請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91234完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張鈞棣 | zh_TW |
| dc.contributor.advisor | Chun-Ti Chang | en |
| dc.contributor.author | 雍華玨 | zh_TW |
| dc.contributor.author | Hua-Chueh Yung | en |
| dc.date.accessioned | 2023-12-12T16:20:08Z | - |
| dc.date.available | 2023-12-13 | - |
| dc.date.copyright | 2023-12-12 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-10-24 | - |
| dc.identifier.citation | 1. Chen, H., Y. Ding, Y. Li, et al., Air fuelled zero emission road transportation: A comparative study. Applied Energy, 2011. 88(1): p. 337-342.
2. Jacobson, M.Z. and M.A. Delucchi, Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy policy, 2011. 39(3): p. 1154-1169. 3. Yusuf, L.A., K. Popoola, and H. Musa, A review of energy consumption and minimisation strategies of machine tools in manufacturing process. International Journal of Sustainable Engineering, 2021. 14(6): p. 1826-1842. 4. Adinoyi, M.J. and S.A. Said, Effect of dust accumulation on the power outputs of solar photovoltaic modules. Renewable energy, 2013. 60: p. 633-636. 5. Bosch, J.L. and J. Kleissl, Cloud motion vectors from a network of ground sensors in a solar power plant. Solar Energy, 2013. 95: p. 13-20. 6. Kosowatz, J., Energy storage smooths the duck curve. Mechanical Engineering, 2018. 140(06): p. 30-35. 7. Franco, A., Rechargeable lithium batteries: from fundamentals to applications. 2015: Elsevier. 8. Abdullah, M.O., Applied energy: an introduction. 2012: CRC Press. 9. Kalhammer, F.R. and T.R. Schneider, Energy storage. Annual Review of Energy, 1976. 1(1): p. 311-343. 10. McLarnon, F.R. and E.J. Cairns, Energy storage. Annual review of energy, 1989. 14(1): p. 241-271. 11. Budt, M., D. Wolf, R. Span, et al., Compressed air energy storage–an option for medium to large scale electrical-energy storage. Energy procedia, 2016. 88: p. 698-702. 12. Kaldemeyer, C., C. Boysen, and I. Tuschy, Compressed air energy storage in the German energy system–status quo & perspectives. Energy Procedia, 2016. 99: p. 298-313. 13. Bender, D.A., Recommended practices for the safe design and operation of flywheels. 2015, Sandia National Lab.(SNL-CA), Livermore, CA (United States). 14. Smith, E., Storage of electrical energy using supercritical liquid air. Proceedings of the Institution of Mechanical Engineers, 1977. 191(1): p. 289-298. 15. Vecchi, A., Y. Li, Y. Ding, et al., Liquid air energy storage (LAES): A review on technology state-of-the-art, integration pathways and future perspectives. Advances in Applied Energy, 2021. 3: p. 100047. 16. Antonelli, M., S. Barsali, U. Desideri, et al., Liquid air energy storage: Potential and challenges of hybrid power plants. Applied energy, 2017. 194: p. 522-529. 17. Hamdy, S., T. Morosuk, and G. Tsatsaronis, Cryogenics-based energy storage: Evaluation of cold exergy recovery cycles. Energy, 2017. 138: p. 1069-1080. 18. Guo, H., Y. Xu, H. Chen, et al., Thermodynamic characteristics of a novel supercritical compressed air energy storage system. Energy conversion and management, 2016. 115: p. 167-177. 19. Kim, J. and D. Chang, Pressurized cryogenic air energy storage for efficiency improvement of liquid air energy storage. Energy Procedia, 2019. 158: p. 5086-5091. 20. 李侑澄, 液態氮與水批次於鍋爐內混合以獲得液態氮的可用能. 2020, 國立台灣大學機械所. 21. Zhang, X., Y. Xu, X. Zhou, et al., A near-isothermal expander for isothermal compressed air energy storage system. Applied energy, 2018. 225: p. 955-964. 22. Igobo, O.N. and P.A. Davies, Review of low-temperature vapour power cycle engines with quasi-isothermal expansion. Energy, 2014. 70: p. 22-34. 23. Knowlen, C., J. Williams, A. Mattick, et al., Quasi-isothermal expansion engines for liquid nitrogen automotive propulsion. 1997, SAE Technical Paper. 24. Highview Power. Our liquid air energy storage. 2023 [cited 2023 Juiy 20]; Available from: https://highviewpower.com/technology/. 25. Morgan, R., S. Nelmes, E. Gibson, et al., Liquid air energy storage–analysis and first results from a pilot scale demonstration plant. Applied energy, 2015. 137: p. 845-853. 26. 台電月刊. 五面向分散 全方位降低電網風險. 2022 [cited 2023 7/31]; Available from: https://tpcjournal.taipower.com.tw/article/5773. 27. Clarke, H., A. Martinez-Herasme, R. Crookes, et al., Experimental study of jet structure and pressurisation upon liquid nitrogen injection into water. International journal of multiphase flow, 2010. 36(11-12): p. 940-949. 28. Wen, D., H. Chen, Y. Ding, et al., Liquid nitrogen injection into water: Pressure build-up and heat transfer. Cryogenics, 2006. 46(10): p. 740-748. 29. Nakoryakov, V., I. Mezentsev, A. Meleshkin, et al., Visualization of physical processes occurring on liquid nitrogen injection into water. Journal of Engineering Thermophysics, 2015. 24(4): p. 322-329. 30. Nakoryakov, V., A. Tsoi, I. Mezentsev, et al., Boiling-up of liquid nitrogen jet in water. Thermophysics and Aeromechanics, 2014. 21: p. 279-284. 31. Nakoryakov, V., A. Tsoy, I. Mezentsev, et al., Explosive boiling of liquid nitrogen. Thermal Engineering, 2014. 61: p. 919-923. 32. Durst, F. and T. Loy, Investigations of laminar flow in a pipe with sudden contraction of cross sectional area. Computers & fluids, 1985. 13(1): p. 15-36. 33. Ozalp, C., A. Pinarbasi, M. Fakilar, et al., PIV measurements of flow through a sudden contraction. Flow Measurement and Instrumentation, 2007. 18(3-4): p. 121-128. 34. Sheen, H., W. Chen, and J.-S. Wu, Flow patterns for an annular flow over an axisymmetric sudden expansion. Journal of Fluid Mechanics, 1997. 350: p. 177-188. 35. Smith, F., The separating flow through a severely constricted symmetric tube. Journal of Fluid Mechanics, 1979. 90(4): p. 725-754. 36. Tafreshi, H.V., B. Pourdeyhimi, R. Holmes, et al., Simulating and characterizing water flows inside hydroentangling orifices. Textile research journal, 2003. 73(3): p. 256-262. 37. Patra, S.K., M.K. Roul, P.K. Satapathy, et al., Fluid Dynamics and Pressure Drop Prediction of Two-Phase Flow Through Sudden Contractions. Journal of Fluids Engineering, 2021. 143(9): p. 091401. 38. Hall, W. and E. Orme, Flow of a compressible fluid through a sudden enlargement in a pipe. Proceedings of the Institution of Mechanical Engineers, 1955. 169(1): p. 1007-1020. 39. Teyssandiert, R. and M. Wilson, An analysis of flow through sudden enlargements in pipes. Journal of Fluid Mechanics, 1974. 64(1): p. 85-95. 40. Kumagai, T. and M. Iguchi, Instability phenomena at bath surface induced by top lance gas injection. ISIJ international, 2001. 41(Suppl): p. S52-S55. 41. Kramer, M., S. Wieprecht, and K. Terheiden, Penetration depth of plunging liquid jets–A data driven modelling approach. Experimental Thermal and Fluid Science, 2016. 76: p. 109-117. 42. Sene, K., Air entrainment by plunging jets. Chemical Engineering Science, 1988. 43(10): p. 2615-2623. 43. Hisatake, K., S. Tanaka, and Y. Aizawa, Evaporation rate of water in a vessel. Journal of applied physics, 1993. 73(11): p. 7395-7401. 44. Fonda, E., K.R. Sreenivasan, and D.P. Lathrop, Liquid nitrogen in fluid dynamics: Visualization and velocimetry using frozen particles. Review of Scientific Instruments, 2012. 83(8). 45. Cengel, Y. and J. Cimbala, Ebook: Fluid mechanics fundamentals and applications (si units). 2013: McGraw Hill. 46. Bald, W., Cryogenic heat transfer research at Oxford: Part 1—nucleate pool boiling. Cryogenics, 1973. 13(8): p. 457-469. 47. Chandra, S., M. Di Marzo, Y. Qiao, et al., Effect of liquid-solid contact angle on droplet evaporation. Fire safety journal, 1996. 27(2): p. 141-158. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91234 | - |
| dc.description.abstract | 綠能的快速發展使儲能系統的需求急速提升。以液態氮作為儲能媒介安全可靠,且液態氮的製備技術已成熟,僅需發展復能系統從液態氮中提取能量。本研究發展一低磨耗、反應快、吸收廢熱且下游壓力較上游壓力高的液氮增壓系統並成功增壓,在8bar注射壓力產生16bar的鍋爐壓力。本研究另外建立了一套以水替代液氮的實驗精準測量注射水量和注射後管路殘留水量,並發展了一套利用質量精準代換替代實驗和液氮增壓實驗的方法。替代實驗中,16bar注射壓力注射較細長的定量瓶有較低的殘留量。替代實驗的結果經由質量代換方法,可得不同尺寸的定量瓶在不同注射壓力下的注射量以及注射的能量轉換效率,提供未來擴建系統的參考。 | zh_TW |
| dc.description.abstract | The rapid growth of green energy comes with significant demand for energy storage systems. Liquid nitrogen as an energy storage material is safe and reliable, and the air separation industry is mature. Extracting energy from liquid nitrogen is the only thing that awaits. This study develops a liquid nitrogen pressurized system with benefits like low wear, low response time, absorbing waste heat, and higher pressure downstream. This research builds an LN2 Pressurize System, which successfully produces 16 bar boiler pressure with 8 bar injecting pressure. This research also built the Substitution Experiment, which replaces LN2 with water to get the precise amount of injected water and remaining water. Furthermore, a method turns the injecting water weight into injecting LN2 weight. From the result of the Substitution Experiment, 16 bar injecting pressure with a slender quantitative bottle results in less remaining water. The results of the substitution experiment and the mass substitution method reveal the injection volume of different sizes of quantitative bottles under different injection pressures and the energy conversion efficiency of the injection, providing a reference for future expansion of the system. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-12T16:20:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-12-12T16:20:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 viii 第1章、 緒論 1 第2章、 實驗方法 8 2.1 液氮增壓實驗 8 2.2 液氮定量實驗 11 第3章、 實驗結果與討論 18 3.1 液氮增壓系統 18 3.1.1 壓力 19 3.1.2 液氮質量 21 3.2 除水系統 24 3.2.1 數據比較 24 3.2.2 不同定量瓶尺寸 28 3.2.3 預測注入液氮量 36 第4章、 結論 40 第5章、 附錄 41 參考文獻 45 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 冷凝除水 | zh_TW |
| dc.subject | 液氮儲能 | zh_TW |
| dc.subject | 液氮增壓 | zh_TW |
| dc.subject | 暫態突張突縮管射流 | zh_TW |
| dc.subject | 液氮儲能 | zh_TW |
| dc.subject | 液氮增壓 | zh_TW |
| dc.subject | 暫態突張突縮管射流 | zh_TW |
| dc.subject | 冷凝除水 | zh_TW |
| dc.subject | transient jet flow in sudden expansion and sudden contraction pipe | en |
| dc.subject | condense dehydration | en |
| dc.subject | LN2 energy storage pressurization | en |
| dc.subject | LN2 energy storage | en |
| dc.subject | condense dehydration | en |
| dc.subject | transient jet flow in sudden expansion and sudden contraction pipe | en |
| dc.subject | LN2 energy storage pressurization | en |
| dc.subject | LN2 energy storage | en |
| dc.title | 液態氮增壓系統定量瓶尺寸與液氮殘留量探討 | zh_TW |
| dc.title | Discussion on Quantitative Bottle Size and Liquid Nitrogen Residue in Liquid Nitrogen Pressurization System | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡協澄;王安邦 | zh_TW |
| dc.contributor.oralexamcommittee | Hsieh-Chen Tsai;An-Bang Wang | en |
| dc.subject.keyword | 液氮儲能,液氮增壓,暫態突張突縮管射流,冷凝除水, | zh_TW |
| dc.subject.keyword | LN2 energy storage,LN2 energy storage pressurization,transient jet flow in sudden expansion and sudden contraction pipe,condense dehydration, | en |
| dc.relation.page | 47 | - |
| dc.identifier.doi | 10.6342/NTU202304322 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-10-25 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf | 3.05 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
