Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91267
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳耀銘zh_TW
dc.contributor.advisorYaow-Ming Chenen
dc.contributor.author邱訢甯zh_TW
dc.contributor.authorHsin-Ning Chiuen
dc.date.accessioned2023-12-20T16:13:43Z-
dc.date.available2023-12-21-
dc.date.copyright2023-12-20-
dc.date.issued2022-
dc.date.submitted2023-08-16-
dc.identifier.citation[1] Andreas Wagener, Thomas Schulte, Peter Waeltermann, and Herbert Schuette, "Hardware-in-the-Loop test systems for electric machines in advanced powertrain applications," SAE, 2007.
[2] DSPACE GmbH, dSPACE Hardware-in-the-Loop System, Rathenaustraße 26, 33102 Paderborn, Germany, 2015.
[3] OPAL-RT Technologies Corporate, Introduction to FPGA power electronic & electric machine real-timesimulation for HILOPAL-RT, 1751 Richardson, #2525 Montréal, Québec Canada,2015.
[4] C. S. Edrington, M. Steurer, J. Langston, T. El-Mezyani, and K. Schoder, "Role of power hardware in the loop in modeling and simulation for experimentation in power and energy systems," Proceedings of the IEEE, vol. 103, no. 12, pp. 2401-2409, Dec. 2015.
[5] O. Vodyakho, T. Chiocchio, M. Steurer, C. Edrington and M. Sloderbeck, "Modeling of medium voltage power electronics converters utilizing advanced simulation tools," 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2011, pp. 763-770.
[6] A. Schmitt, J. Richter, M. Braun and M. Doppelbauer, "Power Hardware-in-the-Loop Emulation of Permanent Magnet Synchronous Machines with Nonlinear Magnetics - Concept & Verification," PCIM Europe 2016; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 2016, pp. 1-8.
[7] T. -F. Wu, C. -C. Chan, L. -C. Lin and Y. -S. Xiao, "Design and Implementation of Power Converters to Emulate Motor Regeneration Power," 2020 IEEE Transportation Electrification Conference & Expo (ITEC), 2020, pp. 396-401.
[8] X. Zou, X. Xiao, P. He and Y. Song, "Permanent Magnet Synchronous Machine Emulation Based on Power Hardware-in-The-Loop Simulation," 2019 IEEE International Electric Machines & Drives Conference (IEMDC), 2019, pp. 248-253.
[9] O. Vodyakho, M. Steurer, C. S. Edrington, and F. Fleming, "An induction machine emulator for high-power applications utilizing advanced simulation tools with graphical user interfaces," IEEE Trans. Energy Convers., vol. 27, no. 1, pp. 160–172, Mar. 2012.
[10] K. Saito and H. Akagi, "A Real-Time Real-Power Emulator of a Medium-Voltage High-Speed Induction Motor Loaded With a Centrifugal Compressor," in IEEE Transactions on Industry Applications, vol. 55, no. 5, pp. 4821-4833, Sept.-Oct. 2019.
[11] Z. Touati, I. Mahmoud and A. Khedher, "Nonlinear Modelling of Switched Reluctance Machine," 2019 International Conference on Signal, Control and Communication (SCC), 2019, pp. 256-261.
[12] Y. Song, R. Cheng and K. Ma, "Mission Profile Emulator for Permanent Magnet Synchronous Machine Based on Three-phase Power Electronic Converter," 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), 2018, pp. 3877-3883.
[13] S. Jiang, K. Ma and Y. Zhu, "Three-Phase Test Bench for Multiple Submodules in Modular Multilevel Converter System," 2019 IEEE Energy Conversion Congress and Exposition (ECCE), 2019, pp. 2252-2256.
[14] K. Ma, S. Jiang, E. Li and X. Cai, "Three-Phase Mission Profile Emulator for Multiple Submodules in Modular Multilevel Converter," in IEEE Transactions on Power Electronics, vol. 36, no. 5, pp. 5213-5222, May 2021.
[15] A. Schmitt, M. Gommeringer, C. Rollbuhler, P. Pomnitz, and M. Braun, "A novel modulation scheme for a modular multiphase multilevel converter in a power hardware-in-the-loop emulation system," Annual Conference of the IEEE Industrial Electronics Society, 2015.
[16] R. M. Kennel, T. Boller, and J. Holtz, "Replacement of electrical (load) drives by a hardware-in-the-loop system," International Aegean Conference on Electrical Machines and Power Electronics and Electromotion, 2011, pp. 17-25.
[17] S. Grubic, B. Amlang, W. Schumacher and A. Wenzel, "A High-Performance Electronic Hardware-in-the-Loop Drive–Load Simulation Using a Linear Inverter (LinVerter)," in IEEE Transactions on Industrial Electronics, vol. 57, no. 4, pp. 1208-1216, April 2010.
[18] K. Saito and H. Akagi, "A Real-Time Real-Power DSCC-Based Emulator Capable of Reproducing Both Bending and Torsional Vibrations of a Motor and Load," 2019 IEEE Energy Conversion Congress and Exposition (ECCE), 2019, pp. 306-312.
[19] K. Saito and H. Akagi, "A power hardware-in-the-loop-simulation (P-HILS) system using two modular multilevel DSCC converters for a synchronous-motor drive," 2017 IEEE Energy Conversion Congress and Exposition (ECCE), 2017, pp. 2692-2699.
[20] 陳振嘉,「應用於電子式馬達模擬器之脈波電壓資訊擷取」,國立臺灣大學電機工程學系碩士論文,2021。
[21] M. A. Masadeh and P. Pillay, "Power electronic converter-based three-phase induction motor emulator," 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2016, pp. 1-5.
[22] K. S. Amitkumar, R. Thike, and P. Pillay, "Linear amplifier-based power-hardwarein-the-Loop emulation of a variable flux machine," IEEE Transactions on Industry Applications, vol. 55, no. 5, pp. 4624-4632, 2019.
[23] Uebener, S. and Hammerer, H, "Virtual e-motor as a tool for the development of powertrain controllers. " ATZ electronics Worldwide, vol. 8, pp. 18-22,2013.
[24] A. Schmitt, "Hochdynamische Power Hardware-in-the-loop Emulation hochausgenutzter Synchronmaschinen mit einem Modularen-Multiphasen Multilevel Umrichter, " Dissertation, 2017.
[25] M. A. Masadeh, K. S. Amitkumar, and P. Pillay, "Power electronic converter-based induction motor emulator including main and leakage flux saturation," IEEE Trans. Transport. Electrific., vol. 4, no. 2, pp. 483–493, Jun. 2018.
[26] M. A. Masadeh, and P. Pillay, "Induction motor emulation including main and leakage flux saturation effects," IEEE International Electric Machines and Drives Conference (IEMDC), Miami, FL, 2017, pp. 1-7.
[27] K. S. Amitkumar, R. S. Kaarthik, and P. Pillay, "A versatile power-hardware-in-the-loop-based emulator for rapid testing of transportation electric drives," IEEE Transections on Transportaion Electrification, vol 4, no. 4, pp. 901-911, Dec.2018.
[28] 鄭哲安,「具電壓前饋補償之電子式永磁同步馬達模擬器」,國立臺灣大學電機工程學系碩士論文,2020。
[29] S. Pradeepa, R. Deekshit, K. U. Rao and M. S. Shantha, "State-feedback control of a voltage source inverter-based STATCOM," 2013 International Conference on Power, Energy and Control (ICPEC), 2013, pp. 120-123.
[30] X. Liu, X. Lin, Z. Liang and Y. Kang, "State-feedback-with-PI control for NPC three-level inverter," 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), 2015, pp. 2798-2801.
[31] S. -J. Yoon, N. -B. Lai, K. -H. Kim and H. Song, "Discrete-Time Control Design for Three-Phase Grid-Connected Inverter Using Full State Observer," 2018 International Conference on Platform Technology and Service (PlatCon), 2018, pp. 1-6.
[32] N. B. Lai, G. N. Baltas, L. Marin, A. Tarasso and P. Rodriguez, "Voltage Sensorless Control for Grid-connected Power Converters based on State Feedback and State Observer," 2020 IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL), 2020.
[33] D. Zhang and R. Dutta, "Application of partial direct-pole-placement and differential evolution algorithm to optimize controller and LCL filter design for grid-tied inverter," 2014 Australasian Universities Power Engineering Conference (AUPEC), 2014, pp. 1-6.
[34] C. Citro, C. Gavriluta, M. H. K. Nizak and H. Beltran, "Current control design for three-phase grid-connected inverters using a pole placement technique based on numerical models," 2012 IEEE International Symposium on Industrial Electronics, 2012, pp. 2032-2035.
[35] P. Cai, X. Wu, Y. Yang, W. Yao, W. Li and F. Blaabjerg, "Discrete-time Direct Pole Placement for Stability Enhancement of LCL-Filtered Inverters in the Synchronous-Reference Frame," 2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe), 2020, pp. P.1-P.10.
[36] Changjiang Zhan, A. Arulampalam, V. K. Ramachandaramurthy, C. Fitzer, M. Barnes and N. Jenkins, "Novel voltage space vector PWM algorithm of 3-phase 4-wire power conditioner," 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194), 2001, pp. 1045-1050 vol.3.
[37] M. P. Kazmierkowski and L. Malesani, "Current control techniques for three-phase voltage-source PWM converters: a survey," in IEEE Transactions on Industrial Electronics, vol. 45, no. 5, pp. 691-703, Oct. 1998.
[38] L. Malesani and P. Tenti, "A novel hysteresis control method for current-controlled voltage-source PWM inverters with constant modulation frequency," in IEEE Transactions on Industry Applications, vol. 26, no. 1, pp. 88-92, Jan.-Feb. 1990.
[39] C. Chang, F. Wu and Y. Chen, "Modularized Bidirectional Grid-Connected Inverter With Constant-Frequency Asynchronous Sigma–Delta Modulation," in IEEE Transactions on Industrial Electronics, vol. 59, no. 11, pp. 4088-4100, Nov. 2012.
[40] M. A. Rahman, T. S. Radwan, A. M. Osheiba and A. E. Lashine, "Analysis of current controllers for voltage-source inverter," in IEEE Transactions on Industrial Electronics, vol. 44, no. 4, pp. 477-485, Aug. 1997.
[41] S. Lentijo, S. D'Arco and A. Monti, "Comparing the Dynamic Performances of Power Hardware-in-the-Loop Interfaces," in IEEE Transactions on Industrial Electronics, vol. 57, no. 4, pp. 1195-1207, April 2010.
[42] C. J. O’Rourke, M. M. Qasim, M. R. Overlin and J. L. Kirtley, "A Geometric Interpretation of Reference Frames and Transformations: dq0, Clarke, and Park," in IEEE Transactions on Energy Conversion, vol. 34, no. 4, pp. 2070-2083, Dec. 2019.
[43] Durran, Dale R., "Numerical methods for wave equations in geophysical fluid dynamics. " Vol. 32. Springer Science & Business Media, 2013.
[44] H1M065f020 datasheet, Hestia Power,2019.
[45] F. Golnaraghi and B. C. Kuo, Automatic Control Systems, Hoboken, NJ, USA: Wiley, 2009.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91267-
dc.description.abstract本論文提出將全狀態回授控制應用於電子式馬達模擬器之方法,其目的在於改善電子式馬達模擬器的電流暫態響應以提高馬達模擬器之準確度。傳統的馬達模擬器中,控制器參數由耦合電路之參數所決定,並未考慮到耦合電路在模擬馬達不同轉速時極點會跟著轉速變化,而使得控制器在高轉速時的響應會越來越差,甚至是失控。為了提高馬達模擬器的準確度與穩定性,需要更佳的控制策略抵銷轉速造成的影響。
為了改善傳統控制器的缺點,本論文提出基於電子式馬達模擬器的狀態空間模型設計的全狀態回授控制方法。藉由全狀態回授控制得到電流回授的補償增益,補償轉速跟電流之耦合的影響,使得馬達模擬器的極點位置固定在設計的位置。此方法之優點在於結合全狀態回授自由擺放極點之特性與比例積分控制器易設計之優點,簡化控制器設計流程並提升系統模擬精確度。本論文中詳細介紹並說明全狀態回授控制推導過程以及如何與比例積分控制器相結合,並且藉由電腦模擬以及硬體實驗結果,驗證本論文提出具全狀態回授的控制策略之表現。根據350V,1kW的硬體的實驗結果,與傳統PI控制策略相比,本論文所提出的具全狀態回授控制策略在不同的轉速下有一致的電流暫態與較短的安定時間表現。
zh_TW
dc.description.abstractIn this thesis, the Full-State Feedback control, is proposed to improve the current dynamic response and to enhance the accuracy of the electric motor emulator (EME). The parameters of EME the controller are highly related to the characteristics of the coupling network in side the EME. When the EME operates at different rotating speeds, the poles of the transfer function of the coupling network will change. Usually, the drifting of the transfer function of the coupling networks is neglected. However, it will cause the current transient response to deviation under different rotating speeds or even lose control in very high-speed operations. To enhance the EME’s accuracy and stability, a better control method needs to be developed.
To overcome the disadvantage of the conventional controller, a novel approach based on the full-state feedback control is proposed in this thesis. The current compensation gain is calculated by the EME’s state-space model with full-state feedback, which can compensate for the coupling term related to the rotational speed and current. Eventually, the poles and zeros of the EME control loop can remain unchanged for different operating conditions. The proposed control method combines the conventional proportional-integral(PI) controller with the full-state feedback to achieve the pole-placement flexibility but not drifting. Thus it simplifies the design of the controller and improves the accuracy of the EME. Details of the mathematical derivation of full-state feedback and the integration with the PI controller are provided in this thesis. Computer simulation and hardware experimental results are shown to verify the performance of the proposed control method. Based on 350V,1kW hardware experimental results, compared with the conventional PI control method, the proposed control method with full-state feedback has the same current transient performances and shorter settling times in different rotational speeds.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-20T16:13:43Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-12-20T16:13:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
摘要 III
ABSTRACT IV
目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧與研究動機 2
1.3 章節概要 4
第二章 電子式馬達模擬器 5
2.1 EME功率級電路介紹 6
2.1.1 功率硬體迴路(PHIL) 6
2.1.2 EME換流器介紹 8
2.1.3 弦波脈波寬度調變(SPWM) 9
2.1.4 耦合電路介紹 11
2.2永磁式同步馬達數學模型 13
2.2.1 直交軸轉換 13
2.2.2 基於直交軸之馬達模型 14
2.2.3 馬達模型方程式離散化之數值方法 17
2.3 EME控制器設計 18
2.4 EME測試情境介紹 21
2.4.1 轉子角度歸零 21
2.4.2 轉矩控制 23
2.4.3 轉速控制 24
第三章 具全狀態回授控制策略 25
3.1 EME的狀態空間模型 25
3.2 具全狀態回授控制策略 36
3.2.1 全狀態回授介紹 36
3.2.2 控制器設計 39
3.3 電腦模擬與驗證 45
3.3.1 電流步階響應 46
3.3.2 轉子歸零 50
3.3.3 轉矩控制 52
3.3.4 轉速控制 54
第四章 硬體電路與程式 56
4.1 功率級硬體電路 56
4.2 控制級硬體電路 57
4.2.1 數位訊號處理器介紹 57
4.2.2 電壓、電流偵測電路設計 58
4.2.3 閘極驅動電路設計 60
4.2.4 旋轉編碼模擬器電路設計 61
4.3 數位訊號處理器程式 62
4.3.1 系統主程式 62
4.3.2 CLA任務程式 66
4.3.3 中斷副程式 72
第五章 實作驗證 73
5.1 電流步階響應 74
5.2轉子角度歸零 80
5.3轉矩控制 83
5.4轉速控制 87
第六章 結論與未來研究方向 95
6.1 結論 95
6.2 未來研究方向 96
參考文獻 97
-
dc.language.isozh_TW-
dc.subject電子式馬達模擬器zh_TW
dc.subject全狀態回授控制zh_TW
dc.subject比例積分控制器zh_TW
dc.subject電子式馬達模擬器zh_TW
dc.subject永磁式同步馬達zh_TW
dc.subject全狀態回授控制zh_TW
dc.subject比例積分控制器zh_TW
dc.subject永磁式同步馬達zh_TW
dc.subjectFull-State Feedback Controlen
dc.subjectProportional-Integral Controlleren
dc.subjectElectrical Motor Emulatoren
dc.subjectPermanent Magnet Synchronous Motoren
dc.subjectFull-State Feedback Controlen
dc.subjectPermanent Magnet Synchronous Motoren
dc.subjectElectrical Motor Emulatoren
dc.subjectProportional-Integral Controlleren
dc.title具全狀態回授之電子式馬達模擬器控制zh_TW
dc.titleElectrical Motor Emulator Control with Full-State Feedbacken
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳景然;楊士進;唐丞譽;陳偉倫;黃仁宏zh_TW
dc.contributor.oralexamcommitteeChing-Jan Chen;Shih-Chin Yang;Cheng-Yu Tang;Woei-Luen Chen;Peter J. Huangen
dc.subject.keyword永磁式同步馬達,電子式馬達模擬器,比例積分控制器,全狀態回授控制,zh_TW
dc.subject.keywordPermanent Magnet Synchronous Motor,Electrical Motor Emulator,Proportional-Integral Controller,Full-State Feedback Control,en
dc.relation.page102-
dc.identifier.doi10.6342/NTU202304181-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-16-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
dc.date.embargo-lift2028-08-15-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
13.09 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved