請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91241
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林裕彬 | zh_TW |
dc.contributor.advisor | Yu-Pin Lin | en |
dc.contributor.author | 許安村 | zh_TW |
dc.contributor.author | An-Tsun Hsu | en |
dc.date.accessioned | 2023-12-12T16:21:57Z | - |
dc.date.available | 2023-12-13 | - |
dc.date.copyright | 2023-12-12 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-10-04 | - |
dc.identifier.citation | Akıncı, H., Özalp, A. Y., & Turgut, B. (2013). Agricultural land use suitability analysis using GIS and AHP technique. Computers and electronics in agriculture, 97, 71-82.
Berg, C., Rogers, S., & Mineau, M. (2016). Building scenarios for ecosystem services tools: Developing a methodology for efficient engagement with expert stakeholders. Futures, 81, 68-80. Briassoulis, H. (2020). Analysis of land use change: theoretical and modeling approaches. Brown, G., de Bie, K., & Weber, D. (2015). Identifying public land stakeholder perspectives for implementing place-based land management. Landscape and Urban Planning, 139, 1-15. Burton, V., Metzger, M. J., Brown, C., & Moseley, D. (2019). Green Gold to Wild Woodlands; understanding stakeholder visions for woodland expansion in Scotland. Landscape Ecology, 34, 1693-1713. Chu, H. J., Wu, C. F., & Lin, Y. P. (2013). Incorporating spatial autocorrelation with neural networks in empirical land-use change models. Environment and Planning B: Planning and Design, 40(3), 384-404. de Castro-Pardo, M., Pérez-Rodríguez, F., Martín-Martín, J. M., & Azevedo, J. C. (2019). Modelling stakeholders’ preferences to pinpoint conflicts in the planning of transboundary protected areas. Land Use Policy, 89, 104233. Dougill, A. J., Fraser, E. D. G., Holden, J., Hubacek, K., Prell, C., Reed, M. S., ... & Stringer, L. C. (2006). Learning from doing participatory rural research: lessons from the Peak District National Park. Journal of agricultural economics, 57(2), 259-275. Fisher, P., Comber, A. J., & Wadsworth, R. (2005). Land use and land cover: contradiction or complement. Re-presenting GIS, 85, 98. Freeman, R. E. (2010). Strategic management: A stakeholder approach. Cambridge university press. Grimble, R., & Wellard, K. (1997). Stakeholder methodologies in natural resource management: a review of principles, contexts, experiences and opportunities. Agricultural systems, 55(2), 173-193. Hamad, R., Balzter, H., & Kolo, K. (2018). Predicting land use/land cover changes using a CA-Markov model under two different scenarios. Sustainability, 10(10), 3421. Karner, K., Cord, A. F., Hagemann, N., Hernandez-Mora, N., Holzkämper, A., Jeangros, B., ... & Schönhart, M. (2019). Developing stakeholder-driven scenarios on land sharing and land sparing–Insights from five European case studies. Journal of environmental management, 241, 488-500. Kucsicsa, G., Popovici, E. A., Bălteanu, D., Grigorescu, I., Dumitraşcu, M., & Mitrică, B. (2019). Future land use/cover changes in Romania: regional simulations based on CLUE-S model and CORINE land cover database. Landscape and ecological engineering, 15, 75-90. Lacher, I., Akre, T., McShea, W. J., McBride, M., Thompson, J. R., & Fergus, C. (2019). Engaging regional stakeholders in scenario planning for the long-term preservation of ecosystem services in Northwestern Virginia. Case Studies in the Environment. Lambin, E. F., & Geist, H. J. (Eds.). (2008). Land-use and land-cover change: local processes and global impacts. Springer Science & Business Media. Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., ... & Xu, J. (2001). The causes of land-use and land-cover change: moving beyond the myths. Global environmental change, 11(4), 261-269. Li, X., Chen, G., Liu, X., Liang, X., Wang, S., Chen, Y., ... & Xu, X. (2017). A new global land-use and land-cover change product at a 1-km resolution for 2010 to 2100 based on human–environment interactions. Annals of the American Association of Geographers, 107(5), 1040-1059. Lin, Y. P., Hong, N. M., Wu, P. J., Wu, C. F., & Verburg, P. H. (2007). Impacts of land use change scenarios on hydrology and land use patterns in the Wu-Tu watershed in Northern Taiwan. Landscape and urban planning, 80(1-2), 111-126. Liu, G., Jin, Q., Li, J., Li, L., He, C., Huang, Y., & Yao, Y. (2017). Policy factors impact analysis based on remote sensing data and the CLUE-S model in the Lijiang River Basin, China. Catena, 158, 286-297. Liu, X., Liang, X., Li, X., Xu, X., Ou, J., Chen, Y., ... & Pei, F. (2017). A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape and Urban Planning, 168, 94-116. Mannetti, L. M., Göttert, T., Zeller, U., & Esler, K. J. (2019). Identifying and categorizing stakeholders for protected area expansion around a national park in Namibia. Ecology and Society, 24(2). Mansour, S., Al-Belushi, M., & Al-Awadhi, T. (2020). Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques. Land Use Policy, 91, 104414. Memarbashi, E., Azadi, H., Barati, A. A., Mohajeri, F., Passel, S. V., & Witlox, F. (2017). Land-use suitability in Northeast Iran: Application of AHP-GIS hybrid model. ISPRS International Journal of Geo-Information, 6(12), 396. Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological review, 63(2), 81. Morales Jr, F., & de Vries, W. T. (2021). Establishment of land use suitability mapping criteria using analytic hierarchy process (AHP) with practitioners and beneficiaries. Land, 10(3), 235. Ortega-Pacheco, D. V., Keeler, A. G., & Jiang, S. (2019). Climate change mitigation policy in Ecuador: Effects of land-use competition and transaction costs. Land Use Policy, 81, 302-310. Overmars, K. D., De Koning, G. H. J., & Veldkamp, A. (2003). Spatial autocorrelation in multi-scale land use models. Ecological modelling, 164(2-3), 257-270. Overmars, K. P., & Verburg, P. H. (2007). Comparison of a deductive and an inductive approach to specify land suitability in a spatially explicit land use model. Land use policy, 24(3), 584-599. Park, S., Jeon, S., Kim, S., & Choi, C. (2011). Prediction and comparison of urban growth by land suitability index mapping using GIS and RS in South Korea. Landscape and urban planning, 99(2), 104-114. Peng, K., Jiang, W., Deng, Y., Liu, Y., Wu, Z., & Chen, Z. (2020). Simulating wetland changes under different scenarios based on integrating the random forest and CLUE-S models: A case study of Wuhan Urban Agglomeration. Ecological Indicators, 117, 106671. Pérez-Soba, M., Paterson, J., Metzger, M. J., Gramberger, M., Houtkamp, J., Jensen, A., ... & Verkerk, P. J. (2018). Sketching sustainable land use in Europe by 2040: a multi-stakeholder participatory approach to elicit cross-sectoral visions. Regional Environmental Change, 18, 775-787. Pontius Jr, R. G., & Millones, M. (2011). Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), 4407-4429. Pontius Jr, R. G., & Schneider, L. C. (2001). Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture, ecosystems & environment, 85(1-3), 239-248. Pontius Jr, R. G., & Si, K. (2014). The total operating characteristic to measure diagnostic ability for multiple thresholds. International Journal of Geographical Information Science, 28(3), 570-583. Pontius, R. G., Boersma, W., Castella, J. C., Clarke, K., De Nijs, T., Dietzel, C., ... & Verburg, P. H. (2008). Comparing the input, output, and validation maps for several models of land change. The annals of regional science, 42, 11-37. Ramya, S., & Devadas, V. (2019). Integration of GIS, AHP and TOPSIS in evaluating suitable locations for industrial development: A case of Tehri Garhwal district, Uttarakhand, India. Journal of Cleaner Production, 238, 117872. Reed, M. S., Graves, A., Dandy, N., Posthumus, H., Hubacek, K., Morris, J., ... & Stringer, L. C. (2009). Who's in and why? A typology of stakeholder analysis methods for natural resource management. Journal of environmental management, 90(5), 1933-1949. Rosso, M., Bottero, M., Pomarico, S., La Ferlita, S., & Comino, E. (2014). Integrating multicriteria evaluation and stakeholders analysis for assessing hydropower projects. Energy policy, 67, 870-881. Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of mathematical psychology, 15(3), 234-281. Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. European journal of operational research, 48(1), 9-26. Saaty, T. L., Vargas, L. G., Saaty, T. L., & Vargas, L. G. (2013). The analytic network process (pp. 1-40). Springer US. Sahoo, S., Sil, I., Dhar, A., Debsarkar, A., Das, P., & Kar, A. (2018). Future scenarios of land-use suitability modeling for agricultural sustainability in a river basin. Journal of cleaner production, 205, 313-328. Shoyama, K. (2021). Assessment of land-use scenarios at a national scale using intensity analysis and figure of merit components. Land, 10(4), 379. Silva, E. A., & Clarke, K. C. (2002). Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Computers, environment and urban systems, 26(6), 525-552. Song, X. P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A., Vermote, E. F., & Townshend, J. R. (2018). Global land change from 1982 to 2016. Nature, 560(7720), 639-643. Stosch, K. C., Quilliam, R. S., Bunnefeld, N., & Oliver, D. M. (2019). Quantifying stakeholder understanding of an ecosystem service trade-off. Science of the Total Environment, 651, 2524-2534. Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285-1293. van Vliet, J., Bregt, A. K., & Hagen-Zanker, A. (2011). Revisiting Kappa to account for change in the accuracy assessment of land-use change models. Ecological modelling, 222(8), 1367-1375. Vannier, C., Bierry, A., Longaretti, P. Y., Nettier, B., Cordonnier, T., Chauvin, C., ... & Lavorel, S. (2019). Co-constructing future land-use scenarios for the Grenoble region, France. Landscape and Urban Planning, 190, 103614. Verburg, P. H., Alexander, P., Evans, T., Magliocca, N. R., Malek, Z., Rounsevell, M. D., & van Vliet, J. (2019). Beyond land cover change: towards a new generation of land use models. Current Opinion in Environmental Sustainability, 38, 77-85. Verburg, P. H., Crossman, N., Ellis, E. C., Heinimann, A., Hostert, P., Mertz, O., ... & Zhen, L. (2015). Land system science and sustainable development of the earth system: A global land project perspective. Anthropocene, 12, 29-41. Verburg, P. H., Schot, P. P., Dijst, M. J., & Veldkamp, A. (2004). Land use change modelling: current practice and research priorities. GeoJournal, 61, 309-324. Verburg, P. H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., & Mastura, S. S. (2002). Modeling the spatial dynamics of regional land use: the CLUE-S model. Environmental management, 30, 391-405. Voinov, A., Jenni, K., Gray, S., Kolagani, N., Glynn, P. D., Bommel, P., ... & Smajgl, A. (2018). Tools and methods in participatory modeling: Selecting the right tool for the job. Environmental Modelling & Software, 109, 232-255. Volkery, A., Ribeiro, T., Henrichs, T., & Hoogeveen, Y. (2008). Your vision or my model? Lessons from participatory land use scenario development on a European scale. Systemic Practice and Action Research, 21, 459-477. Waiyasusri, K., Yumuang, S., & Chotpantarat, S. (2016). Monitoring and predicting land use changes in the Huai Thap Salao Watershed area, Uthaithani Province, Thailand, using the CLUE-s model. Environmental Earth Sciences, 75, 1-16. Wu, C. F., Lin, Y. P., Chiang, L. C., & Huang, T. (2014). Assessing highway's impacts on landscape patterns and ecosystem services: A case study in Puli Township, Taiwan. Landscape and Urban Planning, 128, 60-71. Xia, T., Wu, W., Zhou, Q., Tan, W., Verburg, P. H., Yang, P., & Ye, L. (2018). Modeling the spatio-temporal changes in land uses and its impacts on ecosystem services in Northeast China over 2000–2050. Journal of Geographical Sciences, 28, 1611-1625. Zheng, F., & Hu, Y. (2018). Assessing temporal-spatial land use simulation effects with CLUE-S and Markov-CA models in Beijing. Environmental science and pollution research, 25, 32231-32245. Zoderer, B. M., Tasser, E., Carver, S., & Tappeiner, U. (2019). Stakeholder perspectives on ecosystem service supply and ecosystem service demand bundles. Ecosystem Services, 37, 100938. 吳佩蓉 (2008)。整合土地利用模式與水文模式於集水區景觀生態規劃管理。國立臺灣大學生物環境系統工程學系碩士論文。 吳振發 (2011)。臺灣鄉村景觀變遷模擬之 CLUE-s 模式最佳參數試驗。地理學報,62,103-125。 吳振發、邱仁暉、賴純絃 (2009)。參數認知差異對於土地利用變遷模式模擬結果之影響—以CLUE-s模式為例。發表於2009年第七屆造園景觀學術研討會,東海大學,臺中。 李瑞陽、梁靜宜 (2009)。應用遙測及CLUE-S模型模擬土地利用變遷—以宜蘭縣壯圍鄉為例。第十三屆(2009年)國土規劃論壇,國立成功大學。 林裕彬 (2021)。整合永續發展目標之生態系服務與土地治理:以濁水溪流域為例—利害關係人參與之土地系統模擬與生態系服務資源決策平台建置(子計畫八)(第1年)。國科會補助專題研究計畫報告(MOST 109-2621-M-002-008-MY3),國立臺灣大學生物環境系統工程學系暨研究所。 翁振益、周瑛琪 (2006)。決策分析:方法與應用。臺北市:華泰文化。 褚志鵬 (2009)。層級分析法 (AHP) 理論與實作。才華有限實驗室 (2016),VR 來了。 鄧振源、曾國雄 (1989)。層級分析法(AHP)的內涵特性與應用(上)。中國統計學報,27(6),5-22。 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91241 | - |
dc.description.abstract | 全球土地利用在過去幾十年的變遷改變地表及近地表的生物物理特性,進而影響地球的物質與能量循環、生物環境,而產生糧食安全、疾病、生態系服務劣化等風險。因此科學家發展土地利用模式,試圖理解土地利用變遷的複雜過程並能輔助進行土地利用規劃,以達成環境與人類需求的平衡。然而現有的土地利用模式研究大多僅止於產出模擬結果,少有將模式的模擬透過邀請利害關係人或決策者的參與用於後續土地利用決策中,國內也較少研究結合土地利用模式與利害關係人參與並強化兩方的理解與連結。因此,本研究以土地利用類型多元的濁水溪流域為研究區域,利用層級分析法問卷調查利害關係人對土地利用變遷的認知,並分別與土地利用模式CLUE-S的適宜性權重及轉移彈性等參數進行比較,討論利害關係人及模式在土地利用變遷上的認知差異。
本研究利用層級分析法問卷,分別向一般民眾調查其對土地利用變遷驅動力重要性的認知,以及向決策者調查對不同土地利用類型轉移容易程度的看法。前者的驅動力重要性權重與土地利用模式邏輯迴歸的驅動力適宜性係數進行比較,後者的轉移彈性則作為參數納入土地利用模式中模擬2050年的土地利用,同時也與過往所設定轉移彈性的模式透過效率指數進行模擬表現的比較。 民眾問卷土地利用變遷驅動力權重與模式邏輯迴歸適宜性係數比較的結果顯示,對農地而言,民眾認為水源是重要的驅動力因素,但可能相對忽略與道路距離代表的交通因素的重要性;此外,社會因素的多元性及對各種土地利用類型的重要程度也值得持續深入探討。將決策者問卷的轉移彈性結果納入土地利用模式進行模擬,其驗證所得到的效率指數值為0.1022,與過往使用的轉移彈性參數的模擬結果相比表現較好;然而因成對比較矩陣計算產生的轉移彈性值較小,代表各類土地利用皆容易轉移,因此模式更容易受到未來土地利用需求面積、土地利用變遷驅動力等參數影響土地利用的轉移,此時其他模式參數的設定品質及利害關係人參與架構則能成為之後關注的重點。 本研究為國內首篇將利害關係人對土地利用變遷的認知與土地利用模式運作過程中的參數進行比較的研究,期許能增進利害關係人對土地利用變遷動態過程的理解,也提升土地利用模式模擬的表現,作為後續利害關係人參與土地利用規劃相關研究的參考。 | zh_TW |
dc.description.abstract | Global land use change in the past few decades has altered the biophysical characteristics of the Earth's surface and near-surface, thereby affecting the material and energy cycles and the biological environment of the planet. This, in turn, has resulted in risks such as food security, diseases, and degradation of ecosystem services. In response, scientists have developed land use models to better understand the complex processes of land use change and assist in land use planning to achieve a balance between environmental and human needs. However, current land use modeling studies often focus solely on producing simulation results, with limited incorporation of stakeholder involvement or decision-makers in subsequent land use decision-making processes. There is also a lack of research in combining land use models with stakeholder engagement to enhance mutual understanding and linkage between the two in Taiwan.
Therefore, this study focuses on the diverse land use types in the Jhuoshuei River Basin as the study area. It utilizes the Analytical Hierarchy Process (AHP) questionnaire survey to investigate stakeholders' perceptions of land use change. The study compares these perceptions with the suitability coefficients and elasticity parameters of the CLUE-S model, aiming to explore the differences in perceptions of land use change between stakeholder and model. This study utilizes the AHP questionnaire to survey the general public's perception of the importance of drivers of land use change and the views of decision-makers on the ease of transfer for different land use types. The importance weights of the drivers from the public questionnaire are compared with the suitability coefficients of the logistic regression in the land use model. The elasticity from the decision-makers' questionnaire is incorporated as a parameter in the land use model to simulate land use in 2050. These values were also compared with past elasticity settings using figure of merit to evaluate model performance. The comparison between the weights of land use change drivers from the public questionnaire and the suitability coefficients from the logistic regression model shows that, for agricultural land, the public perceives water availability as an important driver but may overlook the importance of transportation factors represented by distance to road. Moreover, the diversity of social factors and their importance for various land use types deserve further exploration. Incorporating the elasticity results from the decision-makers' questionnaire into the land use model for simulation, the figure of merit obtained during validation was 0.1022, demonstrating better performance compared to simulations using past elasticity parameters. However, because the elasticity values generated through pairwise comparison matrix are relatively small, it indicates that all land use types are more easily interchangeable. Therefore, the model is more susceptible to the influence of parameters such as future land use demand areas and land use change drivers on land use transitions. At this point, the quality of other model parameter settings and the framework for stakeholder involvement can become important considerations for future research. This study is the first in Taiwan to compare stakeholders' perception of land use change with parameters in land use modeling. It aims to enhance stakeholders' understanding of the dynamic process of land use change and improve the performance of land use modeling. The findings can serve as a reference for future studies engaging stakeholder in land use planning. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-12T16:21:57Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-12-12T16:21:57Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 謝辭 i
摘要 ii Abstract iv 目錄 vi 圖目錄 ix 表目錄 x 第一章 前言 1 1.1 研究背景 1 1.2 研究目的 2 1.3 研究架構與流程 3 第二章 文獻回顧 4 2.1 土地利用變遷 4 2.2 利害關係人 7 2.3 層級分析法 11 第三章 研究方法 15 3.1 研究區域 15 3.2 土地利用變遷模式 17 3.2.1 模式簡介與運作架構 17 3.2.2 土地利用 19 3.2.3 土地利用驅動力與適宜性 21 3.2.4 土地利用模式驗證 25 3.3 層級分析法 30 3.3.1 層級分析法運算邏輯 30 3.3.2 層級分析法的流程 33 3.4 問卷設計 38 3.4.1 民眾問卷 38 3.4.2 決策者問卷 43 第四章 結果與討論 44 4.1 民眾問卷 44 4.1.1 基本資料 44 4.1.2 環境知識與觀點 48 4.1.3 成對比較矩陣一致性 50 4.1.4 土地利用變遷驅動力權重 52 4.1.5 民眾問卷與模式驅動力權重討論 56 4.1.6 層級分析法應用討論 58 4.1.7 小結 59 4.2 決策者問卷 60 4.2.1 基本資料 60 4.2.2 成對比較矩陣一致性 62 4.2.3 土地利用變遷驅動力權重 63 4.2.4 決策者問卷土地利用轉移彈性 64 4.2.5 轉移彈性比較 64 4.2.6 土地利用變遷模擬結果 66 4.2.7 模擬結果討論 66 4.2.8 小結 71 第五章 結論與建議 72 5.1 結論 72 5.2 建議 73 參考文獻 74 附錄一 民眾問卷 82 附錄二 決策者問卷 94 | - |
dc.language.iso | zh_TW | - |
dc.title | 應用層級分析法於利害關係人對土地利用變遷的認知 | zh_TW |
dc.title | Application of Analytic Hierarchy Process to assess Stakeholders’ perceptions of Land Use Change | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 彭立沛;王咏潔;江莉琦 | zh_TW |
dc.contributor.oralexamcommittee | Li-Pei Peng;Yung-Chieh Wang;Li-Chi Chiang | en |
dc.subject.keyword | 土地利用變遷,利害關係人,層級分析法,CLUE-S模式, | zh_TW |
dc.subject.keyword | Land Use Change,Stakeholder,Analytical Hierarchy Process,CLUE-S model, | en |
dc.relation.page | 99 | - |
dc.identifier.doi | 10.6342/NTU202304294 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-10-06 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 生物環境系統工程學系 | - |
顯示於系所單位: | 生物環境系統工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf | 3.76 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。