請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91319完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭瑋 | zh_TW |
| dc.contributor.advisor | Wei Jeng | en |
| dc.contributor.author | 張韻琦 | zh_TW |
| dc.contributor.author | Yun-Chi Chang | en |
| dc.date.accessioned | 2023-12-20T16:28:25Z | - |
| dc.date.available | 2023-12-21 | - |
| dc.date.copyright | 2023-12-20 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-12-15 | - |
| dc.identifier.citation | 周彥君、黃冠傑、梁定澎(2022)。企業資訊系統採用:基於TOE模型之整合性分析。中山管理評論。30(1),37-80。
孫鈺婷(2021)。資料中介者於資料共享應用之實踐-以歐洲資料治理規則草案為例。科技法律透析,33(10),10-17。https://www.airitilibrary.com/Publication/alDetailedMesh?DocID=a0000571-202110-202202250010-202202250010-10-17 翁逸泓(2022)。資料治理法制:歐盟模式之啟發。東海大學法學研究,(64),55-116。https://www.airitilibrary.com/Publication/alDetailedMesh?DocID=10267247-202210-202211100010-202211100010-55-116 黃東益、蕭乃沂(2014)。電子治理與資訊產業發展。公共治理季刊,2(2),51-57。https://www.airitilibrary.com/Publication/alDetailedMesh?DocID=23064811-201406-201407140015-201407140015-51-57 蕭乃沂、朱斌妤(2018)。資料驅動創新的跨域公共治理。國土及公共治理季刊,6(4),74-85。https://www.airitilibrary.com/Publication/alDetailedMesh?DocID=P20150327001-201812-201812260006-201812260006-74-85 賴文智、王文君(2022)。企業資料治理的法律議題盤點。會計研究月刊,(434),96-102。https://doi.org/10.6650/ARM.202201_(434).0015 戴豪君、邱映曦(2019)。從GDPR遵循角度看組織資料治理新意識。國土及公共治理季刊,7(4),18-29。https://www.airitilibrary.com/Publication/alDetailedMesh?DocID=P20150327001-201912-201912180008-201912180008-18-29 Abraham, R., Schneider, J., & vom Brocke, J. (2019). Data governance: A conceptual framework, Structured Review, and research agenda. International Journal of Information Management, 49, 424–438. https://doi.org/10.1016/j.ijinfomgt.2019.07.008 AI4D. (n.d.). About AI4D. Artificial Intelligence for Development - AI4D Africa. Retrieved January 9, 2023, from https://africa.ai4d.ai/about-ai4d/ Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-t Al-Ruithe, M., Benkhelifa, E., & Hameed, K. (2018). A systematic literature review of data governance and Cloud Data Governance. Personal and Ubiquitous Computing, 23(5-6), 839–859. https://doi.org/10.1007/s00779-017-1104-3 Alzahrani, S. M. (2021). Assessment of the Blockchain Technology Adoption for the Management of the Electronic Health Record Systems (dissertation). Awa, H. O., Ukoha, O., & Emecheta, B. C. (2016). Using T-O-e theoretical framework to study the adoption of ERP solution. Cogent Business & Management, 3(1), 1196571. https://doi.org/10.1080/23311975.2016.1196571 Babbie, E. (2019). 研究方法:基礎理論與技巧(蔡毓智譯;三版)。新加坡商聖智學習。(原著出版於2011。) Bajgar, M., Criscuolo, C., & Timmis, J. (2021). Intangibles and Industry Concentration. OECD Science, Technology and Industry Working Papers. https://doi.org/10.1787/ce813aa5-en Baker, J. (2011). The technology–Organization–Environment Framework. Information Systems Theory, 231–245. https://doi.org/10.1007/978-1-4419-6108-2_12 Ball, J. (2019, October 1). The double diamond: A universally accepted depiction of the design process. Design Council - Design for Planet. Retrieved January 7, 2023, from https://www.designcouncil.org.uk/our-work/news-opinion/double-diamond-universally-accepted-depiction-design-process/ Carruthers, C., & Jackson, P. (2020). The chief data officer's Playbook, Second edition. Facet Publishing. Cerrillo-Martínez, A., & Casadesús-de-Mingo, A. (2021). Data Governance for Public Transparency. El Profesional De La Información. https://doi.org/10.3145/epi.2021.jul.02 Chen, P.-T., Lin, C.-L., & Wu, W.-N. (2020). Big Data Management in healthcare: Adoption challenges and implications. International Journal of Information Management, 53, 102078. https://doi.org/10.1016/j.ijinfomgt.2020.102078 Cleland, D. I., Kocaoglu, D. F., Brown, J., & Maisel, J. W. (1981). Engineering management. McGraw-Hill. Coyle, D., & Manley, A. (2022, July 17). What is the value of data? A review of empirical methods. Bennett Institute for Public Policy. Retrieved January 9, 2023, from https://www.bennettinstitute.cam.ac.uk/publications/value-of-data/ Coyle, D., Diepeveen, S., Wdowin, J., Tennison, J., & Kay, L. (2020, February 25). The value of data - summary report 2020. Bennett Institute for Public Policy. Retrieved January 9, 2023, from https://www.bennettinstitute.cam.ac.uk/publications/value-data-summary-report/ Davenport, T. H., & Bean, R. (2021). Big Data and AI Executive Survey 2021: Executive Summary of Findings. Boston; NewVantage Partners LLC. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of Information Technology. MIS Quarterly, 13(3), 319. https://doi.org/10.2307/249008 DiMaggio, P. J., & Powell, W. W. (1983). The Iron Cage Revisited: Institutional isomorphism and collective rationality in organizational fields. American Sociological Review, 48(2), 147–160. https://doi.org/10.2307/2095101 Efron, S. E., & Ravid, R. (2013). Action research in education: A practical guide. The Guilford Press. Eryurek, E., Gilad, U., Lakshmanan, V., Kibunguchy, A., & Ashdown, J. (2021). Data governance: The definitive guide: People, processes, and tools to operationalize data trustworthiness. O'Reilly Media, Inc. European Commission. (2022). European Data Governance Act. Shaping Europe's digital future. Retrieved January 9, 2023, from https://digital-strategy.ec.europa.eu/en/policies/data-governance-act European Law Institute. (2020). Principles for a Data Economy: Data Transactions and Data Rights (with the ALI). Data Economy. Retrieved January 9, 2023, from https://www.europeanlawinstitute.eu/projects-publications/completed-projects/data-economy/ Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research. Addison-Wesley. G20. (2019). 20190609 ministerial statement on Trade and Digital Economy (full). Retrieved January 9, 2023, from https://www.mofa.go.jp/files/000486596.pdf Gartner Inc. (n.d.). Definition of information governance - gartner information technology glossary. Gartner. Retrieved January 9, 2023, from https://www.gartner.com/en/information-technology/glossary/information-governance Gibbs, J. L., & Kraemer, K. L. (2004). A cross-country investigation of the determinants of scope of e-commerce use: An institutional approach. Electronic Markets, 14(2), 124–137. https://doi.org/10.1080/10196780410001675077 GIDA. (2019). CARE Principles for Indigenous Data Governance. GIDA. GPAI. (2020, November). Data Governance Working Group A Framework Paper for GPAI’s work on Data Governance. The Global Partnership on Artificial Intelligence. Haneem, F., Kama, N., Taskin, N., Pauleen, D., & Abu Bakar, N. A. (2019). Determinants of master data management adoption by local government organizations: An empirical study. International Journal of Information Management, 45, 25–43. https://doi.org/10.1016/j.ijinfomgt.2018.10.007 Henderson, D., & Earley, S. (2017). Dama-Dmbok: Data Management Body of Knowledge. Technics Publications. Hradecky, D., Kennell, J., Cai, W., & Davidson, R. (2022). Organizational readiness to adopt Artificial Intelligence in the exhibition sector in Western Europe. International Journal of Information Management, 65, 102497. https://doi.org/10.1016/j.ijinfomgt.2022.102497 IWGIA. (2020). Indigenous World 2020: Indigenous Data Sovereignty. IWGIA. Retrieved January 9, 2023, from https://www.iwgia.org/en/ip-i-iw/3652-iw-2020-indigenous-data-sovereignty.html Jeyaraj, A., Rottman, J. W., & Lacity, M. C. (2006). A review of the predictors, linkages, and biases in it innovation adoption research. Journal of Information Technology, 21(1), 1–23. https://doi.org/10.1057/palgrave.jit.2000056 Kim, D. J., Hebeler, J., Yoon, V., & Davis, F. (2018). Exploring determinants of Semantic Web technology adoption from IT professionals' perspective: Industry competition, organization innovativeness, and Data Management Capability. Computers in Human Behavior, 86, 18–33. https://doi.org/10.1016/j.chb.2018.04.014 Korhonen, J. J., Melleri, I., Hiekkanen, K., & Helenius, M. (2013). Designing Data Governance Structure: An Organizational Perspective. GSTF Journal on Computing, 2(4), 11–17. https://doi.org/10.5176/2251-3043_2.4.203 Kuan, K. K. Y., & Chau, P. Y. K. (2001). A perception-based model for EDI adoption in small businesses using a technology–Organization–Environment Framework. Information & Management, 38(8), 507–521. https://doi.org/10.1016/s0378-7206(01)00073-8 Kumar, N., Kumar, G., & Singh, R. K. (2021). Analysis of barriers intensity for investment in Big Data Analytics for sustainable manufacturing operations in post-COVID-19 Pandemic Era. Journal of Enterprise Information Management, 35(1), 179–213. https://doi.org/10.1108/jeim-03-2021-0154 Ladikas, M., Chaturvedi, S., Zhao, Y., & Stemerding, D. (2015). Science and Technology Governance and ethics. Springer Nature. Lawton, G. (2021, November 30). Data governance vs. information governance: What's the difference? WhatIs.com. Retrieved January 9, 2023, from https://www.techtarget.com/whatis/feature/Data-governance-vs-information-governance-Whats-the-difference Leone, M., & Walker, K. (2022). 2022 state of Data Governance and Empowerment Analyst Report. 2022 State of Data Governance and Empowerment Analyst Report. Retrieved January 9, 2023, from https://www.erwin.com/analyst-report/2022-state-of-data-governance-and-empowerment-report/ Li, Y.-hui. (2008). An empirical investigation on the determinants of e-procurement adoption in Chinese Manufacturing Enterprises. 2008 International Conference on Management Science and Engineering 15th Annual Conference Proceedings, 32–37. https://doi.org/10.1109/icmse.2008.4668890 Madsen, L. B. (2019). Disrupting data governance: A call to action. Technics Publications. Marlina, E., Hidayanto, A. N., & Purwandari, B. (2022). Towards a model of research data management readiness in Indonesian context: An investigation of factors and indicators through the Fuzzy Delphi Method. Library & Information Science Research, 44(1), 101141. https://doi.org/10.1016/j.lisr.2022.101141 Mishra, A. N., Konana, P., & Barua, A. (2007). Antecedents and consequences of internet use in procurement: An empirical investigation of U.S. manufacturing firms. Information Systems Research, 18(1), 103–120. https://doi.org/10.1287/isre.1070.0115 National Archives of Australia. (n.d.). Establishing an information governance framework. Retrieved January 9, 2023, from https://www.naa.gov.au/information-management/information-governance/establishing-information-governance-framework Neuman, W. L. (2012). 研究方法:質化與量化方法之應用(郭思餘譯;初版)。臺北市:雙葉書廊。(原著出版於2008。) Occitanie Data. (2020). Occitanie Data’s Ethical Charter for trustworthy development of the data economy. Occitanie Data. OECD. (2015). Data-driven innovation: Big Data for growth and well-being: Read online. Data-Driven Innovation: Big Data for Growth and Well-being. Retrieved January 9, 2023, from https://read.oecd-ilibrary.org/science-and-technology/data-driven-innovation_9789264229358-en#page3 OECD. (2019). Enhancing access to and sharing of data: Reconciling risks and benefits for data re-use across societies. OECD Publishing. OECD. (2019). Recommendation of the Council on Artificial Intelligence. OECD Legal Instruments. Retrieved January 9, 2023, from https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0449 OECD. (2020). Enhanced access to publicly funded data for Science, Technology and Innovation. Enhanced Access to Publicly Funded Data for Science, Technology and Innovation. Retrieved January 9, 2023, from https://www.oecd.org/sti/enhanced-access-to-publicly-funded-data-for-science-technology-and-innovation-947717bc-en.htm OECD. (n.d.). Technology governance. OECD. Retrieved January 9, 2023, from https://www.oecd.org/sti/science-technology-innovation-outlook/technology-governance/ OHCHR. (2020). Data privacy guidelines in context of Artificial Intelligence. OHCHR. Retrieved January 9, 2023, from https://www.ohchr.org/en/special-procedures/sr-privacy/data-privacy-guidelines-context-artificial-intelligence Parasuraman, A. (2000). Technology readiness index (TRI) a multiple-item scale to measure readiness to embrace new technologies. Journal of Service Research, 2(4), 307–320. https://doi.org/10.1177/109467050024001 Pichai, S. (2018, June 7). Ai at google: Our principles. Google. Retrieved January 9, 2023, from https://www.blog.google/technology/ai/ai-principles/ Pierce, E., Dismute, W.-S., & Yonke, C. L. (2008). The state of information and data governance–understanding how organizations govern their information and data assets. IQ International publications. Putnam, E. (2021, June 20). It demand management: What is it and why do you need it. edison365. Retrieved January 9, 2023, from https://edison365.com/it-demand-management-what-is-it-and-why-do-you-need-it/ Ramdani, B., Kawalek, P., & Lorenzo, O. (2009). Predicting smes' adoption of Enterprise Systems. Journal of Enterprise Information Management, 22(1/2), 10–24. https://doi.org/10.1108/17410390910922796 Rehman, M. H., & Rajkumar, M. (2021). Overcoming the complexities in decision-making for enterprise software products: Influence of technological factors. Information and Communication Technology for Competitive Strategies (ICTCS 2020), 393–410. https://doi.org/10.1007/978-981-16-0739-4_38 Reinsel, D., Gantz, J., & Rydning, J. (2017, April). Data Age 2025: The Evolution of Data to Life-Critical. Framingham; International Data Corporation,IDC. Robinson, S., & Cole, B. (2021, January 27). What is information governance and why is it important? CIO. Retrieved January 9, 2023, from https://www.techtarget.com/searchcio/definition/information-governance Rogers, E. M. (1995). Diffusion of innovations. Free Press. Rogers, E. M. (1995). Diffusion of innovations. The Free Press. Rogers, E. M. (2003). Diffusion of innovations, 5th Edition. Free Press. Thomas, G. (n.d.). The DGI Data Governance DGI Data Governance Framework. The Data Governance Institute. Tornatzky, L. G., Fleischer, M., & Chakrabarti, A. K. (1990). The processes of Technological Innovation. Lexington. Türke Ralf-Eckhard. (2008). Governance Systemic Foundation and Framework. Physica. UN General Assembly. (2020). Road map for digital cooperation: implementation of the recommendations of the High-level Panel on Digital Cooperation. UN General Assembly. UNDP. (2016). A Guide to Data Innovation for Development from Idea to Proof-of-Concept. UNDP, UN Global Pulse. UNESCO. (2019). Access to information: a new promise for sustainable development. UNESCO. Retrieved 2023, from https://unesdoc.unesco.org/ark:/48223/pf0000371485/PDF/371485eng.pdf.multi. UNGP. (2020, October 9). Risks, harms and benefits assessment • UN global pulse. UN Global Pulse. Retrieved January 9, 2023, from https://www.unglobalpulse.org/policy/risk-assessment/ Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425. https://doi.org/10.2307/30036540 Warner, D. (n.d.). IG 101: What is information governance? Journal of AHIMA. Retrieved January 9, 2023, from https://library.ahima.org/doc?oid=300881#.Y7ub-fNBy3J Weber, K., Otto, B., & Österle, H. (2009). One size does not fit all---a contingency approach to data governance. Journal of Data and Information Quality, 1(1), 1–27. https://doi.org/10.1145/1515693.1515696 Wienzierl, K. K. (2021). The Data Governance Guidebook and Playbook: By a practitioner for Practitioners. Technics Publications. Yin, R. K. (2014). Case study research: Design and methods. Sage Publication. Zhu, K., Kraemer, K. L., & Xu, S. (2006). The process of innovation assimilation by firms in different countries: A technology diffusion perspective on E-business. Management Science, 52(10), 1557–1576. https://doi.org/10.1287/mnsc.1050.0487 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91319 | - |
| dc.description.abstract | 資料對個人、組織甚至社會的影響力不言而喻,因此,探討在組織中,組織整體及其成員應如何妥善地使用資料的資料治理有其重要性。然資料治理並不僅包含科技方面的討論,更包含組織內部之文化以及外部之環境等影響,以利從各方各面探討之。各個組織之需求以及特性不同,所以組織間執行資料治理實踐之方式亦有不同,然既有研究少有針對過程詳細記錄者,以致於後續研究難以效仿或參考之,也激發了研究者執行此個案研究之動機。
研究者透過收集個案資料、設計實踐方案以及評估實踐結果等三個階段呈現研究結果。在收集個案資料時,研究者使用團體訪談、設計思考工作坊、半結構式訪談以及田野調查等四個資料收集方式,以因應不同研究階段之研究資料所需,並使得研究者對組織的觀察更完整。 研究者透過四種資料收集方式建立對個案的認識,並根據個案之需求提出三大核心設計目標:確保資料即時且正確、提升資料使用效率以及流程符合國家之資料安全標準。研究者以三大目標為方針,在考慮組織文化以及組織成員使用習慣後設計相應之措施,並協助組織實行之。 在方案推行後,研究者針對個案推行資料治理實踐之過程提出評估報告,並以科技—組織—環境框架作為主軸分析之,以配合本研究中對組織和環境對資料使用影響之關注。 本研究完整紀錄資料治理實踐之過程,希望可以作為未來研究或機構實行資料治理之參考,亦呈現科技、組織以及環境等三面向對資料治理實踐之影響,以確保資料能夠最高程度地為組織所用。 | zh_TW |
| dc.description.abstract | The impact of data on individuals, organizations, and even the society is undeniable. Therefore, data governance, which explores how organizations, both as a whole and through their individual members, utilize data appropriately, is crucial. Data governance goes beyond technological considerations, extending into the internal culture of the organization and external environmental factors, facilitating a comprehensive examination from various perspectives. As the needs and characteristics of different organizations vary, the ways in which they implement data governance practices also differ. However, existing research often lacks detailed documentation of these processes, making it challenging for subsequent studies to emulate or reference them. This gap has spurred researchers to undertake case studies in order to address and bridge this knowledge deficit.
The finding of this research is illustrated in the order of collecting data, designing data governance practice and evaluating the effect of the practice respectively. The order also exhibits how the research is conducted. Through these four data collection methods, the researchers establish an understanding of the cases and formulate three core design objectives: ensuring real-time and accurate data, enhancing data utilization efficiency, and aligning processes with national data security standards. Guided by these objectives and taking into account the organizational culture and members' usage habits, the researchers design corresponding measures and assist the organization in their implementation. After implementing the solutions, the researchers generate assessment reports for the case, employing a Technology-Organization-Environment framework as the main axis for analysis. This framework aligns with the study's focus on the impact of the organization and the environment on data usage. This study comprehensively documents the process of data governance practice and aims to serve as a reference for future research or organizations implementing data governance. It highlights that data governance practice encompasses not only data and technology usage but also the influence of organizational members and external factors. When conducting research on implementing data governance practices, it is essential to consider these aspects to ensure that data is maximally utilized by the organization. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-20T16:28:25Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-12-20T16:28:25Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 圖目次 XI
表目次 XIII 附件目次 XV 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 6 第二章 文獻回顧 10 第一節 資料治理 10 第二節 創新評估框架 18 第三章 研究設計與實施 29 第一節 研究架構與研究方法 29 第二節 階段一:收集個案資料 32 第三節 階段二:設計實踐方案 43 第四節 階段三:評估實踐結果 50 第五節 研究框架詮釋與分析 53 第四章 研究發現:個案資料收集過程及應用 56 第一節 團體訪談 57 第二節 設計思考工作坊 71 第三節 半結構式訪談 84 第四節 田野調查 95 第五節 小結 105 第五章 研究發現:實踐方案設計及應用 106 第一節 資料治理實踐方案之核心目標 106 第二節 資料治理實踐方案之主要措施 108 第三節 資料治理實踐方案說明 112 第六章 研究發現:資料治理實踐方案之評估 114 第七章 綜合討論與結語 115 參考文獻 119 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 資料治理實踐 | zh_TW |
| dc.subject | 組織資料管理 | zh_TW |
| dc.subject | 科技—組織—環境框架 | zh_TW |
| dc.subject | 田野調查 | zh_TW |
| dc.subject | 個案研究 | zh_TW |
| dc.subject | 資料治理實踐 | zh_TW |
| dc.subject | 組織資料管理 | zh_TW |
| dc.subject | 科技—組織—環境框架 | zh_TW |
| dc.subject | 田野調查 | zh_TW |
| dc.subject | 個案研究 | zh_TW |
| dc.subject | Field study | en |
| dc.subject | Technology— Organization—Environment framework | en |
| dc.subject | Organizational data management | en |
| dc.subject | Field study | en |
| dc.subject | Case study | en |
| dc.subject | Data governance practice | en |
| dc.subject | Technology— Organization—Environment framework | en |
| dc.subject | Organizational data management | en |
| dc.subject | Data governance practice | en |
| dc.subject | Case study | en |
| dc.title | 組織資料治理最佳實踐方案之個案研究 | zh_TW |
| dc.title | Toward the Best Practice of Data Governance in an Organization: a Case Study | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊東謀;林芳邦 | zh_TW |
| dc.contributor.oralexamcommittee | Tung-Mou Yang;Fang-Pang Lin | en |
| dc.subject.keyword | 資料治理實踐,個案研究,田野調查,科技—組織—環境框架,組織資料管理, | zh_TW |
| dc.subject.keyword | Data governance practice,Case study,Field study,Technology— Organization—Environment framework,Organizational data management, | en |
| dc.relation.page | 183 | - |
| dc.identifier.doi | 10.6342/NTU202304522 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-12-15 | - |
| dc.contributor.author-college | 文學院 | - |
| dc.contributor.author-dept | 圖書資訊學系 | - |
| 顯示於系所單位: | 圖書資訊學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
