Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91254
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡璧合zh_TW
dc.contributor.advisorPi-Ho Huen
dc.contributor.author鄭勛庭zh_TW
dc.contributor.authorXun-Ting Zhengen
dc.date.accessioned2023-12-20T16:09:45Z-
dc.date.available2023-12-21-
dc.date.copyright2023-12-20-
dc.date.issued2023-
dc.date.submitted2023-10-12-
dc.identifier.citation[1] G. Bae et al., "3nm GAA technology featuring multi-bridge-channel FET for low power and high performance applications," in 2018 IEEE International Electron Devices Meeting (IEDM), 2018: IEEE, pp. 28.7. 1-28.7. 4.
[2] S. Tsuda et al., "First demonstration of FinFET split-gate MONOS for high-speed and highly-reliable embedded flash in 16/14nm-node and beyond," in 2016 IEEE International Electron Devices Meeting (IEDM), 2016: IEEE, pp. 11.1. 1-11.1. 4.
[3] V. P. H. Hu, M. L. Fan, P. Su, and C. T. Chuang, "Threshold Voltage Design of UTB SOI SRAM With Improved Stability/Variability for Ultralow Voltage Near Subthreshold Operation," IEEE Transactions on Nanotechnology, vol. 12, no. 4, pp. 524-531, Jul 2013, doi: 10.1109/Tnano.2011.2105278.
[4] R. C. Baumann, "Radiation-induced soft errors in advanced semiconductor technologies," IEEE Transactions on Device and Materials Reliability, vol. 5, no. 3, pp. 305-316, Sep 2005, doi: 10.1109/Tdmr.2005.853449.
[5] P. E. Dodd and L. W. Massengill, "Basic mechanisms and modeling of single-event upset in digital microelectronics," IEEE Transactions on nuclear Science, vol. 50, no. 3, pp. 583-602, 2003.
[6] A. Zimpeck, "Mitigating Process Variability and Soft Errors at Circuit Level in FinFET," 2015.
[7] C. K. Jha, K. Aditya, C. Gupta, A. Gupta, and A. Dixit, "Single Event Transients in Sub-10nm SOI MuGFETs Due to Heavy-Ion Irradiation," IEEE Transactions on Device and Materials Reliability, vol. 20, no. 2, pp. 395-403, Jun 2020, doi: 10.1109/Tdmr.2020.2985029.
[8] J. Kim, J. S. Lee, J. W. Han, and M. Meyyappan, "Single-Event Transient in FinFETs and Nanosheet FETs," IEEE Electron Device Letters, vol. 39, no. 12, pp. 1840-1843, Dec 2018, doi: 10.1109/Led.2018.2877882.
[9] P. Nsengiyumva et al., "A comparison of the SEU response of planar and FinFET D flip-flops at advanced technology nodes," IEEE Transactions on nuclear science, vol. 63, no. 1, pp. 266-272, 2016, doi: 10.1109/TNS.2015.2508981.
[10] D. Munteanu and J.-L. Autran, "3-D numerical simulation of bipolar amplification in junctionless double-gate MOSFETs under heavy-ion irradiation," IEEE Transactions on Nuclear Science, vol. 59, no. 4, pp. 773-780, 2012, doi: 10.1109/TNS.2012.2184139.
[11] A. Elwailly, J. Saltin, M. J. Gadlage, and H. Y. Wong, "Radiation hardness study of L g= 20 nm FinFET and nanowire SRAM through TCAD simulation," IEEE Transactions on Electron Devices, vol. 68, no. 5, pp. 2289-2294, 2021.
[12] J. a. Srour and J. Palko, "Displacement damage effects in irradiated semiconductor devices," IEEE Transactions on Nuclear Science, vol. 60, no. 3, pp. 1740-1766, 2013.
[13] H. Barnaby, "Total-ionizing-dose effects in modern CMOS technologies," IEEE transactions on nuclear science, vol. 53, no. 6, pp. 3103-3121, 2006.
[14] T. R. Oldham and F. McLean, "Total ionizing dose effects in MOS oxides and devices," IEEE transactions on nuclear science, vol. 50, no. 3, pp. 483-499, 2003.
[15] C. Hsieh, P. C. Murley, and R. O'brien, "A field-funneling effect on the collection of alpha-particle-generated carriers in silicon devices," IEEE electron device letters, vol. 2, no. 4, pp. 103-105, 1981.
[16] S. Guagliardo et al., "Single-Event Latchup sensitivity: Temperature effects and the role of the collected charge," Microelectronics Reliability, vol. 119, 2021, doi: 10.1016/j.microrel.2021.114087.
[17] F. W. Sexton, "Destructive single-event effects in semiconductor devices and ICs," IEEE Transactions on Nuclear Science, vol. 50, no. 3, pp. 603-621, 2003.
[18] T. Karnik and P. Hazucha, "Characterization of soft errors caused by single event upsets in CMOS processes," IEEE Transactions on Dependable and secure Computing, vol. 1, no. 2, pp. 128-143, 2004, doi: 10.1109/TDSC.2004.14.
[19] D. G. Mavis and P. H. Eaton, "Soft error rate mitigation techniques for modern microcircuits," in 2002 IEEE International Reliability Physics Symposium. Proceedings. 40th Annual (Cat. No. 02CH37320), 2002: IEEE, pp. 216-225.
[20] S.-F. Liu, P. Reviriego, and J. A. Maestro, "Efficient majority logic fault detection with difference-set codes for memory applications," IEEE transactions on very large scale integration (VLSI) systems, vol. 20, no. 1, pp. 148-156, 2010.
[21] J. Gracia-Moran, L. J. Saiz-Adalid, D. Gil-Tomas, and P. J. Gil-Vicente, "Improving error correction codes for multiple-cell upsets in space applications," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 10, pp. 2132-2142, 2018.
[22] J. Jiang, Y. Xu, W. Zhu, J. Xiao, and S. Zou, "Quadruple cross-coupled latch-based 10T and 12T SRAM bit-cell designs for highly reliable terrestrial applications," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 3, pp. 967-977, 2018.
[23] S. M. Jahinuzzaman, D. J. Rennie, and M. Sachdev, "A soft error tolerant 10T SRAM bit-cell with differential read capability," IEEE Transactions on Nuclear Science, vol. 56, no. 6, pp. 3768-3773, 2009, doi: 10.1109/TNS.2009.2032090.
[24] C. Peng et al., "Radiation-hardened 14T SRAM bitcell with speed and power optimized for space application," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 2, pp. 407-415, 2018, doi: 10.1109/TVLSI.2018.2879341.
[25] S. Pal, D. D. Sri, W.-H. Ki, and A. Islam, "Soft-error resilient read decoupled SRAM with multi-node upset recovery for space applications," IEEE Transactions on Electron Devices, vol. 68, no. 5, pp. 2246-2254, 2021, doi: 10.1109/TED.2021.3061642.
[26] S. Pal, W.-H. Ki, and C.-Y. Tsui, "Soft-error-aware read-stability-enhanced low-power 12T SRAM with multi-node upset recoverability for aerospace applications," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 4, pp. 1560-1570, 2022, doi: 10.1109/TCSI.2022.3147675.
[27] S. Pal, G. Chowdary, W.-H. Ki, and C.-Y. Tsui, "Energy-Efficient Dual-Node-Upset-Recoverable 12T SRAM for Low-Power Aerospace Applications," IEEE Access, vol. 11, pp. 20184-20195, 2022, doi: 10.1109/ACCESS.2022.3161147.
[28] S. S. Dohar, R. Siddharth, M. Vasantha, and N. K. YB, "A 1.2 V, highly reliable RHBD 10T SRAM cell for aerospace application," IEEE Transactions on Electron Devices, vol. 68, no. 5, pp. 2265-2270, 2021, doi: 10.1109/TED.2021.3064899.
[29] T. Calin, M. Nicolaidis, and R. Velazco, "Upset hardened memory design for submicron CMOS technology," IEEE Transactions on nuclear science, vol. 43, no. 6, pp. 2874-2878, 1996, doi: 10.1109/23.556880.
[30] E. Normand, "Single-event effects in avionics," IEEE Transactions on nuclear science, vol. 43, no. 2, pp. 461-474, 1996, doi: 10.1109/23.490893.
[31] "Sentaurus Device Manual," 2019.
[32] "International Roadmap of Devices and Systems," 2016.
[33] "International Roadmap of Devices and Systems," 2022.
[34] N. Loubet et al., "Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET," in 2017 Symposium on VLSI Technology, 2017: IEEE, pp. T230-T231.
[35] O. Musseau, "Single-event effects in SOI technologies and devices," IEEE Transactions on Nuclear Science, vol. 43, no. 2, pp. 603-613, 1996, doi: 10.1109/23.490904.
[36] K.-S. Lee, B.-D. Yang, and J.-Y. Park, "Trench Gate Nanosheet FET to Suppress Leakage Current From Substrate Parasitic Channel," IEEE Transactions on Electron Devices, vol. 70, no. 4, pp. 2042-2046, 2023, doi: 10.1109/TED.2023.3249650.
[37] S. Yoo and S. Kim, "Leakage Optimization of the Buried Oxide Substrate of Nanosheet Field-Effect Transistors," IEEE Transactions on Electron Devices, vol. 69, no. 8, pp. 4109-4114, Aug 2022, doi: 10.1109/Ted.2022.3182300.
[38] X.-T. Zheng and V. P.-H. Hu, "Improved Radiation Hardness for Nanosheet FETs with Partial Bottom Dielectric Isolation," 2023 Silicon Nanoelectronics Workshop (SNW), pp. 75-76, 2023, doi: 10.23919/SNW57900.2023.10183963.
[39] L. D. Trang Dang, J. S. Kim, and I. J. Chang, "We-Quatro: Radiation-Hardened SRAM Cell With Parametric Process Variation Tolerance," IEEE Transactions on Nuclear Science, vol. 64, no. 9, pp. 2489-2496, 2017, doi: 10.1109/tns.2017.2728180.
[40] A. Shafaei, H. Afzali-Kusha, and M. Pedram, "Minimizing the energy-delay product of SRAM arrays using a device-circuit-architecture co-optimization framework," in Proceedings of the 53rd Annual Design Automation Conference, 2016, pp. 1-6, doi: 10.1145/2897937.2898044. [Online]. Available: https://dl.acm.org/doi/pdf/10.1145/2897937.2898044
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91254-
dc.description.abstract近年來,電晶體技術的發展取得了令人瞩目的突破,對抗輻射元件的發展和應用領域產生了廣泛而深遠的影響。隨著航太技術的不斷進步和低軌道衛星的廣泛應用,對於抗輻射元件的需求日益迫切。在高能粒子和輻射衝擊所帶來的嚴酷環境中,傳統的電子元件容易受到損壞,從而導致系統性能下降甚至失效。為了應對這一挑戰,抗輻射元件應運而生,旨在提供更高的輻射容忍度,以確保系統在極端環境下的可靠性和穩定性。
本篇論文提出了一種將部分底部介電質隔離技術應用於抗輻射(Radiation-Hardened)靜態隨機存取記憶體(static random-access memory, SRAM)的技術。本篇論文首先基於國際元件與系統技術藍圖(International Roadmap for Devices and Systems, IRDS)所提供的結構以及材料參數,分析無接面式 (junctionless mode)與反轉式 (inversion mode)通道在超薄型矽覆蓋絕緣層(Ultra-Thin Body Silicon-On-Insulator, UTBSOI)與雙閘極(Double Gate, DG)場效電晶體結構的抗輻射特性,以及奈米片場效電晶體(Nanosheet FET, NSFET)對高能粒子入射之方向與位置之收集電荷(collected charge)之比較,以此得出元件受輻射影響最劇之情況,接著分析二種類型的深埋層氧化物技術應用在奈米片電晶體中抗輻射能力之改善程度 : (1)部分底部介電質隔離奈米片電晶體(Partial Bottom Dielectric Isolation NSFET , PDI-NSFET);(2) 閘極底部深埋層氧化物電晶體(Buried Oxide NSFET , BO-NSFET) 。論文最後分析6T SRAM與12T寫入增強式四儲存節點(Writability Enhanced Quatro, We-Quatro) SRAM之抗幅射能力,研究使用部分底部介電質隔離技術在抗幅射應用之成效。
研究結果顯示採用部分底部介電質隔離(PDI)之奈米片電晶體,在收集電荷上比起傳統使用純矽基板(silicon substrate)的奈米片電晶體減少了55%,而使用閘極底部深埋層氧化物奈米片電晶體(BO-NSFET)亦可以減少41%收集電荷。在靜態隨機存取記憶體方面,使用PDI的6T SRAM能較不使用PDI 的12T We-Quatro SRAM減少57%的面積,並且能多容忍56%更高線性能量轉移 (Linear Energy Transfer, LET)粒子入射,使資料不會出現錯誤翻轉,提升航太應用中電子元件的可靠度與效能。
zh_TW
dc.description.abstractIn recent years, there have been remarkable breakthroughs in transistor technology, which have had a widespread and profound impact on the development and application of radiation-hardened components. With advancements in aerospace technology and the extensive use of low Earth orbit (LEO) satellites, the demand for radiation-tolerant components has become increasingly urgent. In the harsh environments created by high-energy particles and radiation impacts, traditional electronic components are prone to damage, resulting in performance degradation or even system failure. To address this challenge, radiation-hardened components have emerged, aiming to provide higher radiation tolerance and ensure reliability and stability in extreme conditions.

This thesis presents a technique that applies partial bottom dielectric isolation to radiation-hardened Static Random-Access Memory (SRAM). Based on the structure and material parameters specified in the International Roadmap for Devices and Systems (IRDS), this thesis compares the collected charge from junctionless mode and inversion mode in Ultra-Thin Body Silicon-On-Insulator (UTB SOI) and Double Gate Field-Effect Transistor (Double Gate FET) structures, as well as Nanosheet FET (NSFET), in response to high-energy particle incidence angle and position. The analysis identifies the scenarios in which the devices are most affected by radiation. The thesis then proceeds to analyze the improvement of radiation tolerance in Nanosheet FET considering two types of buried oxide techniques: Partial Bottom Dielectric Isolation NSFET (PDI-NSFET) and Bottom Gate Buried Oxide NSFET (BO-NSFET). Finally, the effectiveness of using partial bottom dielectric isolation in comparison to conventional 6T SRAM and 12T Writability Enhanced Quatro (We-Quatro) SRAM is analyzed.

The research results show that NSFET with partial bottom dielectric isolation (PDI) reduces the collected charge by 55% compared to the traditional NSFET with a pure silicon substrate. Similarly, the use of BO-NSFET also reduces the collected charge by 41%. In terms of SRAM, the 6T SRAM with PDI achieves a 57% area reduction compared to radiation-hardened 12T We-Quatro SRAM without PDI, while tolerating 56% higher energy particle incidence without data flipping. 6T SRAM with PDI enhances the reliability and performance of electronic components for aerospace applications.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-20T16:09:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-12-20T16:09:45Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
摘要 II
ABSTRACT IV
目錄 VI
圖目錄 VIII
表目錄 XIII
第一章 導論 1
1.1 背景與相關研究 1
1.1.1 輻射效應 (Radiation Effect) 4
1.1.2 單事件效應 (Single Event Effect) 6
1.1.3 抗輻射電路的挑戰 9
1.2 研究動機 11
1.3 論文架構 12
第二章 UTBSOI與DG元件抗輻射程度分析 13
2.1 前言 13
2.2 輻射模擬模型 14
2.3 模擬流程 17
2.4 元件結構及模擬參數 18
2.4.1 UTBSOI元件結構及模擬參數 20
2.4.2 DG元件結構及模擬參數 22
2.5 單一元件輻射容忍度分析 24
2.5.1 UTBSOI元件輻射容忍度分析 26
2.5.2 DG元件輻射容忍度分析 29
2.6 輻射容忍度受溫度影響分析 32
2.7 結論 36
第三章 NSFET使用不同深埋層氧化物技術對抗輻射改善程度 37
3.1 前言 37
3.2 元件結構及電性分析 38
3.3 介電質隔離技術之製程步驟 42
3.4 奈米片場效電晶體輻射容忍度分析 44
3.5 單事件暫態效應與單事件閂鎖效應測試 50
3.6 結論 53
第四章 抗輻射靜態隨機存取記憶體分析 54
4.1 前言 54
4.2 6T 靜態隨機存取記憶體介紹 55
4.3 12T寫入增強式四儲存節點靜態隨機存取記憶體介紹 57
4.4 靜態隨機存取記憶體佈局設計 60
4.5 寄生電阻電容萃取 62
4.6 靜態隨機存取記憶體操作速度分析 66
4.7 SRAM靜態功率、動態功率分析 68
4.8 靜態隨機存取記憶體輻射容忍度分析 71
4.9 結論 75
第五章 總結 76
參考文獻 77
-
dc.language.isozh_TW-
dc.subject奈米片電晶體zh_TW
dc.subject抗輻射zh_TW
dc.subject靜態隨機存取記憶體zh_TW
dc.subject部分底部介電質隔離zh_TW
dc.subject抗輻射zh_TW
dc.subject靜態隨機存取記憶體zh_TW
dc.subject部分底部介電質隔離zh_TW
dc.subject奈米片電晶體zh_TW
dc.subjectSRAMen
dc.subjectRadiation-Hardeneden
dc.subjectNanosheet FETsen
dc.subjectSRAMen
dc.subjectPartial Bottom Dielectric Isolationen
dc.subjectRadiation-Hardeneden
dc.subjectNanosheet FETsen
dc.subjectPartial Bottom Dielectric Isolationen
dc.title透過引入底部介電質隔離技術改善航太應用的抗輻射靜態隨機存取記憶體zh_TW
dc.titleRadiation-Hardened SRAMs for Aerospace Applications by Introducing Partial Bottom Dielectric Isolationen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee胡振國;李進福zh_TW
dc.contributor.oralexamcommitteeJenn-Gwo Hwu;Jin-Fu Lien
dc.subject.keyword抗輻射,靜態隨機存取記憶體,部分底部介電質隔離,奈米片電晶體,zh_TW
dc.subject.keywordRadiation-Hardened,Partial Bottom Dielectric Isolation,SRAM,Nanosheet FETs,en
dc.relation.page80-
dc.identifier.doi10.6342/NTU202304259-
dc.rights.note未授權-
dc.date.accepted2023-10-12-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
3.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved