Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91317
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor侯嘉洪zh_TW
dc.contributor.advisorChia-Hung Houen
dc.contributor.author蔡士寬zh_TW
dc.contributor.authorShih-Kuan Tsaien
dc.date.accessioned2023-12-20T16:27:53Z-
dc.date.available2023-12-21-
dc.date.copyright2023-12-20-
dc.date.issued2023-
dc.date.submitted2023-11-20-
dc.identifier.citationAkhter, M., Habib, G. and Qamar, S.U. (2018) Application of electrodialysis in waste water treatment and impact of fouling on process performance. Journal of Membrane Science & Technology 8(02).
Al-Karaghouli, A. and Kazmerski, L.L. (2013) Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renewable and Sustainable Energy Reviews 24, 343-356.
Amy, G., Ghaffour, N., Li, Z., Francis, L., Linares, R.V., Missimer, T. and Lattemann, S. (2017) Membrane-based seawater desalination: Present and future prospects. Desalination 401, 16-21.
Beh, E. S., Benedict, M. A., Desai, D., and Rivest, J. B. (2019). A redox-shuttled electrochemical method for energy-efficient separation of salt from water. ACS Sustainable Chemistry & Engineering, 7(15), 13411-13417.
Bhandari, M. and Prajapati, S.K. (2022) Use of reverse osmosis reject from drinking water plant for microalgal biomass production. Water Research 210, 117989.
Castañeda, L.F., Walsh, F.C., Nava, J.L. and de Leon, C.P. (2017) Graphite felt as a versatile electrode material: Properties, reaction environment, performance and applications. Electrochimica Acta 258, 1115-1139.
Chen, F., Wang, J., Feng, C., Ma, J. and Waite, T.D. (2020) Low energy consumption and mechanism study of redox flow desalination. Chemical Engineering Journal 401, 126111.
Chen, T.-H., Tsai, S.-K., Chang, J.-Y., Chung, E. and Hou, C.-H. (2023) Achieving an efficient redox-flow battery with high-conductivity electrospun carbon fiber for wastewater reclamation and seawater desalination. Desalination 558, 116616.
Cheng, C.-Y., Chen, T.-H., Chen, K.-Y., Ma, J. and Hou, C.-H. (2022) Redox-flow battery with four-channel architecture for continuous and efficient desalination over a wide salinity working range. Desalination 534, 115783.
Cipolletta, G., Lancioni, N., Akyol, Ç., Eusebi, A.L. and Fatone, F. (2021) Brine treatment technologies towards minimum/zero liquid discharge and resource recovery: State of the art and techno-economic assessment. Journal of Environmental Management 300, 113681.
Date, M., Patyal, V., Jaspal, D., Malviya, A. and Khare, K. (2022) Zero liquid discharge technology for recovery, reuse, and reclamation of wastewater: A critical review. Journal of Water Process Engineering 49, 103129.
Dai, J., Wang, J., Hou, X., Ru, Q., He, Q., Srimuk, P., ... and Chen, F. (2020). Dual‐zinc electrode electrochemical desalination. ChemSusChem, 13(10), 2792-2798.
Elgrishi, N., Rountree, K.J., McCarthy, B.D., Rountree, E.S., Eisenhart, T.T. and Dempsey, J.L. (2018) A practical beginner’s guide to cyclic voltammetry. Journal of Chemical Education 95(2), 197-206.
Gautam, R. K., Kapoor, M., and Verma, A. (2020). Tactical surface modification of a 3D graphite felt as an electrode of vanadium redox flow batteries with enhanced electrolyte utilization and fast reaction kinetics. Energy & Fuels, 34(4), 5060-5071.
Giwa, A., Dufour, V., Al Marzooqi, F., Al Kaabi, M. and Hasan, S. (2017) Brine management methods: Recent innovations and current status. Desalination 407, 1-23.
Granger, M.C. and Swain, G.M. (1999) The influence of surface interactions on the reversibility of Ferri/Ferrocyanide at boron‐doped diamond thin‐film electrodes. Journal of the Electrochemical Society 146(12), 4551.
Ji, X., Banks, C.E., Crossley, A. and Compton, R.G. (2006) Oxygenated edge plane sites slow the electron transfer of the ferro‐/ferricyanide redox couple at graphite electrodes. ChemPhysChem 7(6), 1337-1344.
Jones, E., Qadir, M., van Vliet, M. T., Smakhtin, V., and Kang, S. M. (2019). The state of desalination and brine production: A global outlook. Science of the Total Environment, 657, 1343-1356.
Kaur, A., Jeong, K.I., Kim, S.S. and Lim, J.W. (2022) Optimization of thermal treatment of carbon felt electrode based on the mechanical properties for high-efficiency vanadium redox flow batteries. Composite Structures 290, 115546.
Kaddoura, M. F., Chosa, M., Bhalekar, P., and Wright, N. C. (2021). Mathematical modeling of a modular convection-enhanced evaporation system. Desalination, 510, 115057.
Kim, K.J., Kim, Y.-J., Kim, J.-H. and Park, M.-S. (2011) The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries. Materials Chemistry and Physics 131(1-2), 547-553.
Kim, T., Gorski, C. A., and Logan, B. E. (2017). Low energy desalination using battery electrode deionization. Environmental Science & Technology Letters, 4(10), 444-449.
Kim, H., Kim, S., Ahn, D., and Kim, C. (2023). Improved desalination via cell voltage extension and simultaneous energy recovery of redox flow desalination using organic supporting electrolyte. Separation and Purification Technology, 324, 124490.
Lazanas, A.C. and Prodromidis, M.I. (2023) Electrochemical Impedance Spectroscopy─ A Tutorial. ACS Measurement Science Au.
Lee, M., Fan, C. S., Chen, Y. W., Chang, K. C., Chiueh, P. T., and Hou, C. H. (2019). Membrane capacitive deionization for low-salinity desalination in the reclamation of domestic wastewater effluents. Chemosphere, 235, 413-422.
Liu, T., and Mauter, M. S. (2022). Heat transfer innovations and their application in thermal desalination processes. Joule.
Lin, P., Yang, T., Li, Z., Xia, W., Xuan, X., Sun, X., Alshehri, S.M., Ahamad, T., Yamauchi, Y. and Xu, X. (2022) Ion transport channels in redox flow deionization enable ultra-high desalination performance. Nano Energy 102, 107652.
Lu, D., Xu, C., Wang, Y. and Cai, W. (2022) Continuous desalination via redox flow desalination using sodium 4-sulfonatooxy-2, 2, 6, 6-tetramethyl-piperidine-1-oxyl (NaSO4-TEMPO). Chemical Engineering Journal 431, 133917.
Mavukkandy, M. O., Chabib, C. M., Mustafa, I., Al Ghaferi, A., and AlMarzooqi, F. (2019). Brine management in desalination industry: From waste to resources generation. Desalination, 472, 114187.
Mazúr, P., Mrlík, J., Beneš, J., Pocedič, J., Vrána, J., Dundálek, J., and Kosek, J. (2018). Performance evaluation of thermally treated graphite felt electrodes for vanadium redox flow battery and their four-point single cell characterization. Journal of Power Sources, 380, 105-114.
McArdle, S. and Marshall, A.T. (2023) Why electrode orientation and carbon felt heterogeneity can influence the performance of flow batteries. Journal of Power Sources 562, 232755.
Mickley, M. (2018) Updated and extended survey of US municipal desalination plants. Desalination and Water Purification Research and Development Program Report 27.
Mohamed, A., Maraqa, M. and Al Handhaly, J. (2005) Impact of land disposal of reject brine from desalination plants on soil and groundwater. Desalination 182(1-3), 411-433.
Mohandass, G., Chen, W., Krishnan, S. and Kim, T. (2022) Asymmetric and symmetric redox flow batteries for energy-efficient, high-recovery water desalination. Environmental Science & Technology 56(7), 4477-4488.
Pan, Y., Yao, L., Wu, D., Bentalib, A., Li, J., and Peng, Z. (2020). Sulfonated nickel phthalocyanine redox flow cell for high-performance electrochemical water desalination. Desalination, 496, 114762.
Panagopoulos, A. (2022) Brine management (saline water & wastewater effluents): Sustainable utilization and resource recovery strategy through Minimal and Zero Liquid Discharge (MLD & ZLD) desalination systems. Chemical Engineering and Processing-Process Intensification 176, 108944.
Radinger, H. (2021) 2021: A Surface Odyssey. Role of Oxygen Functional Groups on Activated Carbon‐Based Electrodes in Vanadium Flow Batteries. ChemPhysChem 22(24), 2498-2505.
Ramalingam, K., Zhu, Y., Wang, J., Liang, M., Wei, Q., Chen, X., Sun, F., Chen, D., Zhang, Z. and Aung, S.H. (2021) Efficient PEDOT electrode architecture for continuous redox-flow desalination. ACS Sustainable Chemistry & Engineering 9(38), 12779-12787.
Rottiers, T., Ghyselbrecht, K., Meesschaert, B., Van der Bruggen, B. and Pinoy, L. (2014) Influence of the type of anion membrane on solvent flux and back diffusion in electrodialysis of concentrated NaCl solutions. Chemical Engineering Science 113, 95-100.
Soliman, M.N., Guen, F.Z., Ahmed, S.A., Saleem, H., Khalil, M.J. and Zaidi, S.J. (2021) Energy consumption and environmental impact assessment of desalination plants and brine disposal strategies. Process Safety and Environmental Protection 147, 589-608.
Subramani, A. and Jacangelo, J.G. (2014) Treatment technologies for reverse osmosis concentrate volume minimization: A review. Separation and Purification Technology 122, 472-489.
Sun, B. and Skyllas-Kazacos, M. (1992) Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment. Electrochimica Acta 37(7), 1253-1260.
Sun, B., Zhang, M., Huang, S., Wang, J. and Zhang, X. (2021) Limiting concentration during batch electrodialysis process for concentrating high salinity solutions: A theoretical and experimental study. Desalination 498, 114793.
Tang, W., Liang, J., He, D., Gong, J., Tang, L., Liu, Z., ... and Zeng, G. (2019). Various cell architectures of capacitive deionization: Recent advances and future trends. Water Research, 150, 225-251.
Tedesco, M., Hamelers, H. and Biesheuvel, P. (2017) Nernst-Planck transport theory for (reverse) electrodialysis: II. Effect of water transport through ion-exchange membranes. Journal of Membrane Science 531, 172-182.
Tong, T. and Elimelech, M. (2016) The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions. Environmental Science & Technology 50(13), 6846-6855.
Tsai, J.-H., Macedonio, F., Drioli, E., Giorno, L., Chou, C.-Y., Hu, F.-C., Li, C.-L., Chuang, C.-J. and Tung, K.-L. (2017) Membrane-based zero liquid discharge: Myth or reality? Journal of the Taiwan Institute of Chemical Engineers 80, 192-202.
Xie, M., Shon, H.K., Gray, S.R. and Elimelech, M. (2016) Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction. Water Research 89, 210-221.
Xie, R., Yue, D., Peng, Z., and Wei, X. (2023). Achieving Energy-Saving, Continuous Redox Flow Desalination with Iron Chelate Redoxmers. Energy Material Advances, 4, 0009.
Xu, T. and Huang, C. (2008) Electrodialysis‐based separation technologies: a critical review. AIChE Journal 54(12), 3147-3159.
Wang, J., Zhang, Q., Chen, F., Hou, X., Tang, Z., Shi, Y., ... and Li, L. J. (2019). Continuous desalination with a metal-free redox-mediator. Journal of Materials Chemistry A, 7(23), 13941-13947.
Wang, H., Dai, R., Wang, L., Wang, X. and Wang, Z. (2022) Membrane fouling behaviors in a full-scale zero liquid discharge system for cold-rolling wastewater brine treatment: A comprehensive analysis on multiple membrane processes. Water Research 226, 119221.
Yoon, H., Lee, J., Kim, S., and Yoon, J. (2019). Review of concepts and applications of electrochemical ion separation (EIONS) process. Separation and Purification Technology, 215, 190-207.
Zhao, D., Lee, L.Y., Ong, S.L., Chowdhury, P., Siah, K.B. and Ng, H.Y. (2019) Electrodialysis reversal for industrial reverse osmosis brine treatment. Separation and Purification Technology 213, 339-347.
Zhang, Q., Aung, S. H., Oo, T. Z., and Chen, F. (2020). Continuous electrochemical deionization by utilizing the catalytic redox effect of environmentally friendly riboflavin-5'-phosphate sodium. Materials Today Communications, 23, 100921.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91317-
dc.description.abstract逆滲透濃縮液(Reverse osmosis rejects, ROR)為高鹽度的鹵水,若未經妥善處理而直接排放到環境中,將造成環境危害。為降低其對環境的衝擊,可透過高水回收率的濃縮程序大幅減少鹵水體積,然而,鹵水濃縮往往需要耗費大量能源,因此以低能源消耗進行濃縮程序為濃縮技術目標。氧化還原液流式電池脫鹽技術(redox-flow battery desalination, RFB)為近年新興的電化學離子分離技術,利用電池材料對:鐵氰化鉀與亞鐵氰化鉀作為電解液,通過施加低電壓促使電池材料對之間的氧化還原反應,進一步驅使淡室中離子遷移並集中至濃室,得以實現以低能耗濃縮鹵水的目標。本研究目的為探討RFB技術於高水回收率鹵水濃縮之可行性,並通過使用經熱處理之石墨氈(graphite felt, GF)電極提升RFB濃縮表現。研究結果顯示,於RFB系統中使用經400℃熱處理2小時的GF電極可顯著提高離子分離速率,相比於未使用GF電極時之RFB系統,其離子分離速率可顯著提升至1.7倍。進一步測試系統水回收率(50%~90%)之影響,發現離子分離速率並未因水回收率提高而減少,且能源消耗量在不同的水回收率條件下始終維持相同水平,顯示RFB在高水回收率的鹵水濃縮應用上具有潛在的優勢。為驗證RFB在實際工業ROR濃縮的可行性,以桃園市某工業廢水處理廠之ROR為例,以90%水回收率進行RFB操作,結果顯示在5小時的濃縮過程中,鹵水導電度從8.5 mS/cm增加至約58.7 mS/cm,僅需39.8 kJ/mol的低能耗便可達到約6.9倍的濃縮。結論而言,以GF電極提升濃縮性能的RFB系統,於低能耗鹵水濃縮技術中具有高發展潛力,期望此研究結果能為RFB技術應用提供新的應用方向,並推動低能耗鹵水濃縮技術的進一步發展。zh_TW
dc.description.abstractIn the present work, a redox-flow battery (RFB) with a four-chamber architecture was used as a promising electrochemical ion separation process with high water recovery for brine concentration. Herein, the thermally treated graphite felt (GF) electrodes was used to promote the redox reactions of the ferri/ferrocyanide electrolyte in the energy-efficient RFB system. The GF electrodes were pretreated at 400℃ in air for 2 hours (GF400-2), leading to notable improvements in electrochemical performance. Specifically, GF400-2 exhibited a low charge-transfer resistance of 1.37 Ω in electrochemical impedance spectroscopy analysis, and a 4.9-fold increase in peak current observed in cyclic voltammetry analysis. When treating a 4.5 g/L NaCl solution at 0.4 V, the RFB with GF400-2 demonstrated 1.7-fold higher average salt concentration rate (ASCR) than that of the RFB without GF electrodes. Moreover, increasing the water recovery from 50% to 90% had minimal effects on the energy consumption for brine concentrations in the RFB system. At 90% water recovery, when treating NaCl solutions with salinities ranging from 1.5 to 14.0 g/L at 0.4 V, a relatively higher ASCR and charge efficiency were observed at 4.5 g/L initial salt concentration. These features highlight the potential application for high water recovery in concentrating the real industrial reverse osmosis rejects (ROR) with an ionic conductivity of 8.5 mS/cm. As demonstrated, the RFB with GF400-2 efficiently concentrated the ROR by a factor of 6.9, achieving a high ASCR of 138.2 µg/min/cm2, while exhibiting a low energy consumption of 0.71 kWh/m3. These findings offer valuable perspectives on brine management with an energy-efficient, high-water recovery RFB, establishing its significance in this domain.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-20T16:27:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-12-20T16:27:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
Contents iv
List of Tables vi
List of Figures vii
Chapter 1. Introduction 1
1.1. Background 1
1.2. Motivation and Objectives 1
Chapter 2. Literature Review 4
2.1. Brine Management Methods 4
2.2. Thermal-based Technology for Brine Management 8
2.3. Membrane-based Technology for Brine Management 10
2.4. Emerging Electrochemical Ion Separation Technology 12
2.5. Redox-flow Battery Desalination 14
2.6. GF Electrodes in Redox-flow Battery 20
Chapter 3. Materials and Methods 23
3.1. Chemicals and Materials 23
3.2. Research Design 25
3.3. Experimental Methods 26
3.3.1. Thermally treated GF Preparation 26
3.3.2. Experimental Set-up and Operation 26
3.4. Characterization of Thermally Treated GF Electrode 29
3.5. Performance Indicators 30
Chapter 4. Results and Discussion 32
4.1. Physicochemical characterization of GF Electrodes 32
4.2. Electrochemical characterization of GF Electrodes 35
4.3. Effect of thermal treatment duration of GF on RFB performance 39
4.4. Effect of water recovery on RFB performance 42
4.5. Effect of feed concentration on RFB performance 46
4.6. Practical test of real industrial ROR concentration 49
Chapter 5. Conclusions and Suggestions 54
5.1. Conclusions 54
5.2. Suggestions 55
Reference 56
List of Publications 63
-
dc.language.isoen-
dc.title以石墨氈電極提高氧化還原液流式電池於高效率鹵水濃縮之研析zh_TW
dc.titleAchieving high water recovery in a redox-flow battery with graphite felt electrodes for brine concentrationen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林逸彬;李公哲;林坤儀zh_TW
dc.contributor.oralexamcommitteeYi-Pin Lin;Kung-Cheh Li;Kun-Yi Linen
dc.subject.keyword氧化還原液流式電池脫鹽技術,石墨氈,鹵水濃縮,高水回收率,zh_TW
dc.subject.keywordredox-flow battery,brine concentration,graphite felt,water recovery,reverse osmosis rejects,en
dc.relation.page73-
dc.identifier.doi10.6342/NTU202304433-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-11-23-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.78 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved