Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91321Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 劉浩澧 | zh_TW |
| dc.contributor.advisor | Hao-Li Liu | en |
| dc.contributor.author | 陳均懋 | zh_TW |
| dc.contributor.author | Chun-Mao Chen | en |
| dc.date.accessioned | 2023-12-20T16:28:57Z | - |
| dc.date.available | 2023-12-21 | - |
| dc.date.copyright | 2023-12-20 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-12-14 | - |
| dc.identifier.citation | [1] Peter NT Wells. Ultrasound imaging. Physics in medicine & biology, 51(13):R83,2006.
[2] Kevin D. Evans, Brandon Weiss, and Michael Knopp. High-intensity focused ultrasound (hifu) for specific therapeutic treatments: A literature review. Journal of Diagnostic Medical Sonography, 23(6):319 327, 2007. [3] J. Hoffelner, M. Bechtold, B. Granz, R. Lerch, and K. Newerla. Self-focusing hifu source for large therapy volumes. In 1998 IEEE Ultrasonics Symposium. Proceedings (Cat. No. 98CH36102), volume 2, pages 1563–1566 vol.2, 1998. [4] Jonathan Mamou, Jeffrey A Ketterling, and Ronald H Silverman. Chirp-coded excitation imaging with a high-frequency ultrasound annular array. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 55(2):508–513, 2008. [5] Munir M El-Desouki and Kullervo Hynynen. Driving circuitry for focused ultrasound noninvasive surgery and drug delivery applications. Sensors, 11(1):539–556, 2011. [6] Hao-Li Liu, Chen-Kai Jan, Po-Chun Chu, Jhong-Cing Hong, Pei-Yun Lee, Jyh-Duen Hsu, Chung-Chih Lin, Chiung-Ying Huang, Pin-Yuan Chen, and Kuo-Chen Wei. Design and experimental evaluation of a 256-channel dual-frequency ultrasound phased-array system for transcranial blood–brain barrier opening and brain drug delivery. IEEE Transactions on Biomedical Engineering, 61(4):1350–1360,2014. [7] Hao Zhang, Yanqiu Zhang, and Xiqi Jian. Phased transducer and drive system design. In 2019 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), pages 1–4, 2019. [8] Jianfeng Zheng, Bichao Bai, and Han Zhang. Multi-channel drive system of phased array based on dds chips. Applied Acoustics, 182:108199, 2021. [9] Tim Hall and Charles Cain. A Low Cost Compact 512 Channel Therapeutic Ultrasound System For Transcutaneous Ultrasound Surgery. AIP Conference Proceedings, 829(1):445–449, 05 2006. [10] Adam D. Maxwell, Petr V. Yuldashev, Wayne Kreider, Tatiana D. Khokhlova, George R. Schade, Timothy L. Hall, Oleg A. Sapozhnikov, Michael R. Bailey, and Vera A. Khokhlova. A prototype therapy system for transcutaneous application of boiling histotripsy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 64(10):1542–1557, 2017. [11] Sai Chun Tang and Gregory T. Clement. A harmonic cancellation technique for an ultrasound transducer excited by a switched-mode power converter. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55(2):359–367, 2008. [12] Chris Adams, Thomas M. Carpenter, David Cowell, Steven Freear, and James R. McLaughlan. Hifu drive system miniaturization using harmonic reduced pulsewidth modulation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 65(12):2407–2417, 2018. [13] Yufeng Zhou. Principles and applications of therapeutic ultrasound in healthcare. CRC press, 2015. [14] Lian Zhang and Zhi-Biao Wang. High-intensity focused ultrasound tumor ablation: review of ten years of clinical experience. Frontiers of medicine in China, 4:294–302, 2010. [15] Hongchae Baek, Ki Joo Pahk, and Hyungmin Kim. A review of low-intensity focused ultrasound for neuromodulation. Biomedical engineering letters, 7:135–142, 2017. [16] Andrei Vlaicu and Mihaela Bustuchina Vlaicu. New neuromodulation techniques for treatment resistant depression. International journal of psychiatry in clinical practice, 24(2):106–115, 2020. [17] Carlos Trenado, Nicole Pedroarena-Leal, and Diane Ruge. The prospect of focal ultrasound in the treatment of mental disorders. Psychiatry International, 4(3):297– 306, 2023. [18] Anton Fomenko and Andres M Lozano. Neuromodulation and ablation with focused ultrasound–toward the future of noninvasive brain therapy. Neural Regeneration Research, 14(9):1509, 2019. [19] Manish Ranjan, Alexandre Boutet, Sanjiv Bhatia, Angus Wilfong, Walter Hader, Mark R Lee, Ali R Rezai, and P David Adelson. Neuromodulation beyond neurostimulation for epilepsy: scope for focused ultrasound. Expert Review of Neurotherapeutics, 19(10):937–943, 2019. [20] Cheng-Chia Lee, Chien-Chen Chou, Fu-Jung Hsiao, Yi-Hsiu Chen, Chun-Fu Lin, Ching-Jen Chen, Syu-Jyun Peng, Hao-Li Liu, and Hsiang-Yu Yu. Pilot study of focused ultrasound for drug-resistant epilepsy. Epilepsia, 63(1):162–175, 2022. [21] Ko-Ting Chen, Kuo-Chen Wei, and Hao-Li Liu. Theranostic strategy of focused ultrasound induced blood-brain barrier opening for cns disease treatment. Frontiers in pharmacology, 10:86, 2019. [22] Mingjun Wang and Yufeng Zhou. High-intensity focused ultrasound (hifu) ablation by frequency chirp excitation: Reduction of the grating lobe in axial focus shifting. Journal of Physics D: Applied Physics, 51(28):285402, 2018. [23] Andrey N Rybyanets. New dynamical focusing method for hifu therapeutic applications. In AIP Conference Proceedings, volume 1215, pages 287–290. American Institute of Physics, 2010. [24] Stephen A Goss, Ronald L Johnston, and Fry Dunn. Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. The Journal of the Acoustical Society of America, 64(2):423–457, 1978. [25] Y Tasinkevych, I Trots, and A Nowicki. Mutually orthogonal golay complementary sequences in the simultaneous synthetic aperture method for medical ultrasound diagnostics. an experimental study. Ultrasonics, 115:106434, 2021. [26] Weibao Qiu, Xingying Wang, Yan Chen, Qiang Fu, Min Su, Lining Zhang, Jingjing Xia, Jiyan Dai, Yaonan Zhang, and Hairong Zheng. Modulated excitation imaging system for intravascular ultrasound. IEEE Transactions on Biomedical Engineering, 64(8):1935–1942, 2016. [27] Ninghao Wang, Chen Yang, Jie Xu, Wei Shi, Wenchang Huang, Yaoyao Cui, and Xiaohua Jian. An improved chirp coded excitation based on compression pulse weighting method in endoscopic ultrasound imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 68(3):446–452, 2020. [28] DR Daum and K Hynynen. Theoretical design of a spherically sectioned phased array for ultrasound surgery of the liver. European journal of ultrasound, 9(1):61– 69, 1999. [29] Allison Payne, Urvi Vyas, Nick Todd, Joshua de Bever, Douglas A Christensen, and Dennis L Parker. The effect of electronically steering a phased array ultrasound transducer on near-field tissue heating. Medical physics, 38(9):4971–4981, 2011. [30] Chandra P Karunakaran and Michael L Oelze. Amplitude modulated chirp excitation to reduce grating lobes and maintain ultrasound intensity at the focus of an array. Ultrasonics, 53(7):1293–1303, 2013. [31] Marinos Yiannakou, Michael Trimikliniotis, Christos Yiallouras, and Christakis Damianou. Evaluation of focused ultrasound algorithms: Issues for reducing prefocal heating and treatment time. Ultrasonics, 65:145–153, 2016. [32] Xiaobing Fan and Kullervo Hynynen. Ultrasound surgery using multiple sonications —treatment time considerations. Ultrasound in medicine & biology, 22(4):471–482, 1996. [33] F Dupenloup, JY Chapelon, D Cathignol, and O Sapozhnikov. The use of broadband signals to reduce grating lobe effects in hifu tissue ablation. In 1994 Proceedings of IEEE Ultrasonics Symposium, volume 3, pages 1865–1868. IEEE, 1994. [34] J. Pindter-Medina, S. Pichardo, L. Curiel, A.D. Garcia-Garcia, and J.E. Chong- Quero. Multi-channel driving systems for therapeutic applications based-on focused ultrasound. In 2010 International Conference on Reconfigurable Computing and FPGAs, pages 168–172, 2010. [35] Carlos Christoffersen, Wai Wong, Samuel Pichardo, Greg Togtema, and Laura Curiel. Class-de ultrasound transducer driver for hifu therapy. IEEE Transactions on Biomedical Circuits and Systems, 10(2):375–382, 2016. [36] 莊家慶. 超音波相位陣列系統中之驅動級阻抗匹配設計. PhD thesis, 長庚大學, 2020. [37] Wai Wong, Carlos Christoffersen, Samuel Pichardo, and Laura Curiel. An integrated ultrasound transducer driver for hifu applications. In 2013 26th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), pages 1–5, 2013. [38] Morteza Mohammadjavadi, Patrick Peiyong Ye, Anping Xia, Julian Brown, Gerald Popelka, and Kim Butts Pauly. Elimination of peripheral auditory pathway activation does not affect motor responses from ultrasound neuromodulation. Brain stimulation, 12(4):901–910, 2019. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91321 | - |
| dc.description.abstract | 近年來,高強度聚焦超音波(HIFU)治療因其非侵入性治療方式和優異的臨床成效,受到廣泛的關注,已成為臨床實踐中不可或缺的關鍵因素。隨著HIFU技術的不斷發展和改進,對於驅動電路的要求也越來越高,以確保治療過程的安全和有效。相較於單通道聚焦式超音波驅動系統的固定聚焦位置以及深度,多通道相位控制的聚焦式超音波系統擁有可調式聚焦深度及位置更加靈活,也越來越多研究致力研究於多通道聚焦式超音波系統中。然而傳統的非線性驅動電路除了在輸出上擁有高次諧波,造成聲場的旁瓣效應進而影響治療效外,在阻抗匹配上也因通道數的增多而變得更加難以調整。在這項研究中,我們設計了一種用於HIFU 治療的四通道聚焦式超音波驅動統,包含現場可程式化邏輯閘陣列(FPGA)、高速數模轉換器(DAC)、推挽式的驅動電路以及簡單的阻抗匹配。避免了輸出擁有高次諧波的問題,並且也能產生足夠的聲壓,這項進展為設計用於未來腦部治療的便攜式多通道經顱FUS 系統提供了可能性。另外系統提供Chirp 模式,為治療式超音波提供一種具有潛力的訊號模式。 | zh_TW |
| dc.description.abstract | In recent years, the non-invasive nature and clinical effectiveness of High-Intensity Focused Ultrasound (HIFU) therapy have made it a crucial element in clinical practice, leading to a need for more advanced driving circuits to enhance treatment safety and efficacy. Multi-channel phase-controlled focused ultrasound systems, offering adjustable focal depths and positions, provide greater flexibility over traditional single-channel systems with fixed focal points. However, traditional nonlinear driving circuits often generate higher-order harmonics, creating sidelobe effects and challenges in impedance matching when more channels are added. To address these issues, our study introduces a four-channel focused ultrasound driving system designed for HIFU treatments. It includes a Field-Programmable Gate Array (FPGA), high-speed Digital-to-Analog Converters (DACs), push-pull driving circuits, and a simplified impedance matching approach. This system effectively eliminates higherorder harmonic output while producing adequate acoustic pressure, paving the way for portable, multi-channel transcranial FUS systems suitable for brain treatments. Additionally, it features a Chirp mode, promising for various therapeutic ultrasound applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-20T16:28:57Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-12-20T16:28:57Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝i
摘要ii Abstract iii 圖目錄vii 表目錄xi 第一章緒論1 1.1 醫學用超音波. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 聚焦式超音波的治療應用. . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 自聚焦式凹形超音波探頭(Self-focusing Concave Ultrasonic Transducer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 啾聲訊號(Chirp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 射頻功率放大器(RF Amplifier) . . . . . . . . . . . . . . . . . . . . . 8 1.6 高強度聚焦式超音波驅動系統之文獻回顧. . . . . . . . . . . . . . 13 1.6.1 相位控制技術之文獻回顧. . . . . . . . . . . . . . . . . . . . . . 14 1.6.2 高強度聚焦式超音波放大級之現有設計. . . . . . . . . . . . . . 17 1.6.3 高次諧波. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.7 研究目的與貢獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 第二章方法與理論26 2.1 系統總覽. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2 電腦級設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.1 使用者介面. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.2 數位訊號演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3 訊號產生級設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.3.1 USB3.0 模組. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3.2 FPGA 演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3.3 DAC 模組. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.4 驅動電路設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.4.1 電壓放大級. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.4.2 訊號耦合級. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.4.3 電流放大級. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.4.4 驅動電路PCB 板. . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.5 超音波探頭及阻抗匹配. . . . . . . . . . . . . . . . . . . . . . . . . 52 2.6 聲場實驗設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 第三章實驗設置與結果59 3.1 實驗目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2 電訊號分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.1 輸出波形. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.2 頻譜分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.2.3 輸出功率分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3 聲壓及聲場分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3.1 聲壓分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3.2 頻寬分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.3.3 脈衝模式聲場分析. . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.3.4 Chirp 模式聲場分析. . . . . . . . . . . . . . . . . . . . . . . . . 76 第四章實驗結果討論78 4.1 HIFU 驅動系統高次諧波之文獻比較. . . . . . . . . . . . . . . . . . 78 4.2 阻抗匹配方法及結果討論. . . . . . . . . . . . . . . . . . . . . . . . 80 4.3 驅動電路對於Chirp 訊號之限制. . . . . . . . . . . . . . . . . . . . 81 4.4 研究限制與優勢. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 第五章結論與未來展望86 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 參考文獻88 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 功率放大器 | zh_TW |
| dc.subject | 高強度聚焦式超音波 | zh_TW |
| dc.subject | 驅動系統 | zh_TW |
| dc.subject | 現場可程式化邏輯閘陣列 | zh_TW |
| dc.subject | 高強度聚焦式超音波 | zh_TW |
| dc.subject | 驅動系統 | zh_TW |
| dc.subject | 現場可程式化邏輯閘陣列 | zh_TW |
| dc.subject | 功率放大器 | zh_TW |
| dc.subject | field programmable logic gate array | en |
| dc.subject | power amplifier | en |
| dc.subject | drive system | en |
| dc.subject | high intensity focused ultrasound | en |
| dc.subject | power amplifier | en |
| dc.subject | field programmable logic gate array | en |
| dc.subject | drive system | en |
| dc.subject | high intensity focused ultrasound | en |
| dc.title | 基於現場可程式化邏輯閘陣列控制之高功率驅動系統 設計應用於高強度聚焦式超音波 | zh_TW |
| dc.title | FPGA-Controlled High-Power Driving Design for High Intensity Focused Ultrasound Application | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 葉秩光;陳景欣;黃執中 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Kuang Yeh;Gin-Shin Chen;Chih-Chung Huang | en |
| dc.subject.keyword | 高強度聚焦式超音波,驅動系統,現場可程式化邏輯閘陣列,功率放大器, | zh_TW |
| dc.subject.keyword | high intensity focused ultrasound,drive system,field programmable logic gate array,power amplifier, | en |
| dc.relation.page | 93 | - |
| dc.identifier.doi | 10.6342/NTU202304515 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-12-15 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| Appears in Collections: | 電機工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-1.pdf | 15.7 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
