.3 GGA 25
2.4.4 PBE 25
2.4.5 The Bloch Wave Method 26
2.4.6 Projected Augmented Wave (PAW) Method 27
2.5 First Principle Calculations For TMNs 28
2.5.1 Dielectric Permittivities and Quality Factors of TMNs 28
2.6 Static Dielectric Constant 32
Chapter 3 Structural and Chemical Properties of TMNs 35
3.1 Thin Film Fabrication 36
3.2 Optical and Electrical Characterization 40
3.3 Structural and Chemical Characterization 42
3.4 X-ray Photoemission Spectroscopy 44
3.5 Atomic Concentration of The TMNs 48
Chapter 4 Tuning the Optoelectronic Properties of TMNs 49
4.1 Electronic Properties of Refractory Materials 49
4.2 Optical Properties of Refractory Materials 52
4.3 Tunability of Plasma Frequency and Scattering Effect 57
Chapter 5 Quality Metrics of Refractory Materials 60
5.1 Comparison of Dielectric Permittivity 60
5.2 Effect of Optical Losses on Quality Factors 65
Chapter6 Applications 66
6.1 Absorption-Based Applications 66
6.2 Field Enhancement Applications 67
6.3 Energy Technology 68
6.4 Conclusion and Summary 70
-
dc.language.isoen-
dc.title以第一原理理論計算調控過渡金屬氮化物之電漿子特性zh_TW
dc.titleTailoring Plasmonic Properties of Next-Generation Transition Metal Nitrides: A First-Principles Studyen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.coadvisor呂宥蓉zh_TW
dc.contributor.coadvisorYu-Jung Luen
dc.contributor.oralexamcommittee張允崇;郭錦龍;薛宏中zh_TW
dc.contributor.oralexamcommitteeYun-Chong Chang;Chin Lung Kuo ;Hung-Chung Hsuehen
dc.subject.keyword難降解等離子體,橢圓偏振光譜儀,三元過渡金屬氮化物,第一性原理計算,zh_TW
dc.subject.keywordRefractory plasmonics,Spectroscopic ellipsometry,Ternary transition metal nitrides,First-principles calculations,en
dc.relation.page80-
dc.identifier.doi10.6342/NTU202304512-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-12-14-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf3.6 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved