請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91301完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅世強 | zh_TW |
| dc.contributor.advisor | Shyh-Chyang Luo | en |
| dc.contributor.author | 林家萱 | zh_TW |
| dc.contributor.author | Chia-Hsuan Lin | en |
| dc.date.accessioned | 2023-12-20T16:23:26Z | - |
| dc.date.available | 2023-12-21 | - |
| dc.date.copyright | 2023-12-20 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-09-11 | - |
| dc.identifier.citation | 1. Rivnay, J.; Owens, R. M.; Malliaras, G. G., The Rise of Organic Bioelectronics. Chem. Mater. 2014, 26 (1), 679-685.
2. Inal, S.; Rivnay, J.; Suiu, A.-O.; Malliaras, G. G.; McCulloch, I., Conjugated Polymers in Bioelectronics. Acc. Chem. Res. 2018, 51 (6), 1368-1376. 3. Han, W. B.; Yang, S. M.; Rajaram, K.; Hwang, S.-W., Materials and Fabrication Strategies for Biocompatible and Biodegradable Conductive Polymer Composites toward Bio-Integrated Electronic Systems. Adv. Sustainable Syst. 2022, 6 (2), 2100075. 4. Criado-Gonzalez, M.; Dominguez-Alfaro, A.; Lopez-Larrea, N.; Alegret, N.; Mecerreyes, D., Additive Manufacturing of Conducting Polymers: Recent Advances, Challenges, and Opportunities. ACS Appl. Polym. Mater. 2021, 3 (6), 2865-2883. 5. Wu, J.-G.; Chen, J.-H.; Liu, K.-T.; Luo, S.-C., Engineering Antifouling Conducting Polymers for Modern Biomedical Applications. ACS Appl. Mater. Interfaces 2019, 11 (24), 21294-21307. 6. Zeglio, E.; Rutz, A. L.; Winkler, T. E.; Malliaras, G. G.; Herland, A., Conjugated Polymers for Assessing and Controlling Biological Functions. Adv. Mater. 2019, 31 (22), 1806712. 7. Ates, M., A review study of (bio)sensor systems based on conducting polymers. Mater. Sci. Eng. C 2013, 33 (4), 1853-1859. 8. Balint, R.; Cassidy, N. J.; Cartmell, S. H., Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomater. 2014, 10 (6), 2341-2353. 9. Luo, S.-C., Conducting Polymers as Biointerfaces and Biomaterials: A Perspective for a Special Issue of Polymer Reviews. Polym. Rev. 2013, 53 (3), 303-310. 10. Luo, S.-C.; Mohamed Ali, E.; Tansil, N. C.; Yu, H.-h.; Gao, S.; Kantchev, E. A. B.; Ying, J. Y., Poly(3,4-ethylenedioxythiophene) (PEDOT) Nanobiointerfaces: Thin, Ultrasmooth, and Functionalized PEDOT Films with in Vitro and in Vivo Biocompatibility. Langmuir 2008, 24 (15), 8071-8077. 11. Ruffo, R.; Celik-Cochet, A.; Posset, U.; Mari, C. M.; Schottner, G., Mechanistic study of the redox process of an in situ oxidatively polymerised poly(3,4-ethylene-dioxythiophene) film. Sol. Energy Mater. Sol. Cells 2008, 92 (2), 140-145. 12. Groenendaal, L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R., Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future. Adv. Mater. 2000, 12 (7), 481-494. 13. Baek, P.; Voorhaar, L.; Barker, D.; Travas-Sejdic, J., Molecular Approach to Conjugated Polymers with Biomimetic Properties. Acc. Chem. Res. 2018, 51 (7), 1581-1589. 14. Rozlosnik, N., New directions in medical biosensors employing poly(3,4-ethylenedioxy thiophene) derivative-based electrodes. Anal. Bioanal. Chem. 2009, 395 (3), 637-645. 15. Huang, P.-C.; Shen, M.-Y.; Yu, H.-h.; Wei, S.-C.; Luo, S.-C., Surface Engineering of Phenylboronic Acid-Functionalized Poly(3,4-ethylenedioxythiophene) for Fast Responsive and Sensitive Glucose Monitoring. ACS Appl. Bio Mater. 2018, 1 (1), 160-167. 16. Lin, C.-H.; Luo, S.-C., Zwitterionic Conducting Polymers: From Molecular Design, Surface Modification, and Interfacial Phenomenon to Biomedical Applications. Langmuir 2022, 38 (24), 7383-7399. 17. Baggerman, J.; Smulders, M. M. J.; Zuilhof, H., Romantic Surfaces: A Systematic Overview of Stable, Biospecific, and Antifouling Zwitterionic Surfaces. Langmuir 2019, 35 (5), 1072-1084. 18. Berlanda, S. F.; Breitfeld, M.; Dietsche, C. L.; Dittrich, P. S., Recent Advances in Microfluidic Technology for Bioanalysis and Diagnostics. Anal. Chem. 2021, 93 (1), 311-331. 19. Obstals, F.; Witzdam, L.; Garay-Sarmiento, M.; Kostina, N. Y.; Quandt, J.; Rossaint, R.; Singh, S.; Grottke, O.; Rodriguez-Emmenegger, C., Improving Hemocompatibility: How Can Smart Surfaces Direct Blood To Fight against Thrombi. ACS Appl. Mater. Interfaces 2021, 13 (10), 11696-11707. 20. Wang, Z.; Scheres, L.; Xia, H.; Zuilhof, H., Developments and Challenges in Self-Healing Antifouling Materials. Adv. Funct. Mater. 2020, 30 (26), 1908098. 21. Wellman, S. M.; Eles, J. R.; Ludwig, K. A.; Seymour, J. P.; Michelson, N. J.; McFadden, W. E.; Vazquez, A. L.; Kozai, T. D. Y., A Materials Roadmap to Functional Neural Interface Design. Adv. Funct. Mater. 2018, 28 (12), 1701269. 22. Boehler, C.; Oberueber, F.; Schlabach, S.; Stieglitz, T.; Asplund, M., Long-Term Stable Adhesion for Conducting Polymers in Biomedical Applications: IrOx and Nanostructured Platinum Solve the Chronic Challenge. ACS Appl. Mater. Interfaces 2017, 9 (1), 189-197. 23. Rousche, P. J.; Normann, R. A., Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex. J. Neurosci. Methods 1998, 82 (1), 1-15. 24. Wang, C.-C.; Wei, S.-C.; Luo, S.-C., Recent Advances and Biomedical Applications of Peptide-Integrated Conducting Polymers. ACS Appl. Bio Mater. 2022. 25. Yan, H.; Wu, Q.; Yu, C.; Zhao, T.; Liu, M., Recent Progress of Biomimetic Antifouling Surfaces in Marine. Adv. Mater. Interfaces 2020, 7 (20), 2000966. 26. Chin, M.; Tada, S.; Tsai, M.-H.; Ito, Y.; Luo, S.-C., Strategy to Immobilize Peptide Probe Selected through In Vitro Ribosome Display for Electrochemical Aptasensor Application. Anal. Chem. 2020, 92 (16), 11260-11267. 27. Wang, G.; Han, R.; Li, Q.; Han, Y.; Luo, X., Electrochemical Biosensors Capable of Detecting Biomarkers in Human Serum with Unique Long-Term Antifouling Abilities Based on Designed Multifunctional Peptides. Anal. Chem. 2020, 92 (10), 7186-7193. 28. Song, Z.; Chen, M.; Ding, C.; Luo, X., Designed Three-in-One Peptides with Anchoring, Antifouling, and Recognizing Capabilities for Highly Sensitive and Low-Fouling Electrochemical Sensing in Complex Biological Media. Anal. Chem. 2020, 92 (8), 5795-5802. 29. Tanaka, M.; Sato, K.; Kitakami, E.; Kobayashi, S.; Hoshiba, T.; Fukushima, K., Design of biocompatible and biodegradable polymers based on intermediate water concept. Polym. J. 2015, 47 (2), 114-121. 30. Morita, S.; Tanaka, M., Effect of Sodium Chloride on Hydration Structures of PMEA and P(MPC-r-BMA). Langmuir 2014, 30 (35), 10698-10703. 31. Tanaka, M.; Hayashi, T.; Morita, S., The roles of water molecules at the biointerface of medical polymers. Polym. J. 2013, 45 (7), 701-710. 32. Hoshino, T.; Tanaka, Y.; Jinnai, H.; Takahara, A., Surface and Interface Analyses of Polymer Brushes by Synchrotron Radiation. J. Phys. Soc. Jpn. 2012, 82 (2), 021014. 33. Kitano, H.; Mori, T.; Takeuchi, Y.; Tada, S.; Gemmei-Ide, M.; Yokoyama, Y.; Tanaka, M., Structure of Water Incorporated in Sulfobetaine Polymer Films as Studied by ATR-FTIR. Macromol. Biosci. 2005, 5 (4), 314-321. 34. Chen, Y.; Luo, S.-C., Synergistic Effects of Ions and Surface Potentials on Antifouling Poly(3,4-ethylenedioxythiophene): Comparison of Oligo(Ethylene Glycol) and Phosphorylcholine. Langmuir 2019, 35 (5), 1199-1210. 35. Wang, S.; Sun, W.; Guo, S.; Liu, X.; Han, X., Effects of Chiral Molecule Modification on Surface Biosorption Behavior. Langmuir 2021, 37 (15), 4441-4448. 36. Hamburger, R.; Azaz, E.; Donbrow, M., Autoxidation of polyoxyethylenic non-ionic surfactants and of polyethylene glycols. Pharm. Acta Helv. 1975, 50 (1-2), 10-7. 37. Zhang, P.; Sun, F.; Liu, S.; Jiang, S., Anti-PEG antibodies in the clinic: Current issues and beyond PEGylation. J. Controlled Release 2016, 244, 184-193. 38. Garay, R. P.; El-Gewely, R.; Armstrong, J. K.; Garratty, G.; Richette, P., Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin. Drug Delivery 2012, 9 (11), 1319-1323. 39. Erfani, A.; Seaberg, J.; Aichele, C. P.; Ramsey, J. D., Interactions between Biomolecules and Zwitterionic Moieties: A Review. Biomacromolecules 2020, 21 (7), 2557-2573. 40. Kalasin, S.; Letteri, R. A.; Emrick, T.; Santore, M. M., Adsorbed Polyzwitterion Copolymer Layers Designed for Protein Repellency and Interfacial Retention. Langmuir 2017, 33 (47), 13708-13717. 41. Estephan, Z. G.; Schlenoff, P. S.; Schlenoff, J. B., Zwitteration As an Alternative to PEGylation. Langmuir 2011, 27 (11), 6794-6800. 42. Laschewsky, A.; Rosenhahn, A., Molecular Design of Zwitterionic Polymer Interfaces: Searching for the Difference. Langmuir 2019, 35 (5), 1056-1071. 43. Xiao, S.; Ren, B.; Huang, L.; Shen, M.; Zhang, Y.; Zhong, M.; Yang, J.; Zheng, J., Salt-responsive zwitterionic polymer brushes with anti-polyelectrolyte property. Curr. Opin. Chem. Eng. 2018, 19, 86-93. 44. Georgiev, G. S.; Kamenska, E. B.; Vassileva, E. D.; Kamenova, I. P.; Georgieva, V. T.; Iliev, S. B.; Ivanov, I. A., Self-Assembly, Antipolyelectrolyte Effect, and Nonbiofouling Properties of Polyzwitterions. Biomacromolecules 2006, 7 (4), 1329-1334. 45. Lowe, A. B.; McCormick, C. L., Synthesis and Solution Properties of Zwitterionic Polymers. Chem. Rev. 2002, 102 (11), 4177-4190. 46. Wang, T.; Wang, X.; Long, Y.; Liu, G.; Zhang, G., Ion-Specific Conformational Behavior of Polyzwitterionic Brushes: Exploiting It for Protein Adsorption/Desorption Control. Langmuir 2013, 29 (22), 6588-6596. 47. Zhao, Y.-H.; Wee, K.-H.; Bai, R., A Novel Electrolyte-Responsive Membrane with Tunable Permeation Selectivity for Protein Purification. ACS Appl. Mater. Interfaces 2010, 2 (1), 203-211. 48. Xiao, S.; Zhang, Y.; Shen, M.; Chen, F.; Fan, P.; Zhong, M.; Ren, B.; Yang, J.; Zheng, J., Structural Dependence of Salt-Responsive Polyzwitterionic Brushes with an Anti-Polyelectrolyte Effect. Langmuir 2018, 34 (1), 97-105. 49. Kikuchi, M.; Terayama, Y.; Ishikawa, T.; Hoshino, T.; Kobayashi, M.; Ohta, N.; Jinnai, H.; Takahara, A., Salt Dependence of the Chain Stiffness and Excluded-Volume Strength for the Polymethacrylate-Type Sulfopropylbetaine in Aqueous NaCl Solutions. Macromolecules 2015, 48 (19), 7194-7204. 50. Yang, J.; Chen, H.; Xiao, S.; Shen, M.; Chen, F.; Fan, P.; Zhong, M.; Zheng, J., Salt-Responsive Zwitterionic Polymer Brushes with Tunable Friction and Antifouling Properties. Langmuir 2015, 31 (33), 9125-9133. 51. Pei, Y.; Travas-Sejdic, J.; Williams, D. E., Reversible electrochemical switching of polymer brushes grafted onto conducting polymer films. Langmuir 2012, 28 (21), 8072-83. 52. Zhao, H.; Zhu, B.; Luo, S. C.; Lin, H. A.; Nakao, A.; Yamashita, Y.; Yu, H. H., Controlled protein absorption and cell adhesion on polymer-brush-grafted poly(3,4-ethylenedioxythiophene) films. ACS Appl. Mater. Interfaces 2013, 5 (11), 4536-43. 53. Zhu, B.; Luo, S. C.; Zhao, H.; Lin, H. A.; Sekine, J.; Nakao, A.; Chen, C.; Yamashita, Y.; Yu, H. H., Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer. Nat. Commun. 2014, 5, 4523. 54. Goda, T.; Toya, M.; Matsumoto, A.; Miyahara, Y., Poly(3,4-ethylenedioxythiophene) Bearing Phosphorylcholine Groups for Metal-Free, Antibody-Free, and Low-Impedance Biosensors Specific for C-Reactive Protein. ACS Appl. Mater. Interfaces 2015, 7 (49), 27440-8. 55. Goda, T.; Miyahara, Y., Electrodeposition of Zwitterionic PEDOT Films for Conducting and Antifouling Surfaces. Langmuir 2019, 35 (5), 1126-1133. 56. Cao, B.; Tang, Q.; Li, L.; Lee, C. J.; Wang, H.; Zhang, Y.; Castaneda, H.; Cheng, G., Integrated zwitterionic conjugated poly(carboxybetaine thiophene) as a new biomaterial platform. Chem. Sci. 2015, 6 (1), 782-788. 57. Cao, B.; Lee, C. J.; Zeng, Z.; Cheng, F.; Xu, F.; Cong, H.; Cheng, G., Electroactive poly(sulfobetaine-3,4-ethylenedioxythiophene) (PSBEDOT) with controllable antifouling and antimicrobial properties. Chem. Sci. 2016, 7 (3), 1976-1981. 58. Liu, X.; Xiao, T.; Wu, F.; Shen, M. Y.; Zhang, M.; Yu, H. H.; Mao, L., Ultrathin Cell-Membrane-Mimic Phosphorylcholine Polymer Film Coating Enables Large Improvements for In Vivo Electrochemical Detection. Angew. Chem., Int. Ed. 2017, 56 (39), 11802-11806. 59. Wu, H.; Lee, C. J.; Wang, H.; Hu, Y.; Young, M.; Han, Y.; Xu, F. J.; Cong, H.; Cheng, G., Highly sensitive and stable zwitterionic poly(sulfobetaine-3,4-ethylenedioxythiophene) (PSBEDOT) glucose biosensor. Chem. Sci. 2018, 9 (9), 2540-2546. 60. Gorbalenya, A. E.; Baker, S. C.; Baric, R. S.; de Groot, R. J.; Drosten, C.; Gulyaeva, A. A.; Haagmans, B. L.; Lauber, C.; Leontovich, A. M.; Neuman, B. W.; Penzar, D.; Perlman, S.; Poon, L. L. M.; Samborskiy, D. V.; Sidorov, I. A.; Sola, I.; Ziebuhr, J.; Coronaviridae Study Group of the International Committee on Taxonomy of, V., The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5 (4), 536-544. 61. Song, Z.; Ma, Y.; Chen, M.; Ambrosi, A.; Ding, C.; Luo, X., Electrochemical Biosensor with Enhanced Antifouling Capability for COVID-19 Nucleic Acid Detection in Complex Biological Media. Anal. Chem. 2021, 93 (14), 5963-5971. 62. Kilic, T.; Gessner, I.; Cho, Y. K.; Jeong, N.; Quintana, J.; Weissleder, R.; Lee, H., Zwitterionic Polymer Electroplating Facilitates the Preparation of Electrode Surfaces for Biosensing. Adv. Mater. 2022, 34 (8), 2107892. 63. Ishihara, K.; Nomura, H.; Mihara, T.; Kurita, K.; Iwasaki, Y.; Nakabayashi, N., Why do phospholipid polymers reduce protein adsorption? J. Biomed. Mater. Res. 1998, 39 (2), 323-330. 64. Ishihara, K.; Oshida, H.; Endo, Y.; Ueda, T.; Watanabe, A.; Nakabayashi, N., Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism. J. Biomed. Mater. Res. 1992, 26 (12), 1543-1552. 65. Ishihara, K.; Ziats, N. P.; Tierney, B. P.; Nakabayashi, N.; Anderson, J. M., Protein adsorption from human plasma is reduced on phospholipid polymers. J. Biomed. Mater. Res. 1991, 25 (11), 1397-1407. 66. Lin, H.-A.; Zhu, B.; Wu, Y.-W.; Sekine, J.; Nakao, A.; Luo, S.-C.; Yamashita, Y.; Yu, H.-H., Dynamic Poly(3,4-ethylenedioxythiophene)s Integrate Low Impedance with Redox-Switchable Biofunction. Adv. Funct. Mater. 2018, 28 (12), 1703890. 67. Casas, J. P.; Shah, T.; Hingorani, A. D.; Danesh, J.; Pepys, M. B., C-reactive protein and coronary heart disease: a critical review. J. Intern. Med. 2008, 264 (4), 295-314. 68. Pepys, M. B.; Hirschfield, G. M.; Tennent, G. A.; Ruth Gallimore, J.; Kahan, M. C.; Bellotti, V.; Hawkins, P. N.; Myers, R. M.; Smith, M. D.; Polara, A.; Cobb, A. J. A.; Ley, S. V.; Andrew Aquilina, J.; Robinson, C. V.; Sharif, I.; Gray, G. A.; Sabin, C. A.; Jenvey, M. C.; Kolstoe, S. E.; Thompson, D.; Wood, S. P., Targeting C-reactive protein for the treatment of cardiovascular disease. Nature 2006, 440 (7088), 1217-1221. 69. Marnell, L.; Mold, C.; Du Clos, T. W., C-reactive protein: Ligands, receptors and role in inflammation. Clin. Immunol. 2005, 117 (2), 104-111. 70. Griselli, M.; Herbert, J.; Hutchinson, W. L.; Taylor, K. M.; Sohail, M.; Krausz, T.; Pepys, M. B., C-Reactive Protein and Complement Are Important Mediators of Tissue Damage in Acute Myocardial Infarction. J. Exp. Med. 1999, 190 (12), 1733-1740. 71. Gewurz, H.; Mold, C.; Siegel, J.; Fiedel, B., C-reactive protein and the acute phase response. Adv Intern Med 1982, 27, 345-372. 72. Iwasaki, S.; Kawasaki, H.; Iwasaki, Y., Label-Free Specific Detection and Collection of C-Reactive Protein Using Zwitterionic Phosphorylcholine-Polymer-Protected Magnetic Nanoparticles. Langmuir 2019, 35 (5), 1749-1755. 73. Wang, Q.; Jin, H.; Xia, D.; Shao, H.; Peng, K.; Liu, X.; Huang, H.; Zhang, Q.; Guo, J.; Wang, Y.; Crommen, J.; Gan, N.; Jiang, Z., Biomimetic Polymer-Based Method for Selective Capture of C-Reactive Protein in Biological Fluids. ACS Appl. Mater. Interfaces 2018, 10 (49), 41999-42008. 74. Goda, T.; Ishihara, K.; Miyahara, Y., Critical update on 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer science. J. Appl. Polym. Sci. 2015, 132 (16). 75. Thompson, D.; Pepys, M. B.; Wood, S. P., The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure 1999, 7 (2), 169-177. 76. Wu, J.-G.; Wei, S.-C.; Chen, Y.; Chen, J.-H.; Luo, S.-C., Critical Study of the Recognition between C-Reactive Protein and Surface-Immobilized Phosphorylcholine by Quartz Crystal Microbalance with Dissipation. Langmuir 2018, 34 (3), 943-951. 77. Uguz, I.; Proctor, C. M.; Curto, V. F.; Pappa, A.-M.; Donahue, M. J.; Ferro, M.; Owens, R. M.; Khodagholy, D.; Inal, S.; Malliaras, G. G., A Microfluidic Ion Pump for In Vivo Drug Delivery. Adv. Mater. 2017, 29 (27), 1701217. 78. Weidlich, C.; Mangold, K. M.; Jüttner, K., Conducting polymers as ion-exchangers for water purification. Electrochim. Acta 2001, 47 (5), 741-745. 79. Puiggalí-Jou, A.; del Valle, L. J.; Alemán, C., Drug delivery systems based on intrinsically conducting polymers. J. Controlled Release 2019, 309, 244-264. 80. Uppalapati, D.; Boyd, B. J.; Garg, S.; Travas-Sejdic, J.; Svirskis, D., Conducting polymers with defined micro- or nanostructures for drug delivery. Biomaterials 2016, 111, 149-162. 81. Svirskis, D.; Travas-Sejdic, J.; Rodgers, A.; Garg, S., Electrochemically controlled drug delivery based on intrinsically conducting polymers. J. Controlled Release 2010, 146 (1), 6-15. 82. Abidian, M. R.; Kim, D.-H.; Martin, D. C., Conducting-Polymer Nanotubes for Controlled Drug Release. Adv. Mater. 2006, 18 (4), 405-409. 83. Lira, L. M.; Córdoba de Torresi, S. I., Conducting polymer–hydrogel composites for electrochemical release devices: Synthesis and characterization of semi-interpenetrating polyaniline–polyacrylamide networks. Electrochem. Commun. 2005, 7 (7), 717-723. 84. Gomez-Carretero, S.; Libberton, B.; Svennersten, K.; Persson, K.; Jager, E.; Berggren, M.; Rhen, M.; Richter-Dahlfors, A., Redox-active conducting polymers modulate Salmonella biofilm formation by controlling availability of electron acceptors. npj Biofilms Microbiomes 2017, 3 (1), 19. 85. Marzocchi, M.; Gualandi, I.; Calienni, M.; Zironi, I.; Scavetta, E.; Castellani, G.; Fraboni, B., Physical and Electrochemical Properties of PEDOT:PSS as a Tool for Controlling Cell Growth. ACS Appl. Mater. Interfaces 2015, 7 (32), 17993-18003. 86. Garay-Sarmiento, M.; Witzdam, L.; Vorobii, M.; Simons, C.; Herrmann, N.; de los Santos Pereira, A.; Heine, E.; El-Awaad, I.; Lütticken, R.; Jakob, F.; Schwaneberg, U.; Rodriguez-Emmenegger, C., Kill&Repel Coatings: The Marriage of Antifouling and Bactericidal Properties to Mitigate and Treat Wound Infections. Adv. Funct. Mater. 2022, 32 (9), 2106656. 87. Wei, T.; Tang, Z.; Yu, Q.; Chen, H., Smart Antibacterial Surfaces with Switchable Bacteria-Killing and Bacteria-Releasing Capabilities. ACS Appl. Mater. Interfaces 2017, 9 (43), 37511-37523. 88. Yu, Q.; Wu, Z.; Chen, H., Dual-function antibacterial surfaces for biomedical applications. Acta Biomater. 2015, 16, 1-13. 89. Ye, G.; Lee, J.; Perreault, F.; Elimelech, M., Controlled Architecture of Dual-Functional Block Copolymer Brushes on Thin-Film Composite Membranes for Integrated “Defending” and “Attacking” Strategies against Biofouling. ACS Appl. Mater. Interfaces 2015, 7 (41), 23069-23079. 90. Mi, L.; Jiang, S., Integrated Antimicrobial and Nonfouling Zwitterionic Polymers. Angew. Chem. Int. Ed. 2014, 53 (7), 1746-1754. 91. Zou, P.; Hartleb, W.; Lienkamp, K., It takes walls and knights to defend a castle – synthesis of surface coatings from antimicrobial and antibiofouling polymers. J. Mater. Chem. 2012, 22 (37), 19579-19589. 92. Wu, J.; Zhang, D.; Wang, Y.; Mao, S.; Xiao, S.; Chen, F.; Fan, P.; Zhong, M.; Tan, J.; Yang, J., Electric Assisted Salt-Responsive Bacterial Killing and Release of Polyzwitterionic Brushes in Low-Concentration Salt Solution. Langmuir 2019, 35 (25), 8285-8293. 93. Yan, S.; Luan, S.; Shi, H.; Xu, X.; Zhang, J.; Yuan, S.; Yang, Y.; Yin, J., Hierarchical Polymer Brushes with Dominant Antibacterial Mechanisms Switching from Bactericidal to Bacteria Repellent. Biomacromolecules 2016, 17 (5), 1696-1704. 94. Subramani, R.; Elangomannan, S.; Louis, K.; Kannan, S.; Gopi, D., Fabrication of Minerals Substituted Porous Hydroxyapaptite/Poly(3,4-ethylenedioxy pyrrole-co-3,4-ethylenedioxythiophene) Bilayer Coatings on Surgical Grade Stainless Steel and Its Antibacterial and Biological Activities for Orthopedic Applications. ACS Appl. Mater. Interfaces 2016, 8 (19), 12404-12421. 95. Casado, N.; Hernández, G.; Veloso, A.; Devaraj, S.; Mecerreyes, D.; Armand, M., PEDOT Radical Polymer with Synergetic Redox and Electrical Properties. ACS Macro Lett. 2016, 5 (1), 59-64. 96. Petrila, L.-M.; Bucatariu, F.; Mihai, M.; Teodosiu, C., Polyelectrolyte Multilayers: An Overview on Fabrication, Properties, and Biomedical and Environmental Applications. Materials 2021, 14 (15), 4152. 97. Gomez-Carretero, S.; Libberton, B.; Svennersten, K.; Persson, K.; Jager, E.; Berggren, M.; Rhen, M.; Richter-Dahlfors, A., Author Correction: Redox-active conducting polymers modulate Salmonella biofilm formation by controlling availability of electron acceptors. npj Biofilms Microbiomes 2018, 4 (1), 19. 98. Tripathy, S. K.; Kumar, J.; Nalwa, H. S., Handbook of Polyelectrolytes and Their Applications: Applications of polyelectrolytes and theoretical models. American Scientific Publishers: 2002. 99. Blackman, L. D.; Gunatillake, P. A.; Cass, P.; Locock, K. E. S., An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. Chem. Soc. Rev. 2019, 48 (3), 757-770. 100. Kudaibergenov, S. E.; Ciferri, A., Natural and Synthetic Polyampholytes, 2. Macromol. Rapid Commun. 2007, 28 (20), 1969-1986. 101. Kamiyama, Y.; Israelachvili, J., Effect of pH and salt on the adsorption and interactions of an amphoteric polyelectrolyte. Macromolecules 1992, 25 (19), 5081-5088. 102. Khan, M. O.; Åkesson, T.; Jönsson, B., Adsorption of Polyampholytes to Charged Surfaces. Macromolecules 2001, 34 (12), 4216-4221. 103. Petty, A. J., II; Keate, R. L.; Jiang, B.; Ameer, G. A.; Rivnay, J., Conducting Polymers for Tissue Regeneration in Vivo. Chem. Mater. 2020, 32 (10), 4095-4115. 104. Wan, A. M. D.; Schur, R. M.; Ober, C. K.; Fischbach, C.; Gourdon, D.; Malliaras, G. G., Electrical Control of Protein Conformation. Adv. Mater. 2012, 24 (18), 2501-2505. 105. Higgins, M. J.; Molino, P. J.; Yue, Z.; Wallace, G. G., Organic Conducting Polymer–Protein Interactions. Chem. Mater. 2012, 24 (5), 828-839. 106. Wu, J.-G.; Wei, S.-C.; Luo, S.-C., In Situ Probing Unusual Protein Adsorption Behavior on Electrified Zwitterionic Conducting Polymers. Adv. Mater. Interfaces 2020, 7 (15), 2000470. 107. Vorobii, M.; Kostina, N. Y.; Rahimi, K.; Grama, S.; Söder, D.; Pop-Georgievski, O.; Sturcova, A.; Horak, D.; Grottke, O.; Singh, S.; Rodriguez-Emmenegger, C., Antifouling Microparticles To Scavenge Lipopolysaccharide from Human Blood Plasma. Biomacromolecules 2019, 20 (2), 959-968. 108. Bengani-Lutz, P.; Converse, E.; Cebe, P.; Asatekin, A., Self-Assembling Zwitterionic Copolymers as Membrane Selective Layers with Excellent Fouling Resistance: Effect of Zwitterion Chemistry. ACS Appl. Mater. Interfaces 2017, 9 (24), 20859-20872. 109. Leng, C.; Hung, H.-C.; Sun, S.; Wang, D.; Li, Y.; Jiang, S.; Chen, Z., Probing the Surface Hydration of Nonfouling Zwitterionic and PEG Materials in Contact with Proteins. ACS Appl. Mater. Interfaces 2015, 7 (30), 16881-16888. 110. Hackett, A. J.; Malmström, J.; Travas-Sejdic, J., Functionalization of conducting polymers for biointerface applications. Prog. Polym. Sci. 2017, 70, 18-33. 111. Hackett, A. J.; Malmström, J.; Molino, P. J.; Gautrot, J. E.; Zhang, H.; Higgins, M. J.; Wallace, G. G.; Williams, D. E.; Travas-Sejdic, J., Conductive surfaces with dynamic switching in response to temperature and salt. J. Mater. Chem. B 2015, 3 (48), 9285-9294. 112. Gaddam, P.; Ducker, W., Electrostatic Screening Length in Concentrated Salt Solutions. Langmuir 2019, 35 (17), 5719-5727. 113. Berg, J. C., An Introduction to Interfaces & Colloids: The Bridge to Nanoscience. World Scientific: 2010. 114. Israelachvili, J. N., Intermolecular and Surface Forces. Elsevier Science: 2015. 115. Israelachvili, J. N.; Adams, G. E., Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm. J. Chem. Soc., Faraday Trans. 1978, 74 (0), 975-1001. 116. Lin, C. H.; Luo, S. C., Combination of AFM and Electrochemical QCM-D for Probing Zwitterionic Polymer Brushes in Water: Visualization of Ionic Strength and Surface Potential Effects. Langmuir 2021, 37 (42), 12476-12486. 117. Suzuki, N.; Cheung, T. T.; Cai, X.-D.; Odaka, A.; Otvos, L.; Eckman, C.; Golde, T. E.; Younkin, S. G., An Increased Percentage of Long Amyloid β Protein Secreted by Familial Amyloid β Protein Precursor (βApp717) Mutants. Science 1994, 264 (5163), 1336-1340. 118. Lucin, K. M.; Wyss-Coray, T., Immune Activation in Brain Aging and Neurodegeneration: Too Much or Too Little? Neuron 2009, 64 (1), 110-122. 119. Wu, T.-H.; Lai, R.-H.; Yao, C.-N.; Juang, J.-L.; Lin, S.-Y., Supramolecular Bait to Trigger Non-Equilibrium Co-Assembly and Clearance of Aβ42. Angew. Chem. Int. Ed. 2021, 60 (8), 4014-4017. 120. Morel, B.; Carrasco, M. P.; Jurado, S.; Marco, C.; Conejero-Lara, F., Dynamic micellar oligomers of amyloid beta peptides play a crucial role in their aggregation mechanisms. PCCP 2018, 20 (31), 20597-20614. 121. Fu, Z.; Aucoin, D.; Davis, J.; Van Nostrand, W. E.; Smith, S. O., Mechanism of Nucleated Conformational Conversion of Aβ42. Biochemistry 2015, 54 (27), 4197-4207. 122. Hamley, I. W., The Amyloid Beta Peptide: A Chemist’s Perspective. Role in Alzheimer’s and Fibrillization. Chem. Rev. 2012, 112 (10), 5147-5192. 123. 吳致廣. 藉由QCM-D和AFM探索兩性離子官能化導電高分子表面上的吸附行為. 國立臺灣大學, 台北市, 2021. 124. Huang, J.-J.; Lin, C.-H.; Tanaka, Y.; Yamamoto, A.; Luo, S.-C.; Tanaka, M., Manipulation of Surface Hydration States by Tuning the Oligo(Ethylene Glycol) Moieties on PEDOT to Achieve Platelet-Resistant Bioelectrode Applications. Adv. Mater. Interfaces 2022, 2200707. 125. Zhao, H.; Liu, C.-Y.; Luo, S.-C.; Zhu, B.; Wang, T.-H.; Hsu, H.-F.; Yu, H.-h., Facile Syntheses of Dioxythiophene-Based Conjugated Polymers by Direct C–H Arylation. Macromolecules 2012, 45 (19), 7783-7790. 126. Sauerbrey, G., Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 1959, 155 (2), 206-222. 127. Huang, R.; Yi, P.; Tang, Y., Probing the interactions of organic molecules, nanomaterials, and microbes with solid surfaces using quartz crystal microbalances: methodology, advantages, and limitations. Environ. Sci.: Processes Impacts 2017, 19 (6), 793-811. 128. Nishimoto, T.; Enomoto, T.; Lin, C.-H.; Wu, J.-G.; Gupit, C. I.; Li, X.; Luo, S.-C.; Akimoto, A. M.; Yoshida, R., Construction of a nano-phase-separated structure on a hydrogel surface. Soft Matter 2022, 18 (4), 722-725. 129. Matsukawa, K.; Masuda, T.; Akimoto, A. M.; Yoshida, R., A surface-grafted thermoresponsive hydrogel in which the surface structure dominates the bulk properties. Chem. Commun. 2016, 52 (74), 11064-11067. 130. Yadav, H. O. S.; Kuo, A.-T.; Urata, S.; Shinoda, W., Effect of the Packing Density on the Surface Hydrophobicity of ω-Functionalized (−CF3, −CH3, −OCH3, and −OH) Self-Assembled Monolayers: A Molecular Dynamics Study. J. Phys. Chem. C 2020, 124 (26), 14237-14244. 131. Prokhorov, E.; Luna-Barcenas, G.; Kumar-Krishnan, S.; Mauricio Sánchez, R. A.; Castillo Reyes, B. E.; Hernández Vargas, J., Probing molecular interactions of polysaccharides in the presence of water. J. Mol. Struct. 2020, 1218, 128531. 132. Chen, S.-H.; Fukazawa, K.; Inoue, Y.; Ishihara, K., Photoinduced Surface Zwitterionization for Antifouling of Porous Polymer Substrates. Langmuir 2019, 35 (5), 1312-1319. 133. Han, G.; Liu, J. T.; Lu, K. J.; Chung, T.-S., Advanced Anti-Fouling Membranes for Osmotic Power Generation from Wastewater via Pressure Retarded Osmosis (PRO). Environ. Sci. Technol. 2018, 52 (11), 6686-6694. 134. Fan, Y.; Migliore, N.; Raffa, P.; Bose, R. K.; Picchioni, F., Synthesis of Zwitterionic Copolymers via Copper-Mediated Aqueous Living Radical Grafting Polymerization on Starch. Polymers 2019, 11 (2), 192. 135. Zhu, J.; Tian, M.; Hou, J.; Wang, J.; Lin, J.; Zhang, Y.; Liu, J.; Van der Bruggen, B., Surface zwitterionic functionalized graphene oxide for a novel loose nanofiltration membrane. J. Mater. Chem. A 2016, 4 (5), 1980-1990. 136. Zhai, S.; Ma, Y.; Chen, Y.; Li, D.; Cao, J.; Liu, Y.; Cai, M.; Xie, X.; Chen, Y.; Luo, X., Synthesis of an amphiphilic block copolymer containing zwitterionic sulfobetaine as a novel pH-sensitive drug carrier. Polym. Chem. 2014, 5 (4), 1285-1297. 137. Wu, C.; Zhou, Y.; Wang, H.; Hu, J., P4VP Modified Zwitterionic Polymer for the Preparation of Antifouling Functionalized Surfaces. Nanomaterials 2019, 9 (5), 706. 138. Jiang, S.; Cao, Z., Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications. Adv. Mater. 2010, 22 (9), 920-932. 139. Zhang, Z.; Chen, S.; Jiang, S., Dual-Functional Biomimetic Materials: Nonfouling Poly(carboxybetaine) with Active Functional Groups for Protein Immobilization. Biomacromolecules 2006, 7 (12), 3311-3315. 140. Dong, D.; Tsao, C.; Hung, H.-C.; Yao, F.; Tang, C.; Niu, L.; Ma, J.; MacArthur, J.; Sinclair, A.; Wu, K.; Jain, P.; Hansen, M. R.; Ly, D.; Tang, S. G.-h.; Luu, T. M.; Jain, P.; Jiang, S., High-strength and fibrous capsule-resistant zwitterionic elastomers. Sci. Adv. 2021, 7 (1), eabc5442. 141. Wang, Y.-S.; Yau, S.; Chau, L.-K.; Mohamed, A.; Huang, C.-J., Functional Biointerfaces Based on Mixed Zwitterionic Self-Assembled Monolayers for Biosensing Applications. Langmuir 2019, 35 (5), 1652-1661. 142. Shao, Q.; Mi, L.; Han, X.; Bai, T.; Liu, S.; Li, Y.; Jiang, S., Differences in Cationic and Anionic Charge Densities Dictate Zwitterionic Associations and Stimuli Responses. J. Phys. Chem. B 2014, 118 (24), 6956-6962. 143. Shao, Q.; Jiang, S., Molecular Understanding and Design of Zwitterionic Materials. Adv. Mater. 2015, 27 (1), 15-26. 144. Wang, T.; Liu, L.; Zhu, Z.; Papakonstantinou, P.; Hu, J.; Liu, H.; Li, M., Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticles on an Au electrode. Energy Environ. Sci. 2013, 6 (2), 625-633. 145. Lemineur, J.-F.; Ciocci, P.; Noël, J.-M.; Ge, H.; Combellas, C.; Kanoufi, F., Imaging and Quantifying the Formation of Single Nanobubbles at Single Platinum Nanoparticles during the Hydrogen Evolution Reaction. ACS Nano 2021, 15 (2), 2643-2653. 146. Morozova, S.; Hu, G.; Emrick, T.; Muthukumar, M., Influence of Dipole Orientation on Solution Properties of Polyzwitterions. ACS Macro Lett. 2016, 5 (1), 118-122. 147. Kobayashi, M.; Ishihara, K.; Takahara, A., Neutron reflectivity study of the swollen structure of polyzwitterion and polyeletrolyte brushes in aqueous solution. J. Biomater. Sci., Polym. Ed. 2014, 25 (14-15), 1673-1686. 148. Caliari, S. R.; Burdick, J. A., A practical guide to hydrogels for cell culture. Nat. Methods 2016, 13 (5), 405-414. 149. Blache, U.; Ford, E. M.; Ha, B.; Rijns, L.; Chaudhuri, O.; Dankers, P. Y. W.; Kloxin, A. M.; Snedeker, J. G.; Gentleman, E., Engineered hydrogels for mechanobiology. Nat. Rev. Methods Primers 2022, 2 (1), 98. 150. Lim, J. Y.; Shaughnessy, M. C.; Zhou, Z.; Noh, H.; Vogler, E. A.; Donahue, H. J., Surface energy effects on osteoblast spatial growth and mineralization. Biomaterials 2008, 29 (12), 1776-1784. 151. Huang, H.; Zhang, C.; Crisci, R.; Lu, T.; Hung, H.-C.; Sajib, M. S. J.; Sarker, P.; Ma, J.; Wei, T.; Jiang, S.; Chen, Z., Strong Surface Hydration and Salt Resistant Mechanism of a New Nonfouling Zwitterionic Polymer Based on Protein Stabilizer TMAO. J. Am. Chem. Soc. 2021, 143 (40), 16786-16795. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91301 | - |
| dc.description.abstract | 在生物工程領域中,生物傳感器性能的要求很高,尤其是用於體內偵測中電化學傳感器的靈敏度和可靠性。 作為在水相環境中使用的電極材料或軟物質,探索液態與固態介面處的相互作用及現象至關重要。這些材料擁有的電化學控制及傳感能力替進階應用開啟了一扇窗。本文全面研究了具電活性軟物質的表面性質和介面現象,包含了官能化的聚(3,4-乙烯二氧基噻吩) (PEDOT)薄膜,以及兩性離子高分子的吸附行為。
導電高分子(CPs)作為生物工程中的電極材料引起了相當大的關注,與傳統無機材料相比,導電高分子更具有機械柔軟性,更類似於神經和腦等生物組織。為了獲得更好的性能並拓展生物電子應用,具有抗沾黏特性的表面改質成為一種防止蛋白質的非特定性吸附且提高生物相容性的簡便方法。在本文的第一部分,使用原子力顯微鏡(AFM)研究了乙二醇(EG)官能化的PEDOT (PEDOT-EG)的表面特性,包含了表面粗糙度、親水性黏附性。我們比較了具有三種不同EG長度:三乙二醇、四乙二醇、六乙二醇,和兩種末端基團:羥基(-OH)和甲基(-OCH3),共六種PEDOT-EG表面。在脂多醣-Aβ42(LPS-Aβ42)結合研究中,我們比較了不同官能化的PEDOTs表面親疏水性。透過石英晶體微天平附加耗散偵測(QCM-D),對LPS-Aβ42結合行為的量測突顯了Aβ42依時間的吸附量變化,暗示了Aβ42結構內部的轉變。這些發現加深了我們對PEDOT功能、LPS-Aβ42相互作用和Aβ42結構動力學的理解,這些對於阿茲海默症的發病機制至關重要。原子力顯微鏡對表面特性的分析也進一步觀察了另一種軟物質:表面具有奈米相分離結構的水凝膠。透過PeakForce QNM模式和force-volume的方法映射試片表面,呈現了表面奈米尺度的力學性質。 第二部分探討了兩性離子高分子在帶電表面上的吸附行為。我們透過外部施加的電位來關注兩性離子中局部偶極矩與帶電表面之間的相互作用。電化學石英晶體微天平附加耗散偵測(EQCM-D)測量從帶負電到帶正電的導電玻璃塗層。儘管兩性離子高分子具有電中性結構,我們發現其在帶電表面上仍然顯示出吸引或排斥的相互作用。除了影響兩性離子高分子的吸附量和吸附速率外,外部施加的電位也會對吸附薄膜的黏彈性質有影響。為了評估所施加表面電位的影響範圍,我們藉由在水溶液中添加100 mM LiClO4的鹽類進一步研究離子強度的影響。與聚(2-甲基磷酸膽鹼) (PMPC)和聚(3-[[2-(甲基丙烯醯氧)乙基]二甲基銨]丙酸酯) (PCBMA)相比,聚([2-(甲基丙烯醯氧)乙基]二甲基-(3-磺丙基)氫氧化銨) (PSBMA)藉由高分子鏈構型的動態變化在加鹽環境中大幅減少而表現出對離子強度的顯著依賴性。 在第三部分中,我們展示了兩性離子高分子刷在PEDOT表面的改質。透過電聚合製備含起始劑的PEDOT薄膜,然後藉由表面起始原子轉移自由基聚合(SI-ATRP)反應製備高分子刷接枝薄膜。對於控制高分子刷的構型和水合狀態而言,離子強度和外部施加電位至關重要。我們定量研究和比較了不同鹽濃度和表面電位下的PMPC和PSBMA高分子刷。AFM分析了高分子刷的表面形態,force-volume方法則可以分析兩種高分子刷的楊氏係數。EQCM-D檢查了高分子刷的水合狀態和蛋白質吸附行為。能量耗散和頻率變化讀數則能對應在不同離子強度下薄膜表面的離子吸附。結果表明PMPC刷具有更大的離子強度獨立性,這意味著PMPC刷的構型不受離子濃度影響。此外,我們還藉由非特異性和特異性吸附行為分析了帶電聚(EDOT-PC)電極與PEDOT薄膜上PMPC刷受到表面電位的影響程度差異。我們得出結論是PMPC刷表現出獨特的行為,其幾乎不受離子濃度的影響。由於在氯化鈉水溶液中,電極表面對外部環境的影響會受到有限的德拜長度抑制,因此表面電位在高分子刷修飾的電極表面影響較小。這項工作深入瞭解了利用兩性離子高分子刷進行表面改質的表面其機械性能與其可控的抗沾黏能力之間的關係。 | zh_TW |
| dc.description.abstract | In the bioengineering field, the performance of biosensors is highly required, especially for in vivo electrochemical sensing in terms of sensitivity and reliability. As electrode materials or soft matters are operated in the aqueous environment, exploring the interactions or the phenomenon at the liquid/solid interface is crucial. Electrochemical controlling and sensing of these materials pave the way for versatile advanced applications. In this dissertation, we comprehensively investigated surface properties and interfacial phenomenon of electroactive soft matters, including the functionalized poly(3,4-ethylenedioxythiophene) (PEDOT) films, and the adsorption behaviors of zwitterionic polymers.
Conducting polymers (CPs) have attracted considerable attention as electrode materials in bioengineering mainly because of their mechanical softness compared to conventional inorganic materials, similar to those of biological tissues such as nerve and brain tissues. To achieve better performance and broaden bioelectronics applications, surface modification with antifouling properties represents a facile approach to preventing unwanted nonspecific protein adsorption and improving biocompatibility. In the first section of this dissertation, surface properties including surface roughness, hydrophilicity, and adhesion of ethylene glycol (EG)-functionalized PEDOT (PEDOT-EG) were investigated using atomic force microscopy (AFM). Six kinds of PEDOT-EG, with three different EG lengths (tri-EG, tetra-EG, and hexa-EG) and two types of end groups, hydroxyl (-OH) and methoxy (-OCH3), were compared. In the lipopolysaccharides-Aβ42 (LPS-Aβ42) binding study, diverse functionalized PEDOTs were compared for their wettability characteristics. Using quartz crystal microbalance with dissipation (QCM-D), an investigation into LPS-Aβ42 binding highlighted time-dependent fluctuations in Aβ42 binding, suggesting structural transitions within the Aβ42 assemblies. These findings deepen our comprehension of PEDOT functionality, LPS-Aβ42 interactions, and Aβ42 assembly dynamics, which is critical to the pathogenesis of Alzheimer’s disease (AD). The analysis of surface properties done by AFM was further introduced to another soft matter, hydrogels of a nano-phase-separated structure on the surface. Nanomechanical properties of the surfaces were presented by mapping the surface in PeakForce quantitative nanomechanical mapping (PeakForce QNM) and force-volume methods. In the second section, the adsorption behaviors of zwitterionic polymers on electrified surfaces were explored. We focus on the interaction between the local dipole moments in the zwitterionic moieties and the charged surfaces by applying external surface potentials. Electrochemical QCM-D (EQCM-D) measurements was conducted on negatively to positively charged ITO-coated surfaces. We found the zwitterionic polymers still display attractive or repulsive interaction on the charged surfaces, despite their electrically neutral structures. In addition to the adsorbed amount and adsorption rates of zwitterionic polymers, external surface potentials also have an impact on the viscoelastic properties of the adsorbed thin films. To evaluate the influenced range of the applied surface potentials, the effect of ionic strength was further investigated by adding 100 mM LiClO4 in the aqueous solutions. Compared to poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and (poly(carboxybetaine methacrylate) (PCBMA), poly(sulfobetaine methacrylate) (PSBMA) exhibited a pronounced dependency on the ionic strength by observing the diminishing dynamic change of the chain conformations. In the third section, the surface modification of zwitterionic polymer brushes on PEDOT surface was demonstrated. Initiator-containing poly(3,4-ethylenedioxythiophene) films (poly(EDOT-Br)) were prepared by electropolymerization, and surface-initiated atom-transfer radical polymerization (SI-ATRP) was then carried out to fabricate polymer-brush-grafted films. Ionic strength and applied potentials are crucial in controlling polymer brushes’ conformation and hydration states. We quantitatively investigated and compared PMPC and PSBMA brushes at different salt concentrations and surface potentials. Polymer brushes were carefully characterized for their surface morphologies using an AFM. The force-volume method enabled the analysis of Young’s modulus of the two polymer brushes. Hydration states and protein binding behaviors of polymer brushes were examined using EQCM-D. The energy dissipation and frequency changes corresponded to the ion adsorption on the film surface under different ionic strengths. The results indicate that PMPC brushes have greater ionic strength independency, implying the conformation of the unchanged PMPC brushes. Moreover, we illustrated how the surface potential influences nonspecific and specific binding behavior on PMPC brushes on PEDOT films compared with electrified poly(phosphorylcholine-functionalized EDOT) (poly(EDOT-PC)) electrodes. We concluded that PMPC brushes exhibit unique behaviors that are barely affected by ion concentration. And brushes’ modification results in less influence by surface potential due to the finite Debye length influencing the electrode surface to the outer environment in a NaCl aqueous solution. This work provides an insight into the relation between mechanical properties and its controllable antifouling capabilities for surface modification of zwitterionic polymer brushes. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-20T16:23:26Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-12-20T16:23:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iv CONTENTS vii LIST OF FIGURES xi LIST OF TABLES xx Chapter 1 Introduction 1 1.1 Antifouling Conducting Polymers 1 1.1.1 Development of conducting polymers 1 1.1.2 PEDOT and its derivatives 1 1.1.3 Antifouling strategies 3 1.1.4 Zwitterionic conducting polymers 6 1.1.5 Specific interactions of PC moieties 14 1.2 Adsorption Behaviors on Electrified Surfaces 18 1.2.1 Redox states manipulated by the surface potential 18 1.2.2 Zwitterionic polymers adsorption on electrified surfaces 20 1.2.3 Proteins adsorption on electrified surfaces 22 1.3 Zwitterionic Polymer Brushes 24 1.3.1 Zwitterionic polymer brush-grafted films 24 1.3.2 Influence of surface potential in ionic solutions 25 1.4 Motivation and Objective 27 1.4.1 Manipulation of surface chemistry through functionalized PEDOTs and hydrogels 27 1.4.2 Zwitterionic polymers adsorption on electrified surfaces 29 1.4.3 Combination of AFM and EQCM‑D for probing zwitterionic polymer brushes 29 Chapter 2 Experimental Section 31 2.1 Materials and Instruments 31 2.1.1 Materials 31 2.1.2 Instruments 32 2.2 Electropolymerization for PEDOT Films 33 2.2.1 Settings and preparation 33 2.2.2 Poly(EDOT-OH) and poly(EDOT-Br) films 33 2.2.3 Poly(EDOT-C12) and OEG-functionalized PEDOT films 34 2.3 Preparation of Zwitterionic Polymers 36 2.4 AFM and QCM-D Monitoring 37 2.4.1 Principle of AFM and PeakForce QNM mode 37 2.4.2 Principle of QCM-D 39 2.4.3 D-f plot and the value of |ΔD/Δf| 40 2.5 Preparation of Polymer-grafted Hydrogel with Nano-phase-separated Structure 40 2.6 Preparation of Polymer-Brush-Grafted Films 42 2.7 Characterization 42 2.7.1 Water contact angle 42 2.7.2 GPC 42 2.7.3 AFM 43 2.7.4 FTIR 43 2.7.5 QCM-D 44 2.7.6 EQCM-D 44 2.8 Preparation of Biomolecules Solutions 45 Chapter 3 Results and Discussion 46 3.1 Manipulation of Surface Chemistry through Functionalized PEDOTs and Hydrogels 46 3.1.1 Surface morphology and properties of OEG-functionalized PEDOT films 46 3.1.2 Surface adhesion properties of EG-functionalized PEDOT films 48 3.1.3 Functionalized PEDOTs for the Modulation of LPS-Aβ42 Binding 50 3.1.4 Construction of nano-phase-separated structures on hydrogel surface 56 3.2 Adsorption Behavior of Zwitterionic Polymers on Electrified Surfaces 60 3.2.1 Preparation of PMPC, PSBMA, and PCBMA polymers 60 3.2.2 Characterization of zwitterionic polymers 60 3.2.3 The adsorption behavior of zwitterionic monomers and polymers in DI water 61 3.2.4 The adsorption behavior of zwitterionic monomers on electrified surfaces in aqueous solution 69 3.2.5 The adsorption behavior of zwitterionic polymers on electrified surfaces in salt-free aqueous solution 74 3.2.6 The adsorption behavior of zwitterionic polymers on electrified surfaces in LiClO4 aqueous solution 85 3.3 Combination of AFM and Electrochemical QCM‑D for Probing Zwitterionic Polymer Brushes in Water 91 3.3.1 Surface topography and properties of polymer brush-grafted PEDOT Films 91 3.3.2 Ion adsorption on zwitterionic polymer brushes 93 3.3.3 Young’s modulus of polymer brushes on PEDOT films 97 3.3.4 Behavior of nonspecific protein binding on zwitterionic polymer brushes 99 3.3.5 Protein binding on various electrified phosphorylcholine film types 101 Chapter 4 Conclusion 106 4.1 Manipulation of Surface Chemistry through Functionalized PEDOTs and Hydrogels 106 4.1.1 Surface hydration states tuned by the oligo(ethylene glycol) moieties on PEDOT 106 4.1.2 Functionalized PEDOTs for the Modulation of LPS-Aβ42 Binding 106 4.1.3 Construction of nano-phase-separated structures on hydrogel surface 107 4.2 Adsorption Behavior of Zwitterionic Polymers on Electrified Surface 107 4.3 Combination of AFM and Electrochemical QCM‑D for Probing Zwitterionic Polymer Brushes in Water 108 Chapter 5 Future Works 110 REFERENCE 112 | - |
| dc.language.iso | en | - |
| dc.subject | 聚(3 | zh_TW |
| dc.subject | 高分子刷 | zh_TW |
| dc.subject | 電化學石英晶體微天平附加耗散偵測 | zh_TW |
| dc.subject | 兩性離子高分子 | zh_TW |
| dc.subject | 奈米力學性能映射 | zh_TW |
| dc.subject | 原子力顯微鏡 | zh_TW |
| dc.subject | 4-乙烯二氧基噻吩) | zh_TW |
| dc.subject | 聚(3 | zh_TW |
| dc.subject | 介面現象 | zh_TW |
| dc.subject | 高分子刷 | zh_TW |
| dc.subject | 電化學石英晶體微天平附加耗散偵測 | zh_TW |
| dc.subject | 兩性離子高分子 | zh_TW |
| dc.subject | 奈米力學性能映射 | zh_TW |
| dc.subject | 原子力顯微鏡 | zh_TW |
| dc.subject | 4-乙烯二氧基噻吩) | zh_TW |
| dc.subject | 介面現象 | zh_TW |
| dc.subject | polymer brushes | en |
| dc.subject | interfacial phenomenon | en |
| dc.subject | poly(3 | en |
| dc.subject | 4-ethylenedioxythiophene) (PEDOT) | en |
| dc.subject | atomic force microscopy (AFM) | en |
| dc.subject | nano-mechanical properties mappings | en |
| dc.subject | zwitterionic polymers | en |
| dc.subject | electrochemical quartz crystal microbalance with dissipation (EQCM-D) | en |
| dc.subject | polymer brushes | en |
| dc.subject | interfacial phenomenon | en |
| dc.subject | poly(3 | en |
| dc.subject | 4-ethylenedioxythiophene) (PEDOT) | en |
| dc.subject | atomic force microscopy (AFM) | en |
| dc.subject | nano-mechanical properties mappings | en |
| dc.subject | zwitterionic polymers | en |
| dc.subject | electrochemical quartz crystal microbalance with dissipation (EQCM-D) | en |
| dc.title | 藉由AFM及QCM-D深度分析具電活性軟物質之表面與介面現象:官能化導電高分子及水凝膠 | zh_TW |
| dc.title | Critical Analysis of Surface and Interfacial Phenomenon of Electroactive Soft Matters by AFM and QCM-D: Functionalized Conducting Polymer and Hydrogel | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 李介仁;李弘文;何美霖;林淑宜 | zh_TW |
| dc.contributor.oralexamcommittee | Jie-Ren Li;Hung-Wen Li;Mei-Lin Ho;Shu-Yi Lin | en |
| dc.subject.keyword | 介面現象,聚(3,4-乙烯二氧基噻吩),原子力顯微鏡,奈米力學性能映射,兩性離子高分子,電化學石英晶體微天平附加耗散偵測,高分子刷, | zh_TW |
| dc.subject.keyword | interfacial phenomenon,poly(3,4-ethylenedioxythiophene) (PEDOT),atomic force microscopy (AFM),nano-mechanical properties mappings,zwitterionic polymers,electrochemical quartz crystal microbalance with dissipation (EQCM-D),polymer brushes, | en |
| dc.relation.page | 129 | - |
| dc.identifier.doi | 10.6342/NTU202304206 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-09-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 8.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
