Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91263
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 洪挺軒 | zh_TW |
dc.contributor.advisor | Ting-Hsuan Hung | en |
dc.contributor.author | 梁維容 | zh_TW |
dc.contributor.author | Wei-Jung Liang | en |
dc.date.accessioned | 2023-12-20T16:12:32Z | - |
dc.date.available | 2023-12-21 | - |
dc.date.copyright | 2023-12-20 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-10-06 | - |
dc.identifier.citation | 王安石、蔡志勇、沈雅鈞。(2019)。北部地區柑橘產業發展與輔導。北部地區柑橘栽培管理技術暨產業輔導研討會:1-10。
王妙珍、徐信次、林瓊玖。(2000)。柑橘種原無病毒化保存及利用現況。中國園藝,46(2) :191-196。 王道平、江映錦。(2009)。臍橙“冬黃”和黃龍病黃化的差異及其防治。中國南方果樹,38(5) :59-60。 田幸茹。(2009)。柑橘黃龍病菌在柑橘寄主與媒介木蝨體內的定性與定量偵測。國立臺灣大學植物病理與微生物學研究所碩士論文。 江淑雯、林延諭、盧柏松。(2015)。不同臍橙品種在臺東地區之適應性。臺東區農業改良場研究彙報第25輯:33-42。 李宗翰。(2019)。黃龍病菌於柑橘寄主體內之移動與影響亞洲柑橘木蝨 (半翅目:扁木蝨科) 獲菌因子之探討。國立臺灣大學植物醫學碩士學位學程碩士論文。 李國明。(2007)。高糖度具栽培價值之柑桔新品種佛利蒙柑。花蓮區農業專訊(62):13-14。 林書妍、陳右人。(2006)。台灣原生柑橘之研究及其利用現況。植物種苗,8(1):1-12。 林詠洲、陳邦華、黃阿賢、林義恭。(2012)。北部地區具發展潛力之柑橘品種。技術服務季刊,91:7-9。 林雋軼。(2015)。臺灣兩種主要柑橘類病毒之同步偵測、發病生態及交互作用之探討。國立臺灣大學植物病理與微生物學研究所博士論文。 林瓊玖、葉節耀、劉玉花、駱清令。(1989)。臺灣柑橘種原保存。柑橘試驗研究成果專題研討會專集:6-16。 邱人璋。(1979)。柑桔類毒素病害及木瓜毒素病研究現況。文旦立枯病及木瓜病毒病害之研究與防治研討會:5-7。 施明山、黃美華。(1989)。柑橘健康苗繁殖推廣現況。柑橘試驗研究成果專題研討會專集:93-102。 洪士程。(2006)。柑桔木蝨傳播黃龍病之生態研究。國立臺灣大學昆蟲學研究所博士論文。 洪挺軒。(1994)。柑橘黃龍病原擬細菌診斷用核酸探針之製備與應用於感染生態之研究。國立臺灣大學植物病蟲害研究所博士論文。 胡倍輔。(2013)。全球化化下國家與產業關係調整:以台灣柑橘產業為例。國立中山大學政治學研究所碩士論文。 徐信次、呂明雄。(1995)。柑橘品種多樣化。台灣柑橘之研究與發展研討會專刊:33-42。 高唯峻。(2022)。不同品種聖誕紅植株體內植物菌質體之定量追蹤及溫度對植物菌質體之影響。國立臺灣大學植物醫學碩士學位學程碩士論文。 張立。(2012)。柑橘破葉病毒感染性選殖株之構築及偵測方法之改良。國立台灣大學植物病理與微生物學研究所碩士論文。 許秀霞。(2011)。做客「成功」、成功做客-臺東縣成功鎮客家家族記事。臺東大學人文學報,1(2):137-177。 陳祈男、黃維廷、蔡佳欣、蔡志濃、湯楊欽憲、石憲宗。(2015)。柑橘健康管理生產體系之研究。103年度重點作物健康管理生產體系及關鍵技術之研發成果研討會:166-183。 陳盟松、賴文龍、葉士財、黃偉峻。(2013)。臍橙栽培管理及成本分析。臺中區農業技術專刊,189:1-38。 曾立維。(2005)。日治時期台灣柑橘產業的開啓與發展。國立政治大學史學研究所碩士論文。 馮雅智。(2014)。柑橘黃龍病之病菌系統演化、發病生態與植物菌質相關性之探討。國立臺灣大學植物病理與微生物學研究所博士論文。 黃安利。(1987)。柑橘立枯病原菌之形態與消長動態之電顯研究。國立臺灣大學植物病蟲害研究所博士論文。 黃阿賢、陳祈男。(2012)。台灣中北部有潛力的柑橘新興品種。苗栗區農業專訊,58:10-14。 黃阿賢、陳祈男、楊儒民、唐佳惠。(2013)。台灣柑橘品種改良之回顧與展望。臺灣果樹育種研討會專刊:105-113。 黃阿賢、楊儒民。(2004)。柑橘健康種苗繁殖體系與台灣健康種苗計畫。植物種苗,6(2):19-29。 黃秋雄。(1989)。柑橘立枯病媒介蟲傳播試驗之過去與現況。柑橘試驗研究成果專題研討會專刊:169-178。 黃秋雄、徐信次。(1989)。熱療法培育本省無毒優良柑橘種苗。柑橘試驗研究成果研討會專刊:103-111。 黃秋雄、張清安。(1980)。菌質與麻豆文旦立枯症兆發生關係之研究。中華農業研究,29(1):13-19。 黃秋雄、蔡梅玉、王清玲。(1984)。木蝨媒介傳播柑桔立枯病之研究。中華農業研究,33(1):65-72。 楊秀珠、王怡玎、呂明雄、李堂察、洪士程、徐信次、陳富永、童伯開、黃阿賢、黃莉欣、黃裕銘、蔡東纂、蘇文瀛。(2002)。柑桔整合管理 (楊秀珠, Ed.)。行政院農委會農業藥物毒物試驗所。 劉元昌、張志展、李宗樺。(2019)。北部地區柑橘產銷研究-以青果合作社新竹分社為例。北部地區柑橘栽培管理技術暨產業輔導研討會特刊,第52號:73-85。 蔡佳欣、洪挺軒、蘇鴻基。(2011)。柑橘黃龍病之發生生態及防治研究。農作物害蟲及其媒介病害整合防治技術研討會專刊:73-89。 蔡佳欣、蘇鴻基、馮雅智、洪挺軒。(2007)。台灣地區柑橘黃龍病與萎縮病毒、破葉病毒田間複合感染之研究。植物病理學會刊,16(3):121-129。 鄧凱云、楊筱姿、陳怡宏、林欣榜、蔡孟貞。(2011)。國產相橘類果皮製成陳皮之多甲基類黃酬含量及抗氧化活性研究。臺灣農業化學與食品科學, 49(6):338-345。 盧潔。(2017)。臺灣柑橘黃龍病之病菌原噬菌體類型、罹病率及複合感染柑橘萎縮病之現況調查。國立臺灣大學植物病理與微生物學研究所碩士論文。 賴巧娟。(2014)。台灣重要柑橘品種複合感染柑橘黃龍病菌及柑橘萎縮病毒之研究。國立臺灣大學植物病理與微生物學研究所碩士論文。 蘇鴻基、蔡佳欣、馮雅智、洪挺軒。(2010)。柑桔黃龍病之研究及健康管理。農業試驗所特刊,149:33-61。 Albrecht, U., & Bowman, K. D. (2008). Gene expression in Citrus sinensis (L.) Osbeck following infection with the bacterial pathogen Candidatus Liberibacter asiaticus causing Huanglongbing in Florida. Plant Sci., 175, 291-306. Albrecht, U., & Bowman, K. D. (2012). Tolerance of trifoliate citrus rootstock hybrids to Candidatus Liberibacter asiaticus. Sci. Hortic., 147, 71-80. Asikin, Y., Kawahira, S., Goki, M., Hirose, N., Kyoda, S., & Wada, K. (2018). Extended aroma extract dilution analysis profile of Shiikuwasha (Citrus depressa Hayata) pulp essential oil. J. Food Drug Anal., 26, 268-276. Aubert, B. (1993). Citrus greening disease, a serious limiting factor for citriculture in Asia and Africa. Proceedings of the 4th Congress of the International Society of Nurserymen, South Africa (pp 817-820). Balan, B., Ibanez, A. M., Dandekar, A. M., Caruso, T., & Martinelli, F. (2018). Identifying host molecular features strongly linked with responses to Huanglongbing disease in citrus leaves. Front. Plant Sci., 9, 277. Bao, M. L., Zheng, Z., Chen, J. C., & Deng, X. L. (2021). Investigation of citrus HLB symptom variations associated with “Candidatus Liberibacter asiaticus” strains harboring different phages in southern china. Agronomy, 11, 2262. Bové, J. M. (2006). Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J. Plant. Pathol., 88, 7-37. Carvalho, S. A. d., Girardi, E. A., Mourão Filho, F. d. A. A., Ferrarezi, R. S., & Coletta Filho, H. D. (2019). Advances in citrus propagation in Brazil. Rev. Bras. Frutic., 41. Casjens, S. (2003). Prophages and bacterial genomics: what have we learned so far? Mol. Microbiol., 49, 277-300. Cevallos-Cevallos, J. M., Futch, D. B., Shilts, T., Folimonova, S. Y., & Reyes-De-Corcuera, J. I. (2012). GC-MS metabolomic differentiation of selected citrus varieties with different sensitivity to citrus huanglongbing. Plant Physiol. Biochem., 53, 69-76. Chen, Q., Min, A., Luo, S., He, J., Wu, R., Lin, X., Wang, Y., He, W., Zhang, Y., Lin, Y., Li, M., Zhang, Y., Luo, Y., Tang, H., & Wang, X. (2022). Metabolomic analysis revealed distinct physiological responses of leaves and roots to Huanglongbing in a citrus rootstock. Int. J. Mol. Sci., 23, 19. Chin, E. L., Ramsey, J., Saha, S., Mishchuk, D., Chavez, J., Howe, K., Zhong, X., Flores-Gonzalez, M., Mitrovic, E., Polek, M., Godfrey, K., Mueller, L. A., Bruce, J., Heck, M., & Slupsky, C. M. (2021). Multi-omics comparison reveals landscape of Citrus limon and Citrus sinensis response to ‘Candidatus Liberibacter asiaticus’. PhytoFrontiers™, 1, 76-84. Chin, E. L., Ramsey, J. S., Mishchuk, D. O., Saha, S., Foster, E., Chavez, J. D., Howe, K., Zhong, X., Polek, M., Godfrey, K. E., Mueller, L. A., Bruce, J. E., Heck, M., & Slupsky, C. M. (2020). Longitudinal transcriptomic, proteomic, and metabolomic analyses of Citrus sinensis (L.) Osbeck graft-inoculated with “Candidatus Liberibacter asiaticus”. J. Proteome Res., 19, 719-732. Christensen, N. M., Nicolaisen, M., Hansen, M., & Schulz, A. (2004). Distribution of phytoplasmas in infected plants as revealed by real-time PCR and bioimaging. Mol. Plant Microbe Interact., 17, 1175-1184. Curtolo, M., de Souza Pacheco, I., Boava, L. P., Takita, M. A., Granato, L. M., Galdeano, D. M., de Souza, A. A., Cristofani-Yaly, M., & Machado, M. A. (2020). Wide-ranging transcriptomic analysis of Poncirus trifoliata, Citrus sunki, Citrus sinensis and contrasting hybrids reveals HLB tolerance mechanisms. Sci. Rep., 10, 20865. Jiang D., & Cao, L. (2011). The performances of Orah which is late -maturing variety with high sugar content introduction in Chongqing. South China Fruit, 40, 33-34. Dai, Z., Wu, F., Zheng, Z., Yokomi, R., Kumagai, L., Cai, W., Rascoe, J., Polek, M., Chen, J., & Deng, X. (2019). Prophage diversity of ‘Candidatus Liberibacter asiaticus’ Strains in California. Phytopathology, 109, 551-559. Das, A. K., Chichghare, S. A., Sharma, S. K., Kumar, J. P. T., Singh, S., Baranwal, V. K., Kumar, A., & Nerkar, S. (2021). Genetic diversity and population structure of ‘Candidatus Liberibacter asiaticus’ associated with citrus Huanglongbing in India based on the prophage types. World J. Microbiol. Biotechnol., 37, 95. de Moraes Pontes, J. G., Vendramini, P. H., Fernandes, L. S., de Souza, F. H., Pilau, E. J., Eberlin, M. N., Magnani, R. F., Wulff, N. A., & Fill, T. P. (2020). Mass spectrometry imaging as a potential technique for diagnostic of Huanglongbing disease using fast and simple sample preparation. Sci Rep., 10, 13457. Dominguez-Mirazo, M., Jin, R., & Weitz, J. S. (2019). Functional and comparative genomic analysis of integrated prophage-like sequences in "Candidatus Liberibacter asiaticus". mSphere, 4, 6. Etxeberria, E., Gonzalez, P., Achor, D., & Albrigo, G. (2009). Anatomical distribution of abnormally high levels of starch in HLB-affected Valencia orange trees. Physiol. Mol. Plant Pathol. , 74, 76-83. Fan, J., Chen, C., Yu, Q., Khalaf, A., Achor, D. S., Brlansky, R. H., Moore, G. A., Li, Z.-G., & Gmitter, F. G. (2012). Comparative transcriptional and anatomical analyses of tolerant rough lemon and susceptible sweet orange in response to ‘Candidatus Liberibacter asiaticus’ infection. MPMI, 25, 1396-1407. Feiner, R., Argov, T., Rabinovich, L., Sigal, N., Borovok, I., & Herskovits, A. A. (2015). A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat. Rev. Microbiol., 13, 641-650. Fleites, L. A., Jain, M., Zhang, S., & Gabriel, D. W. (2014). "Candidatus Liberibacter asiaticus" prophage late genes may limit host range and culturability. Appl. Environ. Microbiol., 80, 6023-6030. Folimonova, S. Y., & Achor, D. S. (2010). Early events of citrus greening (Huanglongbing) disease development at the ultrastructural level. Phytopathology, 100, 949-958. Folimonova, S. Y., Robertson, C. J., Garnsey, S. M., Gowda, S., & Dawson, W. O. (2009). Examination of the responses of different genotypes of citrus to huanglongbing (citrus greening) under different conditions. Phytopathology, 99, 1346-1354. Fu, S., Bai, Z., Su, H., Liu, J., Hartung, J. S., Zhou, C., & Wang, X. (2020). Occurrence of prophage and historical perspectives associated with the dissemination of huanglongbing in mainland China. Plant Pathol., 69, 132-138. Futch, S., Weingarten, S., & Irey, M. (2009). Determining HLB infection levels using multiple survey methods in Florida citrus. Proc. Fla. State Hort. Soc., 122, 152-157. Garcia-Ruiz, F., Sankaran, S., Maja, J. M., Lee, W. S., Rasmussen, J., & Ehsani, R. (2013). Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees. Comput. Electron. Agric., 91, 106-115. Goh, J. X. H., Tan, L. T. H., Goh, J. K., Chan, K. G., Pusparajah, P., Lee, L. H., & Goh, B. H. (2019). Nobiletin and derivatives: functional compounds from citrus fruit peel for colon cancer chemoprevention. Cancers, 11, 34. Gottwald, T., Poole, G., McCollum, T., Hall, D., Hartung, J., Bai, J., Luo, W., Posny, D., Duan, Y. P., Taylor, E., da Graca, J., Polek, M., Louws, F., & Schneider, W. (2020). Canine olfactory detection of a vectored phytobacterial pathogen, Liberibacter asiaticus, and integration with disease control. PNAS, 117, 3492-3501. Gottwald, T. R., Graça, J. V. d., & Bassanezi, R. B. (2007). Citrus Huanglongbing: The Pathogen and Its Impact. PHP, 8, 31. Graham, H. B., Frederick, G. G., Jr., Chunxian, C., Mikeal, L. R., Claire, T. F., & Gregory, T. M. (2015). Investigating the parentage of 'Orri' and 'Fortune' mandarin hybrids. Acta Hortic.1065, 449-456. Graham, J., Gottwald, T., & Setamou, M. (2020). Status of huanglongbing (HLB) outbreaks in Florida, California and texas. Trop. Plant Pathol., 45, 265-278. Hu, Y., Zhong, X., Liu, X. L., Lou, B. H., Zhou, C. Y., & Wang, X. F. (2017). Comparative transcriptome analysis unveils the tolerance mechanisms of Citrus hystrix in response to 'Candidatus Liberibacter asiaticus' infection. PloS One, 12, e0189229. Hung, T. H., Wu, M. L., & Su, H. J. (1999a). Detection of fastidious bacteria causing citrus greening disease by nonradioactive DNA probes. JJP, 65, 140-146. Hung, T. H., Wu, M. L., & Su, H. J. (1999b). Development of a rapid method for the diagnosis of citrus greening disease using the polymerase chain reaction. J. Phytopathol., 147, 599-604. Hung, T. H., Wu, M. L., & Su, H. J. (2000a). Identification of alternative hosts of the fastidious bacterium causing citrus greening disease. J Phytopathol, 148, 321-326. Hung, T. H., Wu, M. L., & Su, H. J. (2000b). A rapid method based on the one-step reverse transcriptase-polymerase chain reaction (RT-PCR) technique for detection of different strains of citrus tristeza virus. J. Phytopathol., 148, 469-475. Islam, M. R., Haque, M. M., Khatun, H., Sarker, J., Wang, Y., Ke, W., Cen, Y., Lavagi-Craddock, I., & Deng, X. (2022). Huanglongbing in Bangladesh: a pilot study for disease incidence, pathogen detection, and its genetic diversity. J. Citrus Pathol., 9. Iwanami, T., Uechi, N., & Kawano, S. (2009). Temporal change in the distribution of PCR-positive tissue within the tree canopy of Citrus depressa affected by greening. Kyushu Plant Protection Research, 55, 68-75. Jain, M., Fleites, L. A., & Gabriel, D. W. (2015). Prophage-encoded peroxidase in 'Candidatus Liberibacter asiaticus' is a secreted effector that suppresses plant defenses. Mol. Plant Microbe Interact., 28, 1330-1337. Johnson, E. G., Wu, J., Bright, D. B., & Graham, J. H. (2014). Association of ‘Candidatus Liberibacter asiaticus’ root infection, but not phloem plugging with root loss on huanglongbing-affected trees prior to appearance of foliar symptoms. Plant Pathol., 63, 290-298. José, A. P., Pedro, C., Mari, C. V., & Luis, N. (2015). The citrus nursery tree certification program in Spain. Acta Hortic.1065, 745-751. Killiny, N., & Nehela, Y. (2017). One target, two mechanisms: the impact of 'Candidatus Liberibacter asiaticus' and its vector, Diaphorina citri, on citrus leaf pigments. Mol. Plant Microbe Interact., 30, 543-556. Koizumi, M., Prommintara, M., Linwattana, G., & Kaisuwan, T. (1993). Field evaluation of citrus cultivars for greening disease resistance in Thailand. International Organization of Citrus Virologists Conference Proceedings (1957-2010), 12. Lee, Y. H., Charles, A. L., Kung, H. F., Ho, C. T., & Huang, T. C. (2010). Extraction of nobiletin and tangeretin from Citrus depressa Hayata by supercritical carbon dioxide with ethanol as modifier. Ind. Crops Prod., 31, 59-64. Lee, Y. S., Cha, B. Y., Saito, K., Choi, S. S., Wang, X. X., Choi, B. K., Yonezawa, T., Teruya, T., Nagai, K., & Woo, J. T. (2011). Effects of a Citrus depressa Hayata (shiikuwasa) extract on obesity in high-fat diet-induced obese mice. Phytomedicine, 18, 648-654. Li, B., Zhang, Y., Qiu, D. W., Francis, F., & Wang, S. C. (2021). Comparative proteomic analysis of sweet orange petiole provides insights into the development of Huanglongbing symptoms. Front. Plant Sci., 12, 656997. Li, W., Levy, L., & Hartung, J. S. (2009). Quantitative distribution of 'Candidatus Liberibacter asiaticus' in citrus plants with citrus huanglongbing. Phytopathology, 99, 139-144. Lin, C. Y., Wu, M. L., Shen, T. L., Yeh, H. H., & Hung, T. H. (2015). Multiplex detection, distribution, and genetic diversity of Hop stunt viroid and Citrus exocortis viroid infecting citrus in Taiwan. Virology Journal, 12, 11. Liu, F., Wang, X., Chen, D., Chen, X., Liao, H., Wang, N., Huang, H., & Huang, Q. (2020). Nested-PCR detection and investigation for Candidatus Liberibacter asiaticus of Orah. Journal of Southern Agriculture, 51, 101-107. Liu, R., Xu, Y. H., Jiang, S. C., Lu, K., Lu, Y. F., Feng, X. J., Wu, Z., Liang, S., Yu, Y. T., Wang, X. F., & Zhang, D. P. (2013). Light-harvesting chlorophyll a/b-binding proteins, positively involved in abscisic acid signalling, require a transcription repressor, WRKY40, to balance their function. J. Exp. Bot., 64, 5443-5456. Louws, F., Rademaker, J., & de Bruijn, F. (1999). The three ds of pcr-based genomic analysis of phytobacteria: diversity, detection, and disease diagnosis. Annu. Rev. Phytopathol., 37, 81-125. Louzada, E. S., Vazquez, O. E., Braswell, W. E., Yanev, G., Devanaboina, M., & Kunta, M. (2016). Distribution of ‘Candidatus Liberibacter asiaticus’ above and below ground in texas Citrus. Phytopathology, 106, 702-709. Martinelli, F., Ibanez, A. M., Reagan, R. L., Davino, S., & Dandekar, A. M. (2015). Stress responses in citrus peel: Comparative analysis of host responses to Huanglongbing disease and puffing disorder. Sci. Hortic., 192, 409-420. Martinelli, F., Reagan, R. L., Uratsu, S. L., Phu, M. L., Albrecht, U., Zhao, W., Davis, C. E., Bowman, K. D., & Dandekar, A. M. (2013). Gene regulatory networks elucidating huanglongbing disease mechanisms. PloS One, 8, e74256. Martinelli, F., Uratsu, S. L., Albrecht, U., Reagan, R. L., Phu, M. L., Britton, M., Buffalo, V., Fass, J., Leicht, E., Zhao, W., Lin, D., D'Souza, R., Davis, C. E., Bowman, K. D., & Dandekar, A. M. (2012). Transcriptome profiling of citrus fruit response to Huanglongbing disease. PloS One, 7, e38039. Matsumoto, T., Su, H. J., & Lo, T. T. (1968). Indexing procedures for 15 virus diseases of citrus trees. International Organization of Citrus Virologists and Committee on Indexing Procedures, Diagnosis, and Nomenclature, USA. Matsumoto, T., Wang, M. C., & Su, H. J. (1961). Studies on likubin. In Price W. C (ed.), Proceedings of 2nd conference of the international organization of citrus virologists (pp 121-125). Menouni, R., Hutinet, G., Petit, M.-A., & Ansaldi, M. (2015). Bacterial genome remodeling through bacteriophage recombination. FEMS Microbiol. Lett., 362(1), 1-10. Miles, G. P., Stover, E., Ramadugu, C., Keremane, M. L., & Lee, R. F. (2017). Apparent tolerance to huanglongbing in citrus and citrus-related germplasm. Hortscience, 52, 31-39. Mishra, A., Karimi, D., Ehsani, R., & Albrigo, L. G. (2011). Evaluation of an active optical sensor for detection of Huanglongbing (HLB) disease. Biosyst. Eng., 110, 302-309. Nakajima, A., & Ohizumi, Y. (2019). Potential benefits of nobiletin, a citrus flavonoid, against alzheimer's disease and parkinson's disease. International Journal of Molecular Sciences, 20, 14, 3380. Nawaz, M. A., Lin, X., Chan, T.-F., Imtiaz, M., Rehman, H. M., Ali, M. A., Baloch, F. S., Atif, R. M., Yang, S. H., & Chung, G. (2019). Characterization of cellulose synthase A (CESA) gene family in eudicots. Biochem. Genet., 57, 248-272. Nehela, Y., & Killiny, N. (2020). Revisiting the complex pathosystem of huanglongbing: deciphering the role of citrus metabolites in symptom development. Metabolites, 10(10), 25, 409. Nelson, W., Munyaneza, J., McCue, K., & Bové, J. (2013). The pangaean origin of "Candidatus Liberibacter" species. J. Plant Pathol., 95, 455-461. Pourreza, A., Lee, W. S., Ehsani, R., Schueller, J. K., & Raveh, E. (2015). An optimum method for real-time in-field detection of Huanglongbing disease using a vision sensor. Comput. Electron. Agric., 110, 221-232. Ramadugu, C., Keremane, M. L., Halbert, S. E., Duan, Y. P., Roose, M. L., Stover, E., & Lee, R. F. (2016). Long-term field evaluation reveals huanglongbing resistance in citrus relatives. Plant Dis., 100, 1858-1869. Sankaran, S., & Ehsani, R. (2011). Visible-near infrared spectroscopy based citrus greening detection: Evaluation of spectral feature extraction techniques. Crop Prot., 30, 1508-1513. Sivager, G., Calvez, L., Bruyere, S., Boisne-Noc, R., Brat, P., Gros, O., Ollitrault, P., & Morillon, R. (2021). Specific physiological and anatomical traits associated with polyploidy and better detoxification processes contribute to improved Huanglongbing tolerance of the Persian Lime compared with the Mexican Lime. Front. Plant Sci., 12, 685679. Sivager, G., Calvez, L., Bruyere, S., Boisne-Noc, R., Hufnagel, B., Cebrian-Torrejon, G., Doménech-Carbó, A., Gros, O., Ollitrault, P., & Morillon, R. (2022). Better tolerance to Huanglongbing is conferred by tetraploid Swingle citrumelo rootstock and is influenced by the ploidy of the scion. Front. Plant Sci., 13, 1030862. Subirats, J., Sànchez-Melsió, A., Borrego, C. M., Balcázar, J. L., & Simonet, P. (2016). Metagenomic analysis reveals that bacteriophages are reservoirs of antibiotic resistance genes. International Journal of Antimicrobial Agents, 48, 163-167. Texeira, D. C., Ayres, J., Kitajima, E. W., Danet, L., Jagoueix-Eveillard, S., Saillard, C., & Bové, J. M. (2005). First report of a huanglongbing-like disease of citrus in Sao Paulo State, Brazil and association of a new Liberibacter Species, "Candidatus Liberibacter americanus", with the disease. Plant Dis, 89, 107. Tomimura, K., Furuya, N., Miyata, S., Hamashima, A., Torigoe, H., Murayama, Y., Kawano, S., Okuda, M., Subandiyah, S., & Iwanami, T. (2010). Distribution of two distinct genotypes of citrus greening organism in the Ryukyu islands of Japan. Jpn. Agric. Res. Quart., 44, 151-158. Tsai, C.-H., Su, H.-J., Liao, Y.-C., & Hung, T.-H. (2006). First Report of the Causal Agent of Huanglongbing (“Candidatus Liberibacter asiaticus”) Infecting Kumquat in Taiwan. Plant Disease, 90, 1360-1360. USDA/FAS. (2023). Citrus Annual. Global agricultural information network. Varani, A. M., Monteiro-Vitorello, C. B., Nakaya, H. I., & Sluys, M.-A. V. (2013). The role of prophage in plant-pathogenic bacteria. Annu. Rev. Phytopathol., 51, 429-451. Vidalakis, G., Da Graca, J., Dixon, W., Ferrin, D., Kesinger, M., & Krueger, R. R. (2010). Citrus quarantine, sanitary and certification programs in the USA. Prevention of introduction and distribution of citrus pests. Part 1-quarantine and introduction programs. Citrograph, 3, 26-35. Von Broembsen, L. A., & Lee, A. T. C. (1988). South Africa's citrus improvement programme. International Organization of Citrus Virologists Conference Proceedings (1957-2010), 10. Wang, K., Liao, Y., Meng, Y., Jiao, X., Huang, W., & Liu, T. C.-y. (2019). The early, rapid, and non-destructive detection of citrus Huanglongbing (HLB) based on microscopic confocal raman. Food Anal. Methods, 12, 2500-2508. Wang, Q., Chen, J., Xu, M., Shen, Y., Zhou, M., Zhu, F., Lu, J., & Cheng, H. (2019). Effect of Huanglongbing on the quality of newhall navel orange. Shipin Kexue / Food Science, 40, 48-53. Wang, Y. S., Zhou, L. J., Yu, X. Y., Stover, E., Luo, F., & Duan, Y. P. (2016). Transcriptome profiling of huanglongbing (HLB) tolerant and susceptible citrus plants reveals the role of basal resistance in HLB tolerance. Front. Plant Sci., 7, 933. Wang, Z., Niu, Y., Vashisth, T., Li, J., Madden, R., Livingston, T. S., & Wang, Y. (2022). Nontargeted metabolomics-based multiple machine learning modeling boosts early accurate detection for citrus Huanglongbing. Hortic. Res., 9, uhac145. Wu, H., Hu, Y., Fu, S., Zhou, C., & Wang, X. (2020). Coordination of multiple regulation pathways contributes to the tolerance of a wild citrus species (Citrus ichangensis ‘2586’) against Huanglongbing. Physiol. Mol. Plant Pathol., 109, 101457. Wu, J., Johnson, E. G., Bright, D. B., Gerberich, K. M., & Graham, J. H. (2017). Interaction between Phytophthora nicotianae and Candidatus Liberibacter asiaticus damage to citrus fibrous roots. J. Citrus Pathol., 4. Xu, Q., Bai, J., Ma, L., Li, Z., Tan, B., Sun, L., & Cai, J. (2023). Identification of multiple symptoms of huanglongbing by electronic nose based on the variability of volatile organic compounds. Ann. Appl. Biol., 183, 181-195. Xue, A., Liu, Y., Li, H., Cui, M., Huang, X., Wang, W., Wu, D., Guo, X., Hao, Y., & Luo, L. (2022). Early detection of Huanglongbing with EESI-MS indicates a role of phenylpropanoid pathway in citrus. Anal. Biochem., 639, 114511. Yan, J., Yuan, F., Long, G., Qin, L., & Deng, Z. (2012). Selection of reference genes for quantitative real-time RT-PCR analysis in citrus. Mol. Biol. Rep., 39(2), 1831-1838. Zhang, S., Flores-Cruz, Z., Zhou, L., Kang, B. H., Fleites, L. A., Gooch, M. D., Wulff, N. A., Davis, M. J., Duan, Y. P., & Gabriel, D. W. (2011). 'Ca. Liberibacter asiaticus' carries an excision plasmid prophage and a chromosomally integrated prophage that becomes lytic in plant infections. MPMI, 24, 458-468. Zheng, Y., Zhang, J., Li, Y., Liu, Y., Liang, J., Wang, C., Fang, F., Deng, X., & Zheng, Z. (2023). Pathogenicity and transcriptomic analyses of two "Candidatus Liberibacter asiaticus" strains harboring different types of phages. Microbiol. Spectr., 11, e0075423. Zheng, Z., Bao, M., Wu, F., Chen, J., & Deng, X. (2016). Predominance of single prophage carrying a CRISPR/cas system in “Candidatus Liberibacter asiaticus” strains in southern China. PloS One, 11, e0146422. Zheng, Z., Bao, M., Wu, F., Van Horn, C., Chen, J., & Deng, X. (2018). A Type 3 Prophage of 'Candidatus Liberibacter asiaticus' carrying a restriction-modification system. Phytopathology, 108, 454-461. Zhou, L., Powell, C. A., Hoffman, M. T., Li, W., Fan, G., Liu, B., Lin, H., & Duan, Y. (2011). Diversity and plasticity of the intracellular plant pathogen and insect symbiont "Candidatus Liberibacter asiaticus" as revealed by hypervariable prophage genes with intragenic tandem repeats. Appl. Environ. Microbiol., 77, 6663-6673. Zolkiewicz, K., & Gruszka, D. (2022). Glycogen synthase kinases in model and crop plants - from negative regulators of brassinosteroid signaling to multifaceted hubs of various signaling pathways and modulators of plant reproduction and yield. Front. Plant Sci., 13, 939487. Zuñiga, C., Peacock, B., Liang, B., McCollum, G., Irigoyen, S. C., Tec-Campos, D., Marotz, C., Weng, N.-C., Zepeda, A., Vidalakis, G., Mandadi, K. K., Borneman, J., & Zengler, K. (2020). Linking metabolic phenotypes to pathogenic traits among “Candidatus Liberibacter asiaticus” and its hosts. NPJ Syst. Biol. Appl., 6, 24. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91263 | - |
dc.description.abstract | 柑橘作為臺灣產量最大的果樹,其經濟價值不容小覷。產期集中、品種單一化,是臺灣的柑橘產業長期以來的問題,而肆虐全世界的黃龍病一直是柑橘品質與產量的重要限制因子。農業試驗所的嘉義分所保存逾170個柑橘品種,並積極進行新品種的選育,其中不乏優良柑橘品種,儘管園藝性狀良好,其抗黃龍病的抗病能力卻是缺乏掌握的。有鑑於此,本研究選擇四種具有市場潛力的柑橘品種─臍橙、黃金茂谷、佛利蒙、與扁實檸檬,進行黃龍病之感病程度的測試,並與主流品種當中已知較感病的椪柑、桶柑還有已知較耐病的文旦、優利加檸檬相互比較。此外,本研究也測試不同的接種條件,對試驗結果的影響。四品種當中,黃金茂谷最感病,感染後葉片強烈黃化斑駁,且植株矮化程度高,臍橙與佛利蒙次之,扁實檸檬較耐病,罹病嚴重度低且菌量低,感病程度近似優利加檸檬。接種條件方面,雖然小植株與大植株在菌量增殖速度相差不大,但是小植株的發病速度普遍較快,此外矮小且分枝多的植株,其菌量分布較均勻。本研究也針對具市場潛力的品種,調查田間黃龍病的現況。罹病率方面,屏東的扁實檸檬與臺東的臍橙、佛利蒙的罹病率偏高,北部山區的佛利蒙、臍橙與黃金茂谷都沒有檢測到黃龍病,整體而言,罹病率與健康種苗的使用率無相關性。感染黃龍病的樣本中,多數都能檢測到原噬菌體,以T1原噬菌體單獨感染及T1+ T3原噬菌體複合感染的比例為主,有趣的是,不含任何已知原噬菌體的樣本,其菌量比較低。由於國內以往的黃龍病研究多半是針對市場的主流品種,缺乏新興品種或是非主流品種的學術研究資料,本研究針對上述四個具市場潛力的柑橘品種,提供黃龍病的試驗資料及田間危害現況,有助於未來推廣品種及田間管理能更加精準,因「品種」制宜。同時,本研究也累積臺灣本島的黃龍病生態資料,如噬菌體類型,為黃龍病菌系的演變提供資訊。 | zh_TW |
dc.description.abstract | Citrus, as Taiwan's largest fruit tree crop, holds significant economic value. The concentrated harvest season and few citrus varieties supplied have been long-standing issues in Taiwan's citrus industry. The widespread Huanglongbing (HLB), also known as citrus greening disease, has been a crucial limiting factor for citrus quality and yield worldwide. Chiayi Agricultural experiment branch, Taiwan Agricultural Research Institute preserves over 170 citrus varieties and actively engages in breeding new varieties. While many of these varieties exhibit excellent horticultural traits, their susceptibility to HLB remains unclear. In light of this, this study aimed to select four citrus varieties with market potential, Navel, Ora, Fremont and Shiikuwasha, to test their susceptibility to HLB, and compared them with mainstream susceptible varieties such as Ponkan and Tankan, as well as resistant varieties like Wentan and Eureka Lemon. Additionally, this study also tested different inoculation conditions to assess their impact on the experimental results. Among the four varieties, Ora displayed the highest susceptibility to HLB, showing strong mottled yellowing on infected leaves and significant stunting. Navel and Fremont were the second, while Shiikuwasha exhibited greater disease tolerance, with lower disease severity and Candidatus Liberibacter asiaticus quantity, comparable to Eureka Lemon. In terms of inoculation conditions, although the rate of CLas proliferation did not significantly differ between small and large plants, small plants generally exhibited faster disease progression. Furthermore, shorter plants with more branches displayed a higher detection rate of CLas. This study also investigated the current status of HLB in the field for the selected market potential varieties. Disease incidence varied, with higher rates of Shiikuwasha in Pingtung and Navel and Fremont in Taitung. In the northern regions, Fremont, Navel and Ora showed no detectable presence of HLB. Overall, disease incidence did not correlate with the usage of the healthy seedlings. Among the HLB-infected samples, most contained prophages, with the highest proportion attributed to the T1 prophage alone or in combination with the T3 prophage. Interestingly, samples lacking any known prophage displayed lower CLas quantity. Given that previous HLB research in Taiwan mainly focused on mainstream market varieties, academic research data on emerging or non-mainstream varieties is scarce. This study provides valuable experimental and field data on HLB for the aforementioned four citrus varieties with market potential. This information will contribute to more precise field management and variety promotion, tailored to specific varieties. Additionally, this study collected ecological data on HLB in Taiwan, including information on prophage types, which offers insights into the evolution of CLas. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-20T16:12:32Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-12-20T16:12:32Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii Abstract iv 目錄 vi 圖表目錄 viii 壹、前言 1 一、 臺灣之柑橘產業 1 二、 柑橘產業困境與調適 1 三、 柑橘健康種苗制度與具市場潛力之品種的推廣 2 四、 研究目的 4 貳、 前人研究 5 一、 黃龍病之歷史 5 二、 黃龍病之病原分類 6 三、 黃龍病之發病生態與防治 6 四、 黃龍病於植株上的病徵表現 7 五、 感染黃龍病之生理機制與其應用性 8 六、 各品系之柑橘對黃龍病的抗感病性 9 七、 病原菌之偵測與在植株體內的分布情形 10 八、 黃龍病菌之噬菌體 11 參、 材料與方法 14 一、 核酸萃取 14 二、 傳統PCR反應及膠體電泳分析 14 三、 建構黃龍病菌 real-time PCR標準曲線 15 四、 Real-time PCR (Polymerase chain reaction) 反應 16 五、 具市場潛力之柑橘品種對黃龍病的抗感性評估 17 六、 黃龍病菌於不同柑橘品種的分佈情形 19 七、 早期偵測黃龍病的指標 20 八、 柑橘黃龍病的危害現況及黃龍病菌原噬菌體類型之調查 22 肆、 結果 24 一、 柑橘黃龍病之發病生態 24 二、 柑橘黃龍病的罹病率及原噬菌體類型 34 伍、 討論 38 一、 柑橘黃龍病之發病生態 38 二、 柑橘黃龍病的罹病率及原噬菌體類型 44 陸、 結語 49 柒、 參考文獻 50 捌、 表 64 玖、 圖 87 拾、 附錄表 117 拾壹、 附錄圖 121 | - |
dc.language.iso | zh_TW | - |
dc.title | 市場潛力柑橘品種對黃龍病的感病性評估與田間黃龍病現況調查 | zh_TW |
dc.title | Virulence analysis of Huanglongbing on potentially-marketing citrus cultivars and the current status of Huanglongbing in Taiwan | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林乃君;張立;沈原民;蔡佳欣 | zh_TW |
dc.contributor.oralexamcommittee | Nai-Chun Lin;Li Chang;Yuan-Min Shen;Chia-Hsin Tsai | en |
dc.subject.keyword | 黃龍病,多樣化柑橘品種,感病性,罹病率,原噬菌體, | zh_TW |
dc.subject.keyword | Huanglongbing,variation of citrus cultivars,susceptibility,disease incidence,prophage, | en |
dc.relation.page | 129 | - |
dc.identifier.doi | 10.6342/NTU202304297 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-10-11 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 植物醫學碩士學位學程 | - |
Appears in Collections: | 植物醫學碩士學位學程 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-112-1.pdf | 6.4 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.