Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91305
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor侯嘉洪zh_TW
dc.contributor.advisorChia-Hung Houen
dc.contributor.author王賢媛zh_TW
dc.contributor.authorHsien-Yuan Wangen
dc.date.accessioned2023-12-20T16:24:34Z-
dc.date.available2023-12-21-
dc.date.copyright2023-12-20-
dc.date.issued2023-
dc.date.submitted2023-10-03-
dc.identifier.citationAhmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19-33.
Ahmad, S., Liu, L., Zhang, S., & Tang, J. (2023). Nitrogen-doped biochar (N-doped BC) and iron/nitrogen co-doped biochar (Fe/N co-doped BC) for removal of refractory organic pollutants. Journal of Hazardous Materials, 446, 130727.
AlMarzooqi, F. A., Al Ghaferi, A. A., Saadat, I., & Hilal, N. (2014). Application of capacitive deionisation in water desalination: a review. Desalination, 342, 3-15.
Anderson, M. A., Cudero, A. L., & Palma, J. (2010). Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?. Electrochimica Acta, 55(12), 3845-3856.
Bhatnagar, A., Hogland, W., Marques, M., & Sillanpää, M. (2013). An overview of the modification methods of activated carbon for its water treatment applications. Chemical Engineering Journal, 219, 499-511.
Cai, X., Xiao, Y., Sun, W., & Yang, F. (2022). Glucose-derived activated carbons for supercapacitors: comparison between single O doping and N/O co-doping. Electrochimica Acta, 406, 139861.
Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., & Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology, 107, 419-428.
Cao, J., Wang, Y., Wang, L., Yu, F., & Ma, J. (2019). Na3V2 (PO4) 3@ C as faradaic electrodes in capacitive deionization for high-performance desalination. Nano letters, 19(2), 823-828.
Chan, K. Y., & Xu, Z. (2009). Biochar for environmental management: Science and technology. UK: Earthscan, 67-84.
Chen, P. A., Cheng, H. C., & Wang, H. P. (2018). Activated carbon recycled from bitter-tea and palm shell wastes for capacitive desalination of salt water. Journal of Cleaner Production, 174, 927-932.
Chen, W., Chen, Y., Yang, H., Li, K., Chen, X., & Chen, H. (2018). Investigation on biomass nitrogen-enriched pyrolysis: Influence of temperature. Bioresource Technology, 249, 247-253.
Chen, W., Yang, H., Chen, Y., Xia, M., Chen, X., & Chen, H. (2017). Transformation of nitrogen and evolution of N-containing species during algae pyrolysis. Environmental Science & Technology, 51(11), 6570-6579.
Chu, M., Tian, W., Zhao, J., Zou, M., Lu, Z., Zhang, D., & Jiang, J. (2022). A comprehensive review of capacitive deionization technology with biochar-based electrodes: Biochar-based electrode preparation, deionization mechanism and applications. Chemosphere, 136024.
Cuong, D. V., Liu, N. L., Nguyen, V. A., & Hou, C. H. (2019). Meso/micropore-controlled hierarchical porous carbon derived from activated biochar as a high-performance adsorbent for copper removal. Science of the Total Environment, 692, 844-853.
Cuong, D. V., Matsagar, B. M., Lee, M., Hossain, M. S. A., Yamauchi, Y., Vithanage, M., Hou, C. H. (2021). A critical review on biochar-based engineered hierarchical porous carbon for capacitive charge storage. Renewable and Sustainable Energy Reviews, 145, 111029.
de Almeida, L. S., Oreste, E. Q., Maciel, J. V., Heinemann, M. G., & Dias, D. (2020). Electrochemical devices obtained from biochar: Advances in renewable and environmentally-friendly technologies applied to analytical chemistry. Trends in Environmental Analytical Chemistry, 26, e00089.
Dehkhoda, A. M., Ellis, N., & Gyenge, E. (2016). Effect of activated biochar porous structure on the capacitive deionization of NaCl and ZnCl2 solutions. Microporous and Mesoporous Materials, 224, 217-228.
Demirbas, A., & Arin, G. (2002). An overview of biomass pyrolysis. Energy Sources, 24(5), 471-482.
Frank, B., Zhang, J., Blume, R., Schlögl, R., & Su, D. S. (2009). Heteroatoms increase the selectivity in oxidative dehydrogenation reactions on nanocarbons. Angewandte Chemie International Edition, 48(37), 6913-6917.
Gao, K., Wang, B., Tao, L., Cunning, B. V., Zhang, Z., Wang, S., Qu, L. (2019). Efficient metal‐free electrocatalysts from N‐doped carbon nanomaterials: mono‐doping and co‐doping. Advanced Materials, 31(13), 1805121.
Gao, Y., Xu, S., Yue, Q., Ortaboy, S., Gao, B., & Sun, Y. (2016). Synthesis and characterization of heteroatom-enriched biochar from keratin-based and algous-based wastes. Advanced Powder Technology, 27(4), 1280-1286.
Guo, Y., Zeng, Z., Li, Y., Huang, Z., & Cui, Y. (2018). In-situ sulfur-doped carbon as a metal-free catalyst for persulfate activated oxidation of aqueous organics. Catalysis Today, 307, 12-19.
Hai, A., Bharath, G., Babu, K. R., Taher, H., Naushad, M., & Banat, F. (2019). Date seeds biomass-derived activated carbon for efficient removal of NaCl from saline solution. Process Safety and Environmental Protection, 129, 103-111.
Han, B., Cheng, G., Wang, Y., & Wang, X. (2019). Structure and functionality design of novel carbon and faradaic electrode materials for high-performance capacitive deionization. Chemical Engineering Journal, 360, 364-384.
Hawks, S. A., Ramachandran, A., Porada, S., Campbell, P. G., Suss, M. E., Biesheuvel, P. M., & Stadermann, M. (2019). Performance metrics for the objective assessment of capacitive deionization systems. Water Research, 152, 126-137.
Ho, S. H., Li, R., Zhang, C., Ge, Y., Cao, G., Ma, M., & Ren, N. Q. (2019). N-doped graphitic biochars from C-phycocyanin extracted Spirulina residue for catalytic persulfate activation toward nonradical disinfection and organic oxidation. Water Research, 159, 77-86.
Hulicova‐Jurcakova, D., Seredych, M., Lu, G. Q., & Bandosz, T. J. (2009). Combined effect of nitrogen‐and oxygen‐containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Advanced Functional Materials, 19(3), 438-447.
Humplik, T., Lee, J., O’hern, S. C., Fellman, B. A., Baig, M. A., Hassan, S. F., & Wang, E. N. (2011). Nanostructured materials for water desalination. Nanotechnology, 22(29), 292001.
Hung, C. M., Chen, C. W., Huang, C. P., Cheng, J. W., & Dong, C. D. (2022). Algae-derived metal-free boron-doped biochar as an efficient bioremediation pretreatment for persistent organic pollutants in marine sediments. Journal of Cleaner Production, 336, 130448.
Initiative, I. B. (2012). Standardized product definition and product testing guidelines for biochar that is used in soil. IBI Biochar Stand.
Jiang, Y., & Liu, J. (2019). Definitions of pseudocapacitive materials: a brief review. Energy & Environmental Materials, 2(1), 30-37.
Jurewicz, K., Pietrzak, R., Nowicki, P., & Wachowska, H. (2008). Capacitance behaviour of brown coal based active carbon modified through chemical reaction with urea. Electrochimica Acta, 53(16), 5469-5475.
Kan, T., Strezov, V., & Evans, T. J. (2016). Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews, 57, 1126-1140.
Kasera, N., Kolar, P., & Hall, S. G. (2022). Nitrogen-doped biochars as adsorbents for mitigation of heavy metals and organics from water: A review. Biochar, 4(1), 17.
Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science & Technology, 44(4), 1247-1253.
Khan, A., Goepel, M., Colmenares, J. C., & Gläser, R. (2020). Chitosan-based N-doped carbon materials for electrocatalytic and photocatalytic applications. ACS Sustainable Chemistry & Engineering, 8(12), 4708-4727.
Kim, D. I., Dorji, P., Gwak, G., Phuntsho, S., Hong, S., & Shon, H. (2019). Reuse of municipal wastewater via membrane capacitive deionization using ion-selective polymer-coated carbon electrodes in pilot-scale. Chemical Engineering Journal, 372, 241-250.
Kim, Y. H., Tang, K., Chang, J., Sharma, K., Yiacoumi, S., Mayes, R. T., & Tsouris, C. (2019). Potential limits of capacitive deionization and membrane capacitive deionization for water electrolysis. Separation Science and Technology, 54(13), 2112-2125.
Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: an introduction. Biochar for Environmental Management Science and Technology. Earthscans, UK, pp. 1–12.
Leng, L., Xu, S., Liu, R., Yu, T., Zhuo, X., Leng, S., & Huang, H. (2020). Nitrogen containing functional groups of biochar: An overview. Bioresource Technology, 298, 122286.
Li, H., & Zou, L. (2011). Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination. Desalination, 275(1-3), 62-66.
Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y., & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466-478.
Li, H., Nie, C., Pan, L., & Sun, Z. (2012). The study of membrane capacitive deionization from charge efficiency. Desalination and Water Treatment, 42(1-3), 210-215.
Liang, X., Guo, N., Zhao, Y., Xue, F., Ren, X., Yang, Z., & Yang, Q. (2022). Rapid effectual entrapment of pesticide pollutant by phosphorus-doped biochar: Effects and response sequence of functional groups. Journal of Molecular Liquids, 365, 120155.
Liu, S., Li, B., Zhou, Y., Xu, X., Yang, R., Wang, Q., & Li, J. (2021). Hierarchical N-doped holey three-dimensional reduced graphene oxide with high performance capacitive deionization. Journal of Materials Research and Technology, 15, 1996-2006.
Liu, W. J., Jiang, H., & Yu, H. Q. (2019). Emerging applications of biochar-based materials for energy storage and conversion. Energy & Environmental Science, 12(6), 1751-1779.
Liu, Y., Chen, Y., Li, Y., Chen, L., Jiang, H., Li, H., & Hou, S. (2022). Fabrication, application, and mechanism of metal and heteroatom co-doped biochar composites (MHBCs) for the removal of contaminants in water: A review. Journal of Hazardous Materials, 431, 128584.
Liu, Y., Nie, C., Liu, X., Xu, X., Sun, Z., & Pan, L. (2015). Review on carbon-based composite materials for capacitive deionization. RSC Advances, 5(20), 15205-15225.
Oh, W. D., & Lim, T. T. (2019). Design and application of heterogeneous catalysts as peroxydisulfate activator for organics removal: an overview. Chemical Engineering Journal, 358, 110-133.
Omosebi, A., Gao, X., Landon, J., & Liu, K. (2014). Asymmetric electrode configuration for enhanced membrane capacitive deionization. ACS Applied Materials & Interfaces, 6(15), 12640-12649.
Oren, Y. (2008). Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review). Desalination, 228(1-3), 10-29.
Pallarés, J., González-Cencerrado, A., & Arauzo, I. (2018). Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass and Bioenergy, 115, 64-73.
Patel, S. K., Ritt, C. L., Deshmukh, A., Wang, Z., Qin, M., Epsztein, R., & Elimelech, M. (2020). The relative insignificance of Advanced Materials in enhancing the energy efficiency of desalination technologies. Energy & Environmental Science, 13(6), 1694-1710.
Porada, S., Zhao, R., Van Der Wal, A., Presser, V., & Biesheuvel, P. M. (2013). Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 58(8), 1388-1442.
Qin, L., Zhou, Z., Dai, J., Ma, P., Zhao, H., He, J., Yan, Y. (2016). Novel N-doped hierarchically porous carbons derived from sustainable shrimp shell for high-performance removal of sulfamethazine and chloramphenicol. Journal of the Taiwan Institute of Chemical Engineers, 62, 228-238.
Quan, G., Wang, H., Zhu, F., & Yan, J. (2018). Porous biomass carbon coated with SiO2 as high performance electrodes for capacitive deionization. BioResources, 13(1), 437-449.
Raveendran, K., Ganesh, A., & Khilar, K. C. (1995). Influence of mineral matter on biomass pyrolysis characteristics. Fuel, 74(12), 1812-1822.
Shackley, S., Carter, S., Knowles, T., Middelink, E., Haefele, S., Sohi, S., Haszeldine, S. (2012). Sustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, Part I: Context, chemical properties, environmental and health and safety issues. Energy Policy, 42, 49-58.
Shang, Y., Xu, X., Gao, B., Wang, S., & Duan, X. (2021). Single-atom catalysis in advanced oxidation processes for environmental remediation. Chemical Society Reviews, 50(8), 5281-5322.
Shi, Q., Wang, Y., Zhang, X., Shen, B., Wang, F., & Zhang, Y. (2020). Hierarchically porous biochar synthesized with CaCO3 template for efficient Hg0 adsorption from flue gas. Fuel Processing Technology, 199, 106247.
Shi, X., Ye, X., Zhong, H., Wang, T., & Jin, F. (2021). Sustainable nitrogen-containing chemicals and materials from natural marine resources chitin and microalgae. Molecular Catalysis, 505, 111517.
Subramani, A., & Jacangelo, J. G. (2015). Emerging desalination technologies for water treatment: A critical review. Water Research, 75, 164-187.
Sun, C., Chen, T., Huang, Q., Zhan, M., Li, X., & Yan, J. (2020). Activation of persulfate by CO2-activated biochar for improved phenolic pollutant degradation: performance and mechanism. Chemical Engineering Journal, 380, 122519.
Suo, F., You, X., Ma, Y., & Li, Y. (2019). Rapid removal of triazine pesticides by P doped biochar and the adsorption mechanism. Chemosphere, 235, 918-925.
Tian, Y., Zhang, J., Zuo, W., Chen, L., Cui, Y., & Tan, T. (2013). Nitrogen conversion in relation to NH3 and HCN during microwave pyrolysis of sewage sludge. Environmental Science & Technology, 47(7), 3498-3505.
Uchimiya, M., Chang, S., & Klasson, K. T. (2011). Screening biochars for heavy metal retention in soil: role of oxygen functional groups. Journal of Hazardous Materials, 190(1-3), 432-441.
Verheijen, F., Jeffery, S., Bastos, A. C., Van der Velde, M., & Diafas, I. (2010). Biochar application to soils. A critical scientific review of effects on soil properties, processes, and functions. EUR, 24099, 162.
Wan, Z., Sun, Y., Tsang, D. C., Khan, E., Yip, A. C., Ng, Y. H., Ok, Y. S. (2020). Customised fabrication of nitrogen-doped biochar for environmental and energy applications. Chemical Engineering Journal, 401, 126136.
Wang, H., Guo, W., Liu, B., Wu, Q., Luo, H., Zhao, Q., & Ren, N. (2019). Edge-nitrogenated biochar for efficient peroxydisulfate activation: An electron transfer mechanism. Water Research, 160, 405-414.
Wang, L. L., Jiang, S. F., Huang, J., & Jiang, H. (2022). Oxygen-doped biochar for the activation of ferrate for the highly efficient degradation of sulfadiazine with a distinct pathway. Journal of Environmental Chemical Engineering, 10(6), 108537.
Wang, Y., Dong, L., Lai, G., Wei, M., Jiang, X., & Bai, L. (2019). Nitrogen-doped hierarchically porous carbons derived from polybenzoxazine for enhanced supercapacitor performance. Nanomaterials, 9(1), 131.
Wei, J. S., Ding, H., Wang, Y. G., & Xiong, H. M. (2015). Hierarchical porous carbon materials with high capacitance derived from Schiff-base networks. ACS Applied Materials & Interfaces, 7(10), 5811-5819.
Wen, X., Zhang, D., Shi, L., Yan, T., Wang, H., & Zhang, J. (2012). Three-dimensional hierarchical porous carbon with a bimodal pore arrangement for capacitive deionization. Journal of Materials Chemistry, 22(45), 23835-23844.
White, R. J., Antonietti, M., & Titirici, M. M. (2009). Naturally inspired nitrogen doped porous carbon. Journal of Materials Chemistry, 19(45), 8645-8650.
Wu, Q., Liang, D., Lu, S., Wang, H., Xiang, Y., Aurbach, D., & Cohen, I. (2022). Advances and perspectives in integrated membrane capacitive deionization for water desalination. Desalination, 542, 116043.
Xu, X., Allah, A. E., Wang, C., Tan, H., Farghali, A. A., Khedr, M. H., Yamauchi, Y. (2019). Capacitive deionization using nitrogen-doped mesostructured carbons for highly efficient brackish water desalination. Chemical Engineering Journal, 362, 887-896.
Yang, F., Wang, J., Liu, L., Zhang, P., Yu, W., Deng, Q., Deng, S. (2018). Synthesis of porous carbons with high N-content from shrimp shells for efficient CO2-capture and gas separation. ACS Sustainable Chemistry & Engineering, 6(11), 15550-15559.
Yang, Q., Xiao, Z., Kong, D., Zhang, T., Duan, X., Zhou, S., Zhi, L. (2019). New insight to the role of edges and heteroatoms in nanocarbons for oxygen reduction reaction. Nano Energy, 66, 104096.
Yeh, C. L., Hsi, H. C., Li, K. C., & Hou, C. H. (2015). Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio. Desalination, 367, 60-68.
Yu, J., Tang, L., Pang, Y., Zeng, G., Feng, H., Zou, J., Tan, J. (2020). Hierarchical porous biochar from shrimp shell for persulfate activation: a two-electron transfer path and key impact factors. Applied Catalysis B: Environmental, 260, 118160.
Yuan, S., Tan, Z., & Huang, Q. (2018). Migration and transformation mechanism of nitrogen in the biomass–biochar–plant transport process. Renewable and Sustainable Energy Reviews, 85, 1-13.
Zhang, R., Gu, X., Liu, Y., Hua, D., Shao, M., Gu, Z., Huang, W. (2020). Hydrophilic nano-porous carbon derived from egg whites for highly efficient capacitive deionization. Applied Surface Science, 512, 145740.
Zhao, X., Wei, H., Zhao, H., Wang, Y., & Tang, N. (2020). Electrode materials for capacitive deionization: A review. Journal of Electroanalytical Chemistry, 873, 114416.
Zhou, X., Zhu, Y., Niu, Q., Zeng, G., Lai, C., Liu, S., & Liu, J. (2021). New notion of biochar: A review on the mechanism of biochar applications in advannced oxidation processes. Chemical Engineering Journal, 416, 129027.
Zou, L., Li, L., Song, H., & Morris, G. (2008). Using mesoporous carbon electrodes for brackish water desalination. Water Research, 42(8-9), 2340-2348.
Zou, L., Morris, G., & Qi, D. (2008). Using activated carbon electrode in electrosorptive deionisation of brackish water. Desalination, 225(1-3), 329-340
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91305-
dc.description.abstract薄膜電容去離子(Membrane Capacitive Deionization, MCDI)技術是一項具發展潛力的脫鹽技術,其電極材料在此扮演著十分重要的角色。生物炭 (biochar)為一種常見的碳材料,其在自然界中擁有豐富的資源、對環境友善以及具成本效益,因而被廣泛使用在MCDI電極材料中。氮摻雜技術與階層式多孔結構透過添加額外的電荷轉移位點、增加材料的比表面積以及良好的孔洞結構能夠有效提升生物炭的離子吸附容量。
本研究旨在透過in-situ的方法,在不同活化溫度下,製備氮摻雜階層式多孔蝦殼活性碳(SSHPC)。在同時進行氮摻雜與活化的過程中,蝦殼中原有的高氮含量作為氮的前驅物,而KOH則為活化劑。研究成果顯示以活化溫度800度製備之蝦殼活性碳(SSHPC800)擁有高比表面積(1786 m2/g)、高中孔比例(0.51)以及理想的氮形式比例(N-6: 31.7%, N-5: 30.7%, N-Q: 37.6%)。此外SSHPC800擁有出色的比電容值(111.85 F/g)、電源電壓降(0.04 V)以及電荷轉移阻抗(33.16 ΩΩ),上述表現皆優於在其他活化溫度下製備的材料。SSHPC800在電容去離子(CDI)實驗中,相較於其他材料表現出優越的離子去除能力以及脫鹽效率,其平均脫鹽容量(MDC)與
充電效率分別為3.6 mg/g與13.6%。SSHPC800更被應用於薄膜電容去離子(Membrane Capacitive Deionization, MCDI)系統中,其MDC與充電效率可分別達到10.8 mg/g與137.6 %,整體表現比傳統CDI來得更佳。最後,SSHPC800在MCDI系統中進行連續性實驗測試也展現了絕佳的穩定性。SSHPC800於本研究中,成功地展現氮摻雜技術與階層式孔洞結構改質生物炭的潛力,並可應用在 MCDI系統中,成為一項有效且永續的脫鹽技術。
zh_TW
dc.description.abstractElectrode materials play a crucial role in Membrane Capacitive Deionization (MCDI), a promising desalination technique. As a prevalent carbon material, biochar-derivatives has been widely used in MCDI electrodes since it is abundant in nature, eco-friendly, and cost-effective. Modification with nitrogen doping and introducing hierarchically porous carbon structures are effective ways to enhance the adsorption capacity of raw biochar since it provides additional charge-transfer sites, increases specific surface area, and creates well-defined pore structure.
In this research, N-doped hierarchically porous carbon derived from shrimp shell-biochar (SSHPC) was obtained via an in-situ synthesis process under various activation temperatures. During simultaneous doping nitrogen and activation, high nitrogen content in shrimp shell biochar was used as a nitrogen precursor and KOH was employed as the activator. Notably, SSHPC800, activated at 800 C, emerged as the highlight of this study. SSHPC800 presented an outstanding specific surface area (1786 m2/g), mesoporosity (0.51), and an ideal nitrogen composition (N-6: 31.7%, N-5: 30.7%, N-Q: 37.6%). Furthermore, SSHPC800 demonstrated excellent specific capacitance (111.85 F/g), iR drop (0.04 V), and Rct (33.16ΩΩ), which surpassed all other materials. SSHPC800 showcased its superior ion removal capacity and desalination efficiency with a MDC of 3.8 mg/g and a charge efficiency of 16.7% in CDI whereas exhibited a much better overall performance with better MDC (10.8 mg/g) and charge efficiency (137.6%) in MCDI. SSHPC800 has also proved its stability in consecutive electrosorption/desorption process in MCDI. In this study, SSHPC800 has successfully exemplified the potential of N-doped hierarchically porous shrimp shell-biochar in MCDI systems in the quest for efficient and sustainable water desalination technologies.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-20T16:24:34Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-12-20T16:24:34Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iv
ABSTRACT vi
CONTENTS viii
LIST OF FIGURES xi
LIST OF TABLES xiv
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation and Objectives 2
Chapter 2 Theory and Literature Review 5
2.1 Membrane Capacitive Deionization (MCDI) for Desalination 5
2.1.1 Development of MCDI 5
2.1.2 Electrode Materials for MCDI 8
2.2 Biochar and Biochar-Derived Materials 9
2.2.1 Biochar 9
2.2.2 Biochar-Derived Hierarchical Porous Carbon (HPC) 11
2.3 Nitrogen Doping in Biochar 13
2.3.1 Nitrogen Species and Functionalities 15
2.3.2 Nitrogen Doping Techniques 17
Chapter 3 Experimental Section 21
3.1 Materials and Instruments 21
3.2 Research Design 23
3.3 Preparation of Nitrogen-doped Hierarchically Porous Carbon Electrodes 25
3.3.1 Synthesis of Nitrogen-doped Hierarchically Porous Carbon 25
3.3.2 Fabrication of Nitrogen-doped Hierarchically Porous Carbon Electrodes 28
3.4 Physiochemical Characterization of SSHPCs 29
3.4.1 Morphology Characterization 29
3.4.2 Pore Structure Characterization 29
3.4.3 Water Contact Angle 29
3.4.4 Surface Chemical Composition and Different Nitrogen Species 29
3.5 Electrochemical Characterization of SSHPCs 30
3.5.1 Cyclic voltammetry 30
3.5.2 Galvanostatic charge/discharge 30
3.5.3 Electrochemical Impedance Spectroscopy 31
3.6 Setup of MCDI system 32
3.7 Key Performance Indicators 34
Chapter 4 Results and Discussions 36
4.1 Physicochemical characterization of Nitrogen-doped Hierarchically Porous Carbon 36
4.1.1 Morphological Characteristic 36
4.1.2 Pore Structure Characteristic 38
4.1.3 Water Contact Angle 41
4.1.4 Surface Chemical Composition and Different Nitrogen Species 42
4.2 Electrochemical Properties of Nitrogen-doped Hierarchically Porous Carbon 44
4.2.1 Cyclic Voltammetry 44
4.2.2 Galvanostatic Charge/Discharge 44
4.2.3 Electrochemical Impedance Spectroscopy 45
4.3 Desalination Performance of SSHPC electrodes 47
4.3.1 Desalination Performances of SSHPCs in CDI 47
4.3.2 Desalination Performances of SSHPC800 in CDI and MCDI 56
4.3.3 Desalination Performances of SSHPC800 in Consecutive MCDI Experiment 60
Chapter 5 Conclusions and Suggestions 63
5.1 Conclusions 63
5.2 Suggestions 64
REFERENCE 65
-
dc.language.isoen-
dc.title以蝦殼生物炭製備之氮摻雜階層式多孔活性碳電極於薄膜電容去離子技術脫鹽性能之研析zh_TW
dc.titleN-doped Hierarchically Porous Carbon Derived from Shrimp Shell-Biochar in Membrane Capacitive Deionization (MCDI)en
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee席行正;彭晴玉zh_TW
dc.contributor.oralexamcommitteeHsing-Cheng Hsi;Ching-Yu Pengen
dc.subject.keyword蝦殼,氮摻雜生物炭,階層式多孔活性碳,薄膜電容去離子技術,zh_TW
dc.subject.keywordshrimp shell,N-doped biochar,hierarchically porous carbon,membrane capacitive deionization,en
dc.relation.page71-
dc.identifier.doi10.6342/NTU202304272-
dc.rights.note未授權-
dc.date.accepted2023-10-03-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  目前未授權公開取用
4.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved