請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91258完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊志忠 | zh_TW |
| dc.contributor.advisor | Chih-Chung Yang | en |
| dc.contributor.author | 梁力平 | zh_TW |
| dc.contributor.author | Li-Ping Liang | en |
| dc.date.accessioned | 2023-12-20T16:11:01Z | - |
| dc.date.available | 2023-12-21 | - |
| dc.date.copyright | 2023-12-20 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-10-12 | - |
| dc.identifier.citation | 1. E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69, 37-38 (1946).
2. D. Chen, H. Xiao, and J. Han, “Nanopores in GaN by electrochemical anodization in hydrofluoric acid formation and mechanism,” J. Appl. Phys. 112(6), 064303 (2012). 3. P. H. Griffin and R. A. Oliver, “Porous nitride semiconductors reviewed,” J. Phys. D: Appl. Phys, 53(38), 383002 (2020). 4. M. J. Schwab, D. Chen, J. Han, and L. D. Pfefferle, “Aligned mesopore arrays in GaN by anodic etching and photoelectrochemical surface etching,” J. Phys. Chem. C, 117(33), 16890-16895 (2013). 5. M. J. Schwab, J. Han, and L. D. Pfefferle, “Neutral anodic etching of GaN for vertical or crystallographic alignment,” Appl. Phys. Lett. 106(24), 241603 (2015). 6. W. J. Tseng, D. H. van Dorp, R. R. Lieten, P. M. Vereecken, and G. Borghs, “Anodic etching of n-GaN epilayer into porous GaN and its photoelectrochemical properties,” J. Phys. Chem. C 118(51), 29492-29498 (2014). 7. C. H. Chen, S. Y. Kuo, H. Y. Feng, Z. H. Li, S. Yang, S. H. Wu, H. Y. Hsieh, Y. S. Lin, Y. C. Lee, W. C. Chen, P. H. Wu, J. C. Chen, Y. Y. Huang, Y. J. Lu, Y. Kuo, C. F. Lin, and C. C. Yang, “Photon color conversion enhancement of colloidal quantum dots inserted into a subsurface laterally-extended GaN nano-porous structure in an InGaN/GaN quantum-well template,” Opt. Express 31(4), 6327-6341 (2023). 8. S. Yang, H. Y. Feng, Y. S. Lin, W. C. Chen, Y. Kuo, and C. C. Yang, “Effects of surface plasmon coupling on the color conversion from an InGaN/GaN quantum-well structure into colloidal quantum dots inserted into a nearby porous structure,” Nanomaterials 13(2), 328 (2023). 9. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C. H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22(5), 602-606 (2010). 10. C. Krishman, M. Brossard, K.-Y. Lee, J.-K. Huang, C.-H. Lin, H.-C. Kuo, M. D. B. Charlton, and P. G. Lagoudakis, “Hybrid photonic crystal light-emitting diode renders 123% color conversion effective quantum yield,” Optica 3(5), 503-509 (2016 ). 11. Z. Zhuang, X. Guo, B. Liu, F. Hu, Y. Li, T. Tao, J. Dai, T. Zhi, Z. Xie, P. Chen, D. Chen, H. Ge, X. Wang, M. Xiao, Y. Shi, Y. Zheng, and R. Zhang, “High color rendering index hybrid III-nitride/nanocrystals white light-emitting diodes,” Adv. Funct. Mater. 26(1), 36-43 (2016). 12. M. Athanasiou, P. Papagiorgis, A. Manoli, C. Bernasconi, N. Poyiatzis, P.-M. Coulon, P. Shields, M. I. Bodnarchuk, M. V. Kovalenko, T. Wang, and G. Itskos, “InGaN nanohole arrays coated by lead halide perovskite nanocrystals for solid-state lighting,” ACS Appl. Nano Mater. 3(3), 2167-2175 (2020). 13. R. Wan, G. Li, X. Gao, Z. Liu, J. Li, X. Yi, N. Chi, and L. Wang, “Nanohole array structured GaN-based white LEDs with improved modulation bandwidth via plasmon resonance and non-radiative energy transfer,” Photon. Res. 9(7), 1213-1217 (2021). 14. Z. Du , D. Li, W. Guo, F. Xiong, P. Tang, X. Zhou, Y. Zhang, T. Guo, Q. Yan, and J. Sun, “Quantum dot color conversion efficiency enhancement in micro-light-emitting diodes by non-radiative energy transfer,” IEEE Electron Dev. Lett. 42(8), 1184-1187 (2021). 15. Y. Y. Huang, Z. H. Li, Y. C. Lai, J. C. Chen, S. H. Wu, S. Yang, Y. Kuo, C. C. Yang, T. C. Hsu, and C. L. Lee, “Nanoscale-cavity enhancement of color conversion with colloidal quantum dots embedded in the surface nano-holes of a blue-emitting light-emitting diode,” Opt. Express 30(17), 31322-31335 (2022). 16. T. Förster, “Energy transport and fluorescence,” Naturwissenschaften 33, 166-175 (1946). 17. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C. H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22(5), 602-606 (2010). 18. H. V. Demira, S. Nizamoglub, T. Erdemb, E. Mutluguna, N. Gaponikc, and A. Eychmuller, “Quantum dot integrated LEDs using photonic and excitonic color conversion,” Nano Today 6(6), 632-647 (2011). 19. F. Zhang, J. Liu, G. You, C. Zhang, S. E. Mohney, M. J. Park, J. S. Kwak, Y. Wang, D. D. Koleske, and J. Xu, “Nonradiative energy transfer between colloidal quantum dot-phosphors and nanopillar nitride LEDs,” Opt. Express 20(S2), A333-A339 (2012). 20. C. C. Ni, S. Y. Kuo, Z. H. Li, S. H. Wu, R. N. Wu, C. Y. Chen, and C. C. Yang, “Förster resonance energy transfer in surface plasmon coupled color conversion processes of colloidal quantum dots,” Opt. Express 29(3), 4067-4081 (2021). 21. Y. P. Chen, C. C. Ni, R. N. Wu, S. Y. Kuo, Y. C. Su, Y. Y. Huang, J. W. Chen, Y. C. Hsu, S. H. Wu, C. Y. Chen, P. H. Wu, Y. W. Kiang, and C. C. Yang, “Combined effects of surface plasmon coupling and Förster resonance energy transfer on the light color conversion behaviors of colloidal quantum dots on an InGaN/GaN quantum-well nanodisk structure,” Nanotechnology 32(13), 135206 (2021). 22. S. Yang, Y. C. Lai, H. Y. Feng, Y. C. Lee, Z. H. Li, S. H. Wu, Y. S. Lin, H. Y. Hsieh, C. J. Chu, W. C. Chen, Y. Kuo, and C. C. Yang, “Enhanced color conversion of quantum dots located in the hot spot of surface plasmon coupling,” IEEE Photon. Technol. Lett. 35(5), 273-276 (2023). 23. Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express 19(14), A914-A929 (2011). 24. Y. Kuo, W. Y. Chang, C. H. Lin, C. C. Yang, and Y. W. Kiang, “Evaluating the blue-shift behaviors of the surface plasmon coupling of an embedded light emitter with a surface Ag nanoparticle by adding a dielectric interlayer or coating,” Opt. Express 23(24), 30709-30720 (2015). 25. C. J. Cai, Y. T. Wang, C. C. Ni, R. N. Wu, C. Y. Chen, Y. W. Kiang, and C. C. Yang, “Emission behaviors of colloidal quantum dots linked onto synthesized metal nanoparticles,” Nanotechnology 31(9), 095201 (2020) 26. Y. T. Wang, C. W. Liu, P. Y. Chen, R. N. Wu, C. C. Ni, C. J. Cai, Y. W. Kiang, and C. C. Yang, “Color conversion efficiency enhancement of colloidal quantum dot through its linkage with synthesized metal nanoparticle on a blue light-emitting diode,” Opt. Lett. 44(23), 5691-5694 (2019). 27. W. Y. Chang, Y. Kuo, Y. W. Kiang, and C. C. Yang, “Simulation study on light color conversion enhancement through surface plasmon coupling,” Opt. Express 27(12), A629-A642 (2019). 28. C. H. Lin, H. C. Chiang, Y. T. Wang, Y. F. Yao, C. C. Chen, W. F. Tse, R. N. Wu, W. Y. Chang, Y. Kuo, Y. W. Kiang, and C. C. Yang, “Efficiency enhancement of light color conversion through surface plasmon coupling,” Opt. Express 26(18), 23629-23640 (2018). 29. C. Y. Chen, C. C. Ni, R. N. Wu, S. Y. Kuo, C. H. Li, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling effects on the Förster resonance energy transfer from quantum dot into rhodamine 6G,” Nanotechnology 32(29), 295202 (2021). 30. Y. C. Lai, S. Yang, H. Y. Feng, Y. C. Lee, Z. H. Li, S. H. Wu, Y. S. Lin, H. Y. Hsieh, C. J. Chu, W. C. Chen, Y. Y. Huang, Y. Kuo, and C. C. Yang, “Surface plasmon coupling effects on the photon color conversion behaviors of colloidal quantum dots in a GaN nanoscale hole with a nearby quantum-well structure,” Opt. Express 31(10), 16010-16024 (2023). 31. P. Ghenuche, M. Mivelle, J. de Torres, S. B. Moparthi, H. Rigneault, N. F. V. Hulst, M. F. G. Parajó, and J. Wenger, “Matching nanoantenna field confinement to FRET distances enhances Förster energy transfer rates,” Nano Lett. 15(9), 6193-6201 (2015). 32. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370-4379 (1972). 33. Y. Kuo, Y. J. Lu, C. Y. Shih, and C. C. Yang, “Simulation study on the enhancement of resonance energy transfer through surface plasmon coupling in a GaN porous structure,” Opt. Express 29(26), 43182-43192 (2021). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91258 | - |
| dc.description.abstract | 本研究利用數值模擬方法探討在金屬奈米孔洞和奈米管內偶極子的發光、福斯特共振能量轉移以及發光體的光色轉換行為。此外,我們也研究來自金屬奈米管下方代表量子井的偶極子到奈米管內發光體的福斯特共振能量轉移和光色轉換行為。結合腔體共振和表面電漿子耦合的效應,在腔體內當偶極子方向與金屬奈米孔洞軸平行時,可以觀察到輻射功率的頻譜尖峰。當偶極子方向垂直於孔洞軸時,輻射功率的頻譜峰變寬。由於能量施體在受體位置產生的電磁場強度和受體輻射功率隨波長變化劇烈,特定組合的施體和受體波長的福斯特共振能量轉移和光色轉換效率對金屬奈米孔洞或奈米管的幾何形狀非常敏感。如果能選擇適當的幾何形狀,光色轉換效率可以大幅提高。由於金的損耗較高,上述奈米尺度腔體效應在使用金製作的結構中與銀相比顯得較弱 | zh_TW |
| dc.description.abstract | The simulation studies on the behaviors of dipole emission, Förster resonance energy transfer (FRET) and color conversion of light emitters inside metal nano-holes and nano-tubes are performed. The FRET and color conversion behaviors from a quantum well (QW) dipole below a metal nano-tube into a light emitter inside the nano-tube are also numerically studied. Through the combined effects of cavity resonance and surface plasmon (SP) coupling, sharp peaks of radiated power can be observed when the dipole orientation is along the axis of a metal nano-hole. When the dipole orientation is perpendicular to the hole axis, the radiated power peaks become broad. Because of the strong spectral variations of the field intensities at the positions of the energy acceptors produced by the donors and the radiated powers of the acceptors, the FRET and color conversion efficiencies at a designated set of donor and acceptor wavelengths are sensitively dependent on the geometries of metal nano-holes or nano-tubes. The color conversion efficiency can be significantly enhanced if we choose the appropriate geometries. Compared with Ag, the nanoscale-cavity effects described above are weaker in those structures fabricated with Au because of its higher dissipation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-20T16:11:01Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-12-20T16:11:01Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii Abstract: iv Contents: v List of Figure: vii List of Table: xv Chapter 1 Introduction 1 1.1 Nanoscale-cavity effects 1 1.2 Theoretical/numerical study of nanoscale-cavity effect 3 1.3 Behaviors of quantum dot emission, Förster resonance energy transfer, and surface plasmon coupling in a surface nano-hole array [30] 5 1.4 Research motivations 8 1.5 Thesis structure 9 Chapter 2 Simulation Structures and Method 17 2.1 Metal nano-hole and nano-tube structures 17 2.2 Simulation method 18 Chapter 3 Dipole Emission Behaviors in Metal Nano-holes 27 3.1 Dipole orientation parallel with the nano-hole axis (z-dipole) 27 3.2 Dipole orientation perpendicular to the nano-hole axis (x-dipole) 30 Chapter 4 Color Conversion between Quantum Dots inside Metal Nano-holes and Nano-tubes 49 4.1 Color conversion between quantum dots inside metal nano-holes 49 4.2 Color conversion between quantum dots inside metal nano-tubes 50 4.3 Color conversion between quantum dots inside metal nano-holes formed on GaN nano-holes 52 Chapter 5 Color Conversion in Quantum-well Nano-tube Structure 72 5.1 Color conversion in a quantum-well metal nano-tube structure 72 5.2 Color conversion in a quantum-well nano-tube structure with metal sidewall 73 Chapter 6 Conclusions 82 | - |
| dc.language.iso | en | - |
| dc.subject | 表面電漿子耦合 | zh_TW |
| dc.subject | 奈米腔效應 | zh_TW |
| dc.subject | 表面電漿子耦合 | zh_TW |
| dc.subject | 福斯特共振能量轉換 | zh_TW |
| dc.subject | 奈米腔效應 | zh_TW |
| dc.subject | 福斯特共振能量轉換 | zh_TW |
| dc.subject | Nanoscale-cavity Effects | en |
| dc.subject | Förster Resonance Energy Transfer | en |
| dc.subject | Surface Plasmon Coupling | en |
| dc.subject | Nanoscale-cavity Effects | en |
| dc.subject | Förster Resonance Energy Transfer | en |
| dc.subject | Surface Plasmon Coupling | en |
| dc.title | 金屬奈米腔效應對量子點發光與福斯特共振能量轉移行為的數值模擬研究 | zh_TW |
| dc.title | Numerical Simulation Study of Metal Nanoscale-cavity Effects on the Behaviors of Quantum-dot Emission and Förster Resonance Energy Transfer | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃建璋;吳育任;林建中;廖哲浩 | zh_TW |
| dc.contributor.oralexamcommittee | Jian-Jang Huang;Yuh-Renn Wu;Chien-Chung Lin;CHE-HAO LIAO | en |
| dc.subject.keyword | 福斯特共振能量轉換,表面電漿子耦合,奈米腔效應, | zh_TW |
| dc.subject.keyword | Förster Resonance Energy Transfer,Surface Plasmon Coupling,Nanoscale-cavity Effects, | en |
| dc.relation.page | 86 | - |
| dc.identifier.doi | 10.6342/NTU202304308 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-10-13 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2028-10-06 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 5.15 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
