Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91299
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor潘述元zh_TW
dc.contributor.advisorShu-Yuan Panen
dc.contributor.author林鴻政zh_TW
dc.contributor.authorHung-Cheng Linen
dc.date.accessioned2023-12-20T16:22:53Z-
dc.date.available2023-12-21-
dc.date.copyright2023-12-20-
dc.date.issued2023-
dc.date.submitted2023-09-24-
dc.identifier.citation1. 行政院農委會,臺灣主要畜禽產品生產費用與收益分析。2021
2. 行政院農委會,2021 11月 養豬頭數調查報告。2022
3. García D, Posadas E, Blanco S, Acién G, García-Encina P, Bolado S, Muñoz R: Evaluation of the dynamics of microalgae population structure and process performance during piggery wastewater treatment in algal-bacterial photobioreactors. Bioresource technology 2018, 248:120-126.
4. Hobson P, Bousfield S, Summers R, Kirsch E: Anaerobic digestion of organic matter. Critical Reviews in Environmental Science and Technology 1974, 4(1-4):131-191.
5. Adekunle KF, Okolie JA: A review of biochemical process of anaerobic digestion. Advances in Bioscience and Biotechnology 2015, 6(03):205.
6. Ros M, de Souza Oliveira Filho J, Murcia MDP, Bustamante MA, Moral R, Coll MD, Santisima-Trinidad ABL, Pascual JA: Mesophilic anaerobic digestion of pig slurry and fruit and vegetable waste: dissection of the microbial community structure. Journal of cleaner production 2017, 156:757-765.
7. Plume I, Dubrovskis V: Anaerobic fermentation of cow manure and wheat straw in low voltage electric filed.
8. Chen Y, Cheng JJ, Creamer KS: Inhibition of anaerobic digestion process: a review. Bioresource technology 2008, 99(10):4044-4064.
9. 行政院農委會,農業廢棄物產量歷年表。2021
10. Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W, Calvo S, Engels R, Smirnov S, Atnoor D: The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome research 2002, 12(4):532-542.
11. Shah FA, Mahmood Q, Rashid N, Pervez A, Raja IA, Shah MM: Co-digestion, pretreatment and digester design for enhanced methanogenesis. Renewable and Sustainable Energy Reviews 2015, 42:627-642.
12. Pagés-Díaz J, Pereda-Reyes I, Taherzadeh MJ, Sárvári-Horváth I, Lundin M: Anaerobic co-digestion of solid slaughterhouse wastes with agro-residues: synergistic and antagonistic interactions determined in batch digestion assays. Chemical Engineering Journal 2014, 245:89-98.
13. Battegazzore D, Alongi J, Duraccio D, Frache A: Reuse and valorisation of hemp fibres and rice husk particles for fire resistant fibreboards and particleboards. Journal of Polymers and the Environment 2018, 26(9):3731-3744.
14. Hazmi B, Rashid U, Taufiq-Yap YH, Ibrahim ML, Nehdi IA: Supermagnetic nano-bifunctional catalyst from rice husk: Synthesis, characterization and application for conversion of used cooking oil to biodiesel. Catalysts 2020, 10(2):225.
15. Zhao C, Yang L, Xing S, Luo W, Wang Z, Lv P: Biodiesel production by a highly effective renewable catalyst from pyrolytic rice husk. Journal of cleaner production 2018, 199:772-780.
16. Cheng S, Xing D, Call DF, Logan BE: Direct biological conversion of electrical current into methane by electromethanogenesis. Environmental science & technology 2009, 43(10):3953-3958.
17. Bhagchandanii DD, Babu RP, Sonawane JM, Khanna N, Pandit S, Jadhav DA, Khilari S, Prasad R: A Comprehensive Understanding of Electro-Fermentation. Fermentation 2020, 6(3):92.
18. Gong Z, Yu H, Zhang J, Li F, Song H: Microbial electro-fermentation for synthesis of chemicals and biofuels driven by bi-directional extracellular electron transfer. Synthetic and Systems Biotechnology 2020, 5(4):304-313.
19. Lettinga G, Field J, Van Lier J, Zeeman G, Pol LH: Advanced anaerobic wastewater treatment in the near future. Water Science and Technology 1997, 35(10):5-12.
20. Anukam A, Mohammadi A, Naqvi M, Granström K: A Review of the Chemistry of Anaerobic Digestion: Methods of Accelerating and Optimizing Process Efficiency. Processes 2019, 7(8):504.
21. Bajpai P: Basics of anaerobic digestion process. In: Anaerobic Technology in Pulp and Paper Industry. Springer; 2017: 7-12.
22. Ning J, Zhou M, Pan X, Li C, Lv N, Wang T, Cai G, Wang R, Li J, Zhu G: Simultaneous biogas and biogas slurry production from co-digestion of pig manure and corn straw: Performance optimization and microbial community shift. Bioresource technology 2019, 282:37-47.
23. Zhang L, Loh K-C, Sarvanantharajah S, Tong YW, Wang C-H, Dai Y: Mesophilic and thermophilic anaerobic digestion of soybean curd residue for methane production: characterizing bacterial and methanogen communities and their correlations with organic loading rate and operating temperature. Bioresource technology 2019, 288:121597.
24. da Costa TB, Simões AN, de Menezes CA, Silva EL: Anaerobic Biodegradation of Biodiesel Industry Wastewater in Mesophilic and Thermophilic Fluidized Bed Reactors: Enhancing Treatment and Methane Recovery. Applied Biochemistry and Biotechnology 2021:1-15.
25. Chen H, Hao S, Chen Z, Sompong O, Fan J, Clark J, Luo G, Zhang S: Mesophilic and thermophilic anaerobic digestion of aqueous phase generated from hydrothermal liquefaction of cornstalk: Molecular and metabolic insights. Water research 2020, 168:115199.
26. Nguyen NN, Nguyen AV, Dang LX: The inhibition of methane hydrate formation by water alignment underneath surface adsorption of surfactants. Fuel 2017, 197:488-496.
27. Lu Y, Zhang Q, Wang X, Zhou X, Zhu J: Effect of pH on volatile fatty acid production from anaerobic digestion of potato peel waste. Bioresource Technology 2020, 316:123851.
28. Bah H, Zhang W, Wu S, Qi D, Kizito S, Dong R: Evaluation of batch anaerobic co-digestion of palm pressed fiber and cattle manure under mesophilic conditions. Waste Management 2014, 34(11):1984-1991.
29. Li D, Liu S, Mi L, Li Z, Yuan Y, Yan Z, Liu X: Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and cow manure. Bioresource Technology 2015, 189:319-326.
30. Sawatdeenarunat C, Surendra K, Takara D, Oechsner H, Khanal SK: Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresource technology 2015, 178:178-186.
31. Jeihanipour A, Niklasson C, Taherzadeh MJ: Enhancement of solubilization rate of cellulose in anaerobic digestion and its drawbacks. Process Biochemistry 2011, 46(7):1509-1514.
32. Parameswaran P, Rittmann BE: Feasibility of anaerobic co-digestion of pig waste and paper sludge. Bioresource technology 2012, 124:163-168.
33. Zhang W, Wei Q, Wu S, Qi D, Li W, Zuo Z, Dong R: Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions. Applied energy 2014, 128:175-183.
34. Yu Q, Cui S, Sun C, Liu R, Sarker M, Guo Z, Lai R: Synergistic effects of anaerobic co-digestion of pretreated corn stover with chicken manure and its kinetics. Applied Biochemistry and Biotechnology 2021, 193(2):515-532.
35. Wang Z, Jiang Y, Wang S, Zhang Y, Hu Y, Hu Z-h, Wu G, Zhan X: Impact of total solids content on anaerobic co-digestion of pig manure and food waste: Insights into shifting of the methanogenic pathway. Waste Management 2020, 114:96-106.
36. Shin J-D, Han S-S, Eom K-C, Sung S-H, Park S-W, Kim H-O: Predicting methane production potential of anaerobic co-digestion of swine manure and food waste. Environmental Engineering Research 2008, 13(2):93-97.
37. Vivekanand V, Mulat DG, Eijsink VG, Horn SJ: Synergistic effects of anaerobic co-digestion of whey, manure and fish ensilage. Bioresource technology 2018, 249:35-41.
38. Yang G, Li Y, Zhen F, Xu Y, Liu J, Li N, Sun Y, Luo L, Wang M, Zhang L: Biochemical methane potential prediction for mixed feedstocks of straw and manure in anaerobic co-digestion. Bioresource Technology 2021, 326:124745.
39. Li Y, Achinas S, Zhao J, Geurkink B, Krooneman J, Euverink GJW: Co-digestion of cow and sheep manure: Performance evaluation and relative microbial activity. Renewable Energy 2020, 153:553-563.
40. Dan NH, Rene ER, Le Luu T: Removal of nutrients from anaerobically digested swine wastewater using an intermittent cycle extended aeration system. Frontiers in microbiology 2020:2515.
41. Siddique MNI, Wahid ZA: Achievements and perspectives of anaerobic co-digestion: A review. Journal of cleaner production 2018, 194:359-371.
42. Jurgutis L, Slepetiene A, Volungevicius J, Amaleviciute-Volunge K: Biogas production from chicken manure at different organic loading rates in a mesophilic full scale anaerobic digestion plant. Biomass and Bioenergy 2020, 141:105693.
43. Tamborrino A, Catalano F, Leone A, Bianchi B: A real case study of a full-scale anaerobic digestion plant powered by olive by-products. Foods 2021, 10(8):1946.
44. Koch K, Plabst M, Schmidt A, Helmreich B, Drewes JE: Co-digestion of food waste in a municipal wastewater treatment plant: comparison of batch tests and full-scale experiences. Waste Management 2016, 47:28-33.
45. Andersson J, Helander-Claesson J, Olsson J: Study on reduced process temperature for energy optimisation in mesophilic digestion: A lab to full-scale study. Applied Energy 2020, 271:115108.
46. Kimura Y, Suzuki T, Yaasui S, Ishii K, Kaziyama T, Oishi K, Ogino A, Hinata T, Hirooka H, Osada T: Simulation of livestock biomass resource recycling and energy utilization model based on dry type methane fermentation system. In: IOP Conference Series: Earth and Environmental Science: 2020. IOP Publishing: 012020.
47. Kumar P, Chandrasekhar K, Kumari A, Sathiyamoorthi E, Kim BS: Electro-fermentation in aid of bioenergy and biopolymers. Energies 2018, 11(2):343.
48. Araújo OQ, Coelho MAZ, Margarit IC, Vaz-Junior CA, Rocha-Leão MHM: Electrical stimulation of Saccharomyces cerevisiae cultures. Brazilian Journal of Microbiology 2004, 35(1-2):97-103.
49. Sydow A, Krieg T, Mayer F, Schrader J, Holtmann D: Electroactive bacteria—molecular mechanisms and genetic tools. Applied microbiology and biotechnology 2014, 98(20):8481-8495.
50. Moscoviz R, Toledo-Alarcón J, Trably E, Bernet N: Electro-fermentation: how to drive fermentation using electrochemical systems. Trends in biotechnology 2016, 34(11):856-865.
51. Modestra JA, Babu ML, Mohan SV: Electro-fermentation of real-field acidogenic spent wash effluents for additional biohydrogen production with simultaneous treatment in a microbial electrolysis cell. Separation and Purification Technology 2015, 150:308-315.
52. Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M: Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresource technology 2010, 101(9):3085-3090.
53. Jiang Y, May HD, Lu L, Liang P, Huang X, Ren ZJ: Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation. Water research 2019, 149:42-55.
54. Jia X, Li M, Wang Y, Wu Y, Zhu L, Wang X, Zhao Y: Enhancement of hydrogen production and energy recovery through electro-fermentation from the dark fermentation effluent of food waste. Environmental Science and Ecotechnology 2020, 1:100006.
55. Shi Y, Huang K, Pan X, Liu G, Cai Y, Zaidi AA, Zhang K: Substrate degradation, biodiesel production, and microbial community of two electro-fermentation systems on treating oleaginous microalgae Nannochloropsis sp. Bioresource Technology 2021:124932.
56. Schievano A, Sciarria TP, Vanbroekhoven K, De Wever H, Puig S, Andersen SJ, Rabaey K, Pant D: Electro-fermentation–merging electrochemistry with fermentation in industrial applications. Trends in biotechnology 2016, 34(11):866-878.
57. Qu G, Lv P, Cai Y, Tu C, Ma X, Ning P: Enhanced anaerobic fermentation of dairy manure by microelectrolysis in electric and magnetic fields. Renewable Energy 2020, 146:2758-2765.
58. Jiang Y, Lu L, Wang H, Shen R, Ge Z, Hou D, Chen X, Liang P, Huang X, Ren ZJ: Electrochemical control of redox potential arrests methanogenesis and regulates products in mixed culture electro-fermentation. ACS Sustainable Chemistry & Engineering 2018, 6(7):8650-8658.
59. Sasaki D, Sasaki K, Watanabe A, Morita M, Matsumoto N, Igarashi Y, Ohmura N: Operation of a cylindrical bioelectrochemical reactor containing carbon fiber fabric for efficient methane fermentation from thickened sewage sludge. Bioresource technology 2013, 129:366-373.
60. Ren G, Hu A, Huang S, Ye J, Tang J, Zhou S: Graphite-assisted electro-fermentation methanogenesis: Spectroelectrochemical and microbial community analyses of cathode biofilms. Bioresource technology 2018, 269:74-80.
61. Zwietering M, Jongenburger I, Rombouts F, Van't Riet K: Modeling of the bacterial growth curve. Applied and environmental microbiology 1990, 56(6):1875-1881.
62. Deepanraj B, Sivasubramanian V, Jayaraj S: Kinetic study on the effect of temperature on biogas production using a lab scale batch reactor. Ecotoxicology and Environmental Safety 2015, 121:100-104.
63. Celekli A, Yavuzatmaca M, Bozkurt H: An eco-friendly process: predictive modelling of copper adsorption from aqueous solution on Spirulina platensis. Journal of hazardous materials 2010, 173(1-3):123-129.
64. Blasius JP, Contrera RC, Maintinguer SI, de Castro MCAA: Effects of temperature, proportion and organic loading rate on the performance of anaerobic digestion of food waste. Biotechnology Reports 2020, 27:e00503.
65. Wang K, Yun S, Xing T, Li B, Abbas Y, Liu X: Binary and ternary trace elements to enhance anaerobic digestion of cattle manure: Focusing on kinetic models for biogas production and digestate utilization. Bioresource Technology 2021, 323:124571.
66. Muralikrishna IV, Manickam V: Life cycle assessment. Environmental management 2017:57-75.
67. Garfí M, Castro L, Montero N, Escalante H, Ferrer I: Evaluating environmental benefits of low-cost biogas digesters in small-scale farms in Colombia: A life cycle assessment. Bioresource technology 2019, 274:541-548.
68. Tong H, Tong Y-W, Peng YH: A comparative life cycle assessment on mono-and co-digestion of food waste and sewage sludge. Energy Procedia 2019, 158:4166-4171.
69. Pérez-Camacho MN, Curry R, Cromie T: Life cycle environmental impacts of substituting food wastes for traditional anaerobic digestion feedstocks. Waste Management 2018, 73:140-155.
70. Hijazi O, Abdelsalam E, Samer M, Attia Y, Amer B, Amer M, Badr M, Bernhardt H: Life cycle assessment of the use of nanomaterials in biogas production from anaerobic digestion of manure. Renewable Energy 2020, 148:417-424.
71. Duan N, Khoshnevisan B, Lin C, Liu Z, Liu H: Life cycle assessment of anaerobic digestion of pig manure coupled with different digestate treatment technologies. Environment international 2020, 137:105522.
72. Lee E, Oliveira DSBL, Oliveira LSBL, Jimenez E, Kim Y, Wang M, Ergas SJ, Zhang Q: Comparative environmental and economic life cycle assessment of high solids anaerobic co-digestion for biosolids and organic waste management. Water Research 2020, 171:115443.
73. Tian H, Wang X, Lim EY, Lee JT, Ee AW, Zhang J, Tong YW: Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization. Renewable and Sustainable Energy Reviews 2021, 150:111489.
74. Zinder SH, Koch M: Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Archives of Microbiology 1984, 138(3):263-272.
75. Tonanzi B, Gallipoli A, Gianico A, Montecchio D, Pagliaccia P, Di Carlo M, Rossetti S, Braguglia CM: Long-term anaerobic digestion of food waste at semi-pilot scale: relationship between microbial community structure and process performances. Biomass and bioenergy 2018, 118:55-64.
76. Cho K, Shin SG, Kim W, Lee J, Lee C, Hwang S: Microbial community shifts in a farm-scale anaerobic digester treating swine waste: correlations between bacteria communities associated with hydrogenotrophic methanogens and environmental conditions. Science of the Total Environment 2017, 601:167-176.
77. Bird LJ, Kundu BB, Tschirhart T, Corts AD, Su L, Gralnick JA, Ajo-Franklin CM, Glaven SM: Engineering Wired Life: Synthetic Biology for Electroactive Bacteria. ACS Synthetic Biology 2021, 10(11):2808-2823.
78. Xu S, Barrozo A, Tender LM, Krylov AI, El-Naggar MY: Multiheme cytochrome mediated redox conduction through Shewanella oneidensis MR-1 cells. Journal of the American Chemical Society 2018, 140(32):10085-10089.
79. Logan BE, Rossi R, Ragab A, Saikaly PE: Electroactive microorganisms in bioelectrochemical systems. Nature Reviews Microbiology 2019, 17(5):307-319.
80. Zhao Z, Li Y, Zhang Y, Lovley DR: Sparking anaerobic digestion: promoting direct interspecies electron transfer to enhance methane production. Iscience 2020, 23(12):101794.
81. Sun W, Lin Z, Yu Q, Cheng S, Gao H: Promoting Extracellular Electron Transfer of Shewanella oneidensis MR-1 by Optimizing the Periplasmic Cytochrome c Network. Frontiers in Microbiology 2021:2963.
82. Ward AJ, Hobbs PJ, Holliman PJ, Jones DL: Optimisation of the anaerobic digestion of agricultural resources. Bioresource technology 2008, 99(17):7928-7940.
83. Khadaroo SN, Grassia P, Gouwanda D, Poh PE: The influence of different solid-liquid ratios on the thermophilic anaerobic digestion performance of palm oil mill effluent (POME). Journal of environmental management 2020, 257:109996.
84. Pan S-Y, Li C-W, Huang Y-Z, Fan C, Tai Y-C, Chen Y-L: Composition-oriented estimation of biogas production from major culinary wastes in an anaerobic bioreactor and its associated CO2 reduction potential. Bioresource Technology 2020, 318:124045.
85. Xie T, Xie S, Sivakumar M, Nghiem LD: Relationship between the synergistic/antagonistic effect of anaerobic co-digestion and organic loading. International Biodeterioration & Biodegradation 2017, 124:155-161.
86. Kafle GK, Kim S-H: Kinetic study of the anaerobic digestion of swine manure at mesophilic temperature: a lab scale batch operation. Journal of Biosystems Engineering 2012, 37(4):233-244.
87. Seekao N, Sangsri S, Rakmak N, Dechapanya W, Siripatana C: Co-digestion of palm oil mill effluent with chicken manure and crude glycerol: biochemical methane potential by monod kinetics. Heliyon 2021, 7(2):e06204.
88. Rajendran K, Murthy GS: Techno-economic and life cycle assessments of anaerobic digestion–A review. Biocatalysis and Agricultural Biotechnology 2019, 20:101207.
89. Company Q(2020)。For the isolation of microbial genomic DNA from stool and gut samples。,QIAamp PowerFecal Pro DNA Kit Handbook。
90. BioSci G(2021)。Material and Method for Target Sequencing。。
91. Ehrenberg M, Bremer H, Dennis PP: Medium-dependent control of the bacterial growth rate. Biochimie 2013, 95(4):643-658.
92. Micolucci F, Gottardo M, Bolzonella D, Pavan P: Automatic process control for stable bio-hythane production in two-phase thermophilic anaerobic digestion of food waste. International Journal of Hydrogen Energy 2014, 39(31):17563-17572.
93. Mao C, Feng Y, Wang X, Ren G: Review on research achievements of biogas from anaerobic digestion. Renewable and sustainable energy reviews 2015, 45:540-555.
94. Yi J, Dong B, Jin J, Dai X: Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis. PloS one 2014, 9(7):e102548.
95. Widdel F: Theory and measurement of bacterial growth. Di dalam Grundpraktikum Mikrobiologie 2007, 4(11):1-11.
96. Wilkie AC: Anaerobic digestion: biology and benefits. Dairy manure management: treatment, handling, and community relations 2005:63-72.
97. Fasbender L, Yáñez-Serrano AM, Kreuzwieser J, Dubbert D, Werner C: Real-time carbon allocation into biogenic volatile organic compounds (BVOCs) and respiratory carbon dioxide (CO2) traced by PTR-TOF-MS, 13CO2 laser spectroscopy and 13C-pyruvate labelling. PLoS One 2018, 13(9):e0204398.
98. Rotaru A-E, Shrestha PM, Liu F, Shrestha M, Shrestha D, Embree M, Zengler K, Wardman C, Nevin KP, Lovley DR: A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy & Environmental Science 2014, 7(1):408-415.
99. Zhao Z, Zhang Y, Wang L, Quan X: Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion. Scientific reports 2015, 5(1):1-12.
100. Wang K, Yin J, Shen D, Li N: Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH. Bioresource technology 2014, 161:395-401.
101. Tauber J, Parravicini V, Svardal K, Krampe J: Quantifying methane emissions from anaerobic digesters. Water Science and Technology 2019, 80(9):1654-1661.
102. Sommer SG, Knudsen L: Impact of Danish livestock and manure management regulations on nitrogen pollution, crop production, and economy. Frontiers in Sustainability 2021, 2:658231.
103. Zhao N, Jiang Y, Alvarado-Morales M, Treu L, Angelidaki I, Zhang Y: Electricity generation and microbial communities in microbial fuel cell powered by macroalgal biomass. Bioelectrochemistry 2018, 123:145-149.
104. Li Y, Faden HS, Zhu L: The response of the gut microbiota to dietary changes in the first two years of life. Frontiers in Pharmacology 2020, 11:334.
105. Castro‐Fernandez V, Zamora R, Herrera‐Morande A, Vallejos G, Gonzalez‐Ordenes F, Guixé V: Evolution, metabolism and molecular mechanisms underlying extreme adaptation of Euryarchaeota and its biotechnological potential. Archaea-New Biocatalysts, Novel Pharmaceuticals and Various Biotechnological Applications 2017.
106. Guo X, Sun C, Lin R, Xia A, Huang Y, Zhu X, Show P-L, Murphy JD: Effects of foam nickel supplementation on anaerobic digestion: direct interspecies electron transfer. Journal of hazardous materials 2020, 399:122830.
107. Yang G, Wang J: Changes in microbial community structure during dark fermentative hydrogen production. International Journal of Hydrogen Energy 2019, 44(47):25542-25550.
108. Lee J, Koo T, Yulisa A, Hwang S: Magnetite as an enhancer in methanogenic degradation of volatile fatty acids under ammonia-stressed condition. Journal of environmental management 2019, 241:418-426.
109. Rui J, Li J, Zhang S, Yan X, Wang Y, Li X: The core populations and co-occurrence patterns of prokaryotic communities in household biogas digesters. Biotechnology for biofuels 2015, 8(1):1-15.
110. Toledo-Alarcón J, Fuentes L, Etchebehere C, Bernet N, Trably E: Glucose electro-fermentation with mixed cultures: A key role of the Clostridiaceae family. International Journal of Hydrogen Energy 2021, 46(2):1694-1704.
111. Pavlostathis S: Kinetics and modeling of anaerobic treatment and biotransformation processes. Compr Biotechnol 2011, 1:385-397.
112. Xu R-z, Fang S, Zhang L, Huang W, Shao Q, Fang F, Feng Q, Cao J, Luo J: Distribution patterns of functional microbial community in anaerobic digesters under different operational circumstances: A review. Bioresource Technology 2021, 341:125823.
113. Masenya K, Thompson G, Tekere M, Makhalanyane TP, Pierneef R, Rees D: Pathogen infection influences a distinct microbial community composition in sorghum RILs. Plant and Soil 2021, 463(1):555-572.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91299-
dc.description.abstract養豬廢水為臺灣主要畜牧廢水之一,其日排放量超過11萬立方公尺,由於養豬廢水含有高濃度有機物質與營養鹽類,若不當排放,恐會造成嚴重環境污染與生態危機。傳統上,臺灣對養豬廢水處理採三段式處理程序(固液分離、厭氧消化及活性污泥法),用來移除廢水中的有機物質,除此之外,還可以有效將有機物轉換為生物沼氣,殘留的固體也可經加工再利用製成土壤改良劑或是作為公共建設填充物(例如污泥餅)。在某些情況下,為了提升生物沼氣產量,可以採取共消化的方式,將不同的有機質(例如稻殼或稻桿等)加入同一消化槽內提升生物沼氣產量;然而,厭氧消化過程中的酸化現象與處理時間過長等問題,卻降低三段式廢水處理成效。有鑒於此,本研究開發新穎電驅動厭氧消化技術,利用微弱電流來刺激微生物活性,提升反應速率與生物沼氣產量。實驗數據方面利用動力學模型研析最大甲烷產量與微生物生產相關參數(例如停留時間、產率等),並以生命週期評估分析傳統厭氧消化與新興電驅動厭氧消化之環境衝擊(例如碳排放強度等)。本研究最後結合微生物菌相分析結果,提出電驅動厭氧消化中微生物群之反應,並提出放大工程設計於現存厭氧消化廠中示範之作法。
本研究以嘉義某養豬戶為對象,採集養豬廢水相關數據後進行試驗。研究結果發現,營養基質與污泥接種物的添加對於整體實驗有非常大的影響力,不但使產氣量超過110 mL/gVS,還使系統反應時間可持續超過60天。本研究證明電驅動厭氧消化技術具有較高之甲烷產量,相較於傳統厭氧消化最高可提升14.5%。實驗中,最高甲烷產值為純稻殼之電驅動厭氧消化,其產量達74.9 mL/gVS。關於其他氣體分析,氫氣最高產量為0.57 mL/gVS,二氧化碳最高產量約為13.4 mL/gVS,分別各約占了總產氣量0.3%與4.8%。另外,本研究針對電壓參數進行調整,發現電驅動厭氧系統在0.6 V下,不論是在總氣體、甲烷等,都比在1.2 V下來得高。共消化實驗結果顯示,養豬廢水與稻殼的揮發性固體比例(PW:RS)會影響其甲烷產量,並且在比例為3:1時會有最佳之共消化影響效益(共消化系數為45%,且該電驅動厭氧消化產氣為68.6 mL/gVS)。動力學分析上的結果則顯示,Modified Gompertz模型可以高度吻合電驅動厭氧消化系統(R2:0.965-0.997),不只如此,模擬結果也指出電驅動厭氧消化可提高生物甲烷的生產速率,最高為5.23 mL/gVS/day。另一方面,生命週期評估結果顯示在各項環境衝擊指數,在研究室規模的分析中,電驅動厭氧消化技術可降環境衝擊低約2.6-14.5%;同時,在放大設計模擬下,發現豬糞產生對於生態品質衝擊最為嚴重(約占88.1%),而在其他環境衝擊指數上,則是以處理廠為主要來源。菌相分析結果分別顯示,Clostridium sensu stricto 1、Turicibacter及Terrisporobacter等為主要優勢菌種,負責進行水解與產酸反應;而甲烷古細菌當中則以Methanosaeta比例最高,該菌主要以乙酸作為主要碳源使用,是一種常在厭氧消化中常見的古細菌。
zh_TW
dc.description.abstractIn Taiwan, the discharge of piggery wastewater (PW) is higher than 110,000 m3. With containing high concentration COD, nitrogen and phosphorus, untreated PW can pose serious environmental and ecological crisis. One conventional way to deal with this issue is three-stage wastewater treatment (including solid-liquid separation, anaerobic digestion (AD) and activated sludge process), where organic waste could be transferred to green biofuel or biofertilizer. In some cases, to increase the biogas production, the different organic matters (such as rice husks and straws) will be introduced in the same digester to enhance the performance of AD. However, several problems of process, such as acidification and long retention time, inhibit the performance and efficiency of biogas production. In view of these issues, this study will develop a novel technique combined with AD and electrochemical system, as known as electricity-assisted anaerobic digestion (EAAD). The mechanism of EAAD is introducing the low current to stimulate and active the microorganisms to significantly improve the productivity of bio-products. The performances were evaluated through the kinetic model to determine the biological parameters (such as lag time and methane production rate). Additionally, life cycle assessment (LCA) was used to quantify the environmental impacts (e.g., carbon footprint) in different scenarios. Future research directions include elucidating the microbial reaction pathways in EAAD and scaling up the engineering of EAAD for application in wastewater treatment plants.In this study, experimental PW was produced in Chiayi, Taiwan. In Preliminary experiment, the adding of medium and sludge has significant effect on biogas production. The production could be more than 110.00 mL/gVS, and the system could be sustained for more than 60 days. The result showed that EAAD had 14.5% higher methane level than the conventional AD, and the best methane yield was 74.9 mL/gVS in the case of EAAD (0:1). The highest hydrogen yield and carbon dioxide were 0.57 mL/gVS and 13.4 mL/gVS, which was account for about 0.3% and 4.8%, respectively. Additionally, the results showed EAAD had better performance at 0.6 V than at 1.2 V. For the effect of co-digestion, it demonstrated that the PW:RH ratio would affect the performance of methane production, and when the ratio was 3:1, it had the best co-digestion effect (45%). The kinetic study showed that the Modified Gompertz model had significant fitness (R2: 0.965-0.997), compared to the first-order kinetic model (R2: 0.894-0.932). Moreover, EAAD was also indicated that could raise the methane productivity, which highest value was 5.23 mL/gVS in the case of EAAD (0:1). On the other hands, LCA was conducted to evaluate the environmental impacts. The results in a lab scale showed the EAAD could reduce the environmental impact by 2.6-14.5%, and demonstrated the optimization of voltage in EAAD was at 0.6 V. Furthermore, the results of the large scale showed the process of manure generation was the main contributor to ecosystem equality (88.1%), and the process of treatment plant was dominant contributor in other damage categories. Dominate bacteria in AD and EAAD were Clostridium sensu stricto 1, Turicibacter, and Terrisporobacter, which were contributed the hydrolysis and acid-forming. Methanosaeta had the highest proportion in kingdom of archaea, and it was known as an acetoclastic methanogen common found in the environment of AD.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-20T16:22:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-12-20T16:22:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iv
Contents vii
List of Figure x
List of Table xiv
Table of Abbreviations xv

Chapter 1. Introduction 1
1.1 Backgrounds 1
1.2 Objectives 5
Chapter 2. Literature Review 6
2.1 Anaerobic Digestion (AD) 6
2.1.1 Mechanism of AD 6
2.1.2 Co-digestion 8
2.1.3 Engineering for renewable energy 13
2.2 Electricity-Assisted Anaerobic Digestion (EAAD) System 15
2.2.1 Principles 15
2.2.2 Mechanisms and Reaction 16
2.3 Kinetic Models 19
2.4 Life Cycle Assessment 24
2.5 Role of Microorganisms 27
2.5.1. Microbial communities in anaerobic environment 27
2.5.2. Electroactive bacteria 28
Chapter 3. Materials and Methods 30
3.1 Research Framework 30
3.2 Materials 32
3.3 Experimental Setup 35
3.4 Biogas Measurements and Chemical Analysis 38
3.5 Electrical Effect and Co-digestion Effect 39
3.6 Kinetic Models 40
3.7 Life Cycle Assessment 42
3.8 Microorganisms Analysis (DNA extraction, PCR and sequencing) 47
Chapter 4. Results and Discussion 49
4.1 Effects of Operating Factors on Biogas Production 49
4.1.1. Preliminary experiment with medium 51
4.1.2. Biogas production of AD/AcD and EAAD/EAAcD 52
4.1.3. Biogas composition 54
4.1.4. Multiple effect and integrational discussion 61
4.1.5. Optimization of AD and EAAD systems for methane yield 65
4.2 Kinetic Study 67
4.2.1 First-order kinetic model and Modified Gompertz model 67
4.2.2 Prediction of methane productivity 73
4.3 Life Cycle Environmental Impacts Assessment 75
4.3.1. Performance of Greenhouse Gas Emissions and Other Impacts 75
4.3.2. Scale-up Estimation 77
4.4 Microorganism Analysis 81
4.4.1 Results of DNA/RNA Sequencing 81
4.4.2 Biogas producing behavior with microbial community 88
Chapter 5. Conclusions and Recommendations 92
5.1 Conclusions 92
5.2 Recommendations 94
References 95
Appendix 105
-
dc.language.isoen-
dc.subject電驅動厭氧消化zh_TW
dc.subject廢棄物能源化zh_TW
dc.subject生命週期評估zh_TW
dc.subject動力學zh_TW
dc.subject甲烷zh_TW
dc.subject電驅動厭氧消化zh_TW
dc.subject廢棄物能源化zh_TW
dc.subject生命週期評估zh_TW
dc.subject動力學zh_TW
dc.subject甲烷zh_TW
dc.subjectelectricity-assisted anaerobic digestionen
dc.subjectwaste-to-energyen
dc.subjectelectricity-assisted anaerobic digestionen
dc.subjectmethaneen
dc.subjectkineticsen
dc.subjectlife cycle assessmenten
dc.subjectwaste-to-energyen
dc.subjectlife cycle assessmenten
dc.subjectkineticsen
dc.subjectmethaneen
dc.title開發電驅動厭氧消化技術於農牧廢水高值化應用zh_TW
dc.titleDevelopment of Electricity-Assisted Anaerobic Digestion for Valorization of Piggery Wastewater and Rice Husken
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee范致豪;林逸彬;王柏翔zh_TW
dc.contributor.oralexamcommitteeChihhao Fan;Yi-Pin Lin;Po-Hsiang Wangen
dc.subject.keyword電驅動厭氧消化,甲烷,動力學,生命週期評估,廢棄物能源化,zh_TW
dc.subject.keywordelectricity-assisted anaerobic digestion,methane,kinetics,life cycle assessment,waste-to-energy,en
dc.relation.page130-
dc.identifier.doi10.6342/NTU202304251-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-09-26-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物環境系統工程學系-
Appears in Collections:生物環境系統工程學系

Files in This Item:
File SizeFormat 
ntu-112-1.pdf
Access limited in NTU ip range
6.55 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved