請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91320
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 傅昭銘 | zh_TW |
dc.contributor.advisor | Chao-Ming Fu | en |
dc.contributor.author | 何俊廷 | zh_TW |
dc.contributor.author | Jun-Ting He | en |
dc.date.accessioned | 2023-12-20T16:28:41Z | - |
dc.date.available | 2023-12-21 | - |
dc.date.copyright | 2023-12-20 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-12-13 | - |
dc.identifier.citation | [1] Lisjak D, Mertelj A. Anisotropic magnetic nanoparticles: A review of their properties, syntheses and potential applications. Progress in Materials Science 2018, 95: 286-328.
[2] Chen Y-T, Kolhatkar AG, Zenasni O, Xu S, Lee TR. Biosensing using magnetic particle detection techniques. Sensors 2017, 17(10): 2300. [3] Bilal M, Zhao Y, Rasheed T, Iqbal HM. Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review. International journal of biological macromolecules 2018, 120: 2530-2544. [4] Nguyen MD, Tran H-V, Xu S, Lee TR. Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications. Applied Sciences 2021, 11(23): 11301. [5] Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB, et al. Biological applications of magnetic nanoparticles. Chemical Society Reviews 2012, 41(11): 4306-4334. [6] Srinoi P, Chen Y-T, Vittur V, Marquez MD, Lee TR. Bimetallic nanoparticles: enhanced magnetic and optical properties for emerging biological applications. Applied Sciences 2018, 8(7): 1106. [7] Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharmaceutical research 2016, 33: 2373-2387. [8] Ibrahim Khan KS, Khan I. Nanoparticles: Properties, applications and toxicities. Arabian journal of chemistry 2019, 12(7): 908-931. [9] Dasari A, Xue J, Deb S. Magnetic nanoparticles in bone tissue engineering. Nanomaterials 2022, 12(5): 757. [10] Wu K, Su D, Liu J, Saha R, Wang J-P. Magnetic nanoparticles in nanomedicine: a review of recent advances. Nanotechnology 2019, 30(50): 502003. [11] Manescu V, Paltanea G, Antoniac I, Vasilescu M. Magnetic nanoparticles used in oncology. Materials 2021, 14(20): 5948. [12] Fouad D, Bachra Y, Ayoub G, Ouaket A, Bennamara A, Knouzi N, et al. A Novel Drug Delivery System Based on Nanoparticles of Magnetite Fe3O4 Embedded in an Auto Cross-Linked Chitosan. Chitin and Chitosan: Physicochemical Properties and Industrial Applications 2021: 3. [13] Koo KN, Ismail AF, Othman MHD, Bidin N, Rahman MA. Preparation and characterization of superparamagnetic magnetite (Fe3O4) nanoparticles: A short review. Malaysian Journal of Fundamental and Applied Sciences 2019, 15(1): 23-31. [14] Meyers H, Myers H. Introductory solid state physics. CRC press, 1997. [15] Rosensweig RE. Heating magnetic fluid with alternating magnetic field. Journal of Magnetism and Magnetic Materials 2002, 252: 370-374. [16] 李嘉偉. 磁性奈米粒子的電磁發熱特性與細胞體外熱炙之生醫應用. 碩士論文, 國立臺灣大學物理學系, 臺北, 2009. [17] Kottler F. The distribution of particle sizes. Journal of the Franklin Institute 1950, 250(4): 339-356. [18] Irani RR. The interpretation of abnormalities in the log-normal distribution of particle size. The Journal of Physical Chemistry 1959, 63(10): 1603-1607. [19] Wildeboer RR, Southern P, Pankhurst QA. On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials. Journal of Physics D: Applied Physics 2014, 47(49): 495003. [20] Andreu I, Natividad E. Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia. Int J Hyperthermia 2013, 29(8): 739-751. [21] Landi GT. Simple models for the heating curve in magnetic hyperthermia experiments. Journal of Magnetism and Magnetic Materials 2013, 326: 14-21. [22] Włodarczyk A, Gorgoń S, Radoń A, Bajdak-Rusinek K. Magnetite Nanoparticles in Magnetic Hyperthermia and Cancer Therapies: Challenges and Perspectives. Nanomaterials (Basel) 2022, 12(11). [23] 韓昌穆. 應用磁光鉗於癌細胞機械性質之研究. 碩士論文, 國立臺灣大學物理學系, 臺北, 2009. [24] Naud C, Thébault C, Carrière M, Hou Y, Morel R, Berger F, et al. Cancer treatment by magneto-mechanical effect of particles, a review. Nanoscale Advances 2020, 2(9): 3632-3655. [25] 吳人翔. 具表面修飾之磁性奈米粒子其交流磁場效應對乳癌細胞生長影響. 碩士論文, 國立臺灣大學物理學系, 臺北, 2023. [26] Hong RY, Li JH, Li HZ, Ding J, Zheng Y, Wei DG. Synthesis of Fe3O4 nanoparticles without inert gas protection used as precursors of magnetic fluids. Journal of Magnetism and Magnetic Materials 2008, 320(9): 1605-1614. [27] Zhao D-L, Zeng X-W, Xia Q-S, Tang J-T. Preparation and coercivity and saturation magnetization dependence of inductive heating property of Fe3O4 nanoparticles in an alternating current magnetic field for localized hyperthermia. Journal of Alloys and Compounds 2008, 469(1): 215-218. [28] Mazrouaa AM, Mohamed MG, Fekry M. Physical and magnetic properties of iron oxide nanoparticles with a different molar ratio of ferrous and ferric. Egyptian Journal of Petroleum 2019, 28(2): 165-171. [29] Ba-Abbad MM, Benamour A, Ewis D, Mohammad AW, Mahmoudi E. Synthesis of Fe3O4 Nanoparticles with Different Shapes Through a Co-Precipitation Method and Their Application. JOM 2022, 74(9): 3531-3539. [30] Vollmer M. Newton's law of cooling revisited. European Journal of Physics 2009, 30(5): 1063. [31] 人民教育出版社, 課程教材研究所, 中學數學課程教材研究開發中心. 普通高中課程標準實驗教科書, 數學, 選修4-7, A版: 優選法與試驗設計初步. 人民教育出版社: 北京, 2007. [32] Taguchi G, Konishi S. Taguchi methods: orthogonal arrays and linear graphs; tools for quality engineering. ASI press, 1987. [33] Griffiths DJ. Introduction to Electrodynamics, 4 edn. Cambridge University Press, 2017. [34] Kötitz R, Weitschies W, Trahms L, Semmler W. Investigation of Brownian and Néel relaxation in magnetic fluids. Journal of Magnetism and Magnetic Materials 1999, 201(1): 102-104. [35] Ilg P, Kröger M. Dynamics of interacting magnetic nanoparticles: Effective behavior from competition between Brownian and Néel relaxation. Physical chemistry chemical physics 2020, 22(39): 22244-22259. [36] Angayarkanni SA, Sunny V, Philip J. Effect of Nanoparticle Size, Morphology and Concentration on Specific Heat Capacity and Thermal Conductivity of Nanofluids. Journal of Nanofluids 2015, 4(3): 302-309. [37] Snow CL, Shi Q, Boerio-Goates J, Woodfield BF. Heat Capacity Studies of Nanocrystalline Magnetite (Fe3O4). The Journal of Physical Chemistry C 2010, 114(49): 21100-21108. [38] Westrum EF, Grønvold F. Magnetite (Fe3O4) Heat capacity and thermodynamic properties from 5 to 350 K, low-temperature transition. The Journal of Chemical Thermodynamics 1969, 1(6): 543-557. [39] Périgo EA, Hemery G, Sandre O, Ortega D, Garaio E, Plazaola F, et al. Fundamentals and advances in magnetic hyperthermia. Applied Physics Reviews 2015, 2(4). [40] Ring HL, Sharma A, Ivkov R, Bischof JC. The impact of data selection and fitting on SAR estimation for magnetic nanoparticle heating. Int J Hyperthermia 2021, 37(3): 100-107. [41] 王代懿, 孙大方, 陈冬华. SPSS在有交互作用正交试验结果方差分析中的应用. 焦作师范高等专科学校学报 2021(004): 037. [42] SPSSAU. 正交實驗. [cited]Available from: https://spssau.com/helps/medicalmethod/orthogonal.html [43] SPSSAU. 極差分析. [cited]Available from: https://spssau.com/helps/medicalmethod/anor.html [44] Lemine OM, Algessair S, Madkhali N, Al-Najar B, El-Boubbou K. Assessing the Heat Generation and Self-Heating Mechanism of Superparamagnetic Fe3O4 Nanoparticles for Magnetic Hyperthermia Application: The Effects of Concentration, Frequency, and Magnetic Field. Nanomaterials; 2023. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91320 | - |
dc.description.abstract | 本研究使用化學共沉法合成Fe3O4奈米粒子, 在約11.3 Oe, 87 kHz的交流磁場中測量升溫曲線, 並使用牛頓冷卻模型擬合出樣品的比吸收率, 進而比較了不同製程參數組合的樣品的比吸收率之間的差異.
具體而言, 本研究涉及的化學共沉法的製程參數有: (1) Fe3+/Fe2+ 莫耳比 [1.2, 1.4, 1.6, 1.8]; (2) 通過滴定反應時長 [69, 46, 35, 28 (min)] 控制生成Fe3O4奈米粒子的速率 [0.4, 0.6, 0.8, 1.0 (μmol/s)]; (3) 溶液的體積 [40, 50, 60, 70 (mL)]. 在這個範圍內, 若採用全面實驗, 則有64個實驗組, 若每個實驗組還要3~5重覆 (或以上) 使數據穩定, 則實驗量非常龐大. 為了通過少量的實驗找出該範圍內的比吸收率變化規律, 本研究設計了正交實驗法, 從64個實驗組中抽取典型的16個進行重覆實驗直至平均值趨於穩定 (相對誤差不超過5 %). 對數據進行極差分析, 得出了前述三個參數各自對比吸收率的影響, 篩選並通過實驗確認了該範圍內的最優解為 [1.2, 0.8 μmol/s, 60 mL], 此時的最大比吸收率實驗值為31.60 W/g. 接着, 以16個正交實驗組為基準, 結合極差分析的意義, 建立了計算模型, 預測全面實驗的數據, 並初步評估了該方法的預測誤差約為11.27 %, 而在最優解附近的平均預測誤差約為5.76 %, 減少了大約一半. 該方法得出的預測值與正交實驗組之間的關係為: 兩者的極差分析表幾乎相同. 本研究還評估了數據迭代對預測誤差的影響: 迭代雖然會使預測數據穩定, 但也累積了誤差. 未來, 本研究找出的最優解可進行表面功能化, 應用於具體的生醫領域 (例如, 癌症熱療, 靶向藥物輸送等). | zh_TW |
dc.description.abstract | In this study, Fe3O4 nanoparticles were synthesized using chemical co-precipitation method. The temperature rise curves were measured in an AC magnetic field of approximately 11.3 Oe and 87 kHz. The specific absorption rate (SAR) of the samples was fitted using the Newton’s cooling model, allowing for a comparison of SAR among samples with different process parameter combinations.
Specifically, the process parameters involved in the chemical co-precipitation method were: (1) Fe3+/Fe2+ molar ratio [1.2, 1.4, 1.6, 1.8]; (2) rate of generating Fe3O4 nanoparticles [0.4, 0.6, 0.8, 1.0 (μmol/s)] controlled by titration reaction duration [69, 46, 35, 28 (min)] ; and (3) solution volume [40, 50, 60, 70 (mL)]. Within this range, conducting a comprehensive experiment would entail 64 experimental groups, with each group requiring 3 to 5 repetitions (or more) for data stability, resulting in a substantial number of experiments. In order to identify the variation pattern of SAR within this range through a small number of experiments, this study employed orthogonal experimental design. 16 typical experimental groups were selected from the 64, and repeated experiments were conducted until the average value stabilized (with a relative error not exceeding 5%). Range analysis of the data determined the influence of each of the three parameters on SAR. The optimal solution within this range was identified as [1.2, 0.8 μmol/s, 60 mL], yielding a maximum SAR of 31.60 W/g. Subsequently, using the 16 orthogonal experimental groups as a reference and considering the significance of range analysis, a computational model was established to predict the data from comprehensive experiments. The method's prediction error was initially estimated to be approximately 11.27%, which was reduced by about half near the optimal solution, resulting in an average prediction error of about 5.76%. The relationship between the predicted values obtained by this method and the orthogonal experimental groups closely matched the range analysis table. This study also assessed the impact of data iteration on prediction error, noting that while iteration stabilized the predicted data, it also accumulated error. In the future, the optimal solution identified in this study can be subjected to surface functionalization for specific biomedical applications, such as cancer hyperthermia and targeted drug delivery. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-20T16:28:41Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-12-20T16:28:41Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 vi 表目錄 x 1. 導論 1 1.1. Fe3O4奈米粒子及其生醫應用 1 1.2. 既往研究的回顧與討論 6 1.3. 本文研究思路 10 2. 理論基礎 11 2.1. Fe3O4奈米磁顆粒的電磁發熱機制 11 2.2. 樣品放置於線圈中電磁加熱的升溫曲線模型 13 2.3. 正交實驗設計的原理 21 3. 研究方法 26 3.1. Fe3O4奈米磁顆粒的製程 26 3.2. 磁顆粒樣品的電磁加熱測試與數據分析 30 3.3. 優化磁顆粒電磁加熱性能的正交實驗設計 35 3.4. 根據正交實驗的結果預測全面實驗數據的演算法 38 4. 結果與討論 42 4.1. 實驗現象與數據 42 4.2. 討論與分析 46 5. 結論與展望 56 參考文獻 58 附錄: 碩士論文口試紀錄 62 | - |
dc.language.iso | zh_TW | - |
dc.title | 使用正交實驗法探討化學共沉製程參數對Fe3O4奈米粒子交流磁場加熱的影響 | zh_TW |
dc.title | Orthogonal experimental study on the impact of chemical co-precipitation process parameters on AC magnetic field heating of Fe3O4 nanoparticles | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳政維;沈湯龍 | zh_TW |
dc.contributor.oralexamcommittee | Jeng-Wei Chen;Tang-Long Shen | en |
dc.subject.keyword | Fe3O4奈米粒子,化學共沉法,製程參數,交流磁場感應加熱, | zh_TW |
dc.subject.keyword | Fe3O4 nanoparticles,chemical co-precipitation,process parameters,AC field induction heating, | en |
dc.relation.page | 78 | - |
dc.identifier.doi | 10.6342/NTU202304499 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-12-14 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 物理學系 | - |
dc.date.embargo-lift | 2025-01-01 | - |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.75 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。