Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91225
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor董致韡zh_TW
dc.contributor.advisorChih-Wei Tungen
dc.contributor.author羅浩嘉zh_TW
dc.contributor.authorHao-Chia Loen
dc.date.accessioned2023-12-12T16:17:45Z-
dc.date.available2023-12-13-
dc.date.copyright2023-12-12-
dc.date.issued2023-
dc.date.submitted2023-11-09-
dc.identifier.citationAlemu, A., Feyissa, T., Maccaferri, M., Sciara, G., Tuberosa, R., Ammar, K., Badebo, A., Acevedo, M., Letta, T., & Abeyo, B. (2021). Genome-wide association analysis unveils novel QTLs for seminal root system architecture traits in Ethiopian durum wheat. BMC genomics, 22, 1-16.
Allen, A. M., Winfield, M. O., Burridge, A. J., Downie, R. C., Benbow, H. R., Barker, G. L., Wilkinson, P. A., Coghill, J., Waterfall, C., & Davassi, A. (2017). Characterization of a Wheat Breeders’ Array suitable for high‐throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum). Plant biotechnology journal, 15(3), 390-401.
Almeselmani, M., Deshmukh, P., & Chinnusamy, V. (2012). Effects of prolonged high temperature stress on respiration, photosynthesis and gene expression in wheat (Triticum aestivum L.) varieties differing in their thermotolerance. Plant stress, 6(1), 25-32.
Armengaud, P., Zambaux, K., Hills, A., Sulpice, R., Pattison, R. J., Blatt, M. R., & Amtmann, A. (2009). EZ‐Rhizo: integrated software for the fast and accurate measurement of root system architecture. The Plant Journal, 57(5), 945-956.
Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., Kimball, B. A., Ottman, M. J., Wall, G., & White, J. W. (2015). Rising temperatures reduce global wheat production. Nature climate change, 5(2), 143-147.
Becker, H. (1981). Correlations among some statistical measures of phenotypic stability. Euphytica, 30, 835-840.
Becker, H., & Leon, J. (1988). Stability analysis in plant breeding. Plant breeding, 101(1), 1-23.
Beyer, S., Daba, S., Tyagi, P., Bockelman, H., Brown-Guedira, G., com, I. e. e., & Mohammadi, M. (2019). Loci and candidate genes controlling root traits in wheat seedlings—a wheat root GWAS. Functional & integrative genomics, 19, 91-107.
Binder, B. M., O'malley, R. C., Wang, W., Moore, J. M., Parks, B. M., Spalding, E. P., & Bleecker, A. B. (2004). Arabidopsis seedling growth response and recovery to ethylene. A kinetic analysis. Plant Physiology, 136(2), 2913-2920.
Bishwas, K., Poudel, M. R., & Regmi, D. (2021). AMMI and GGE biplot analysis of yield of different elite wheat line under terminal heat stress and irrigated environments. Heliyon, 7(6), e07206.
Chen, Y., Palta, J., Prasad, P., & Siddique, K. H. (2020). Phenotypic variability in bread wheat root systems at the early vegetative stage. BMC Plant Biology, 20(1), 1-16.
Chou, C.-H., Lin, H.-S., Wen, C.-H., & Tung, C.-W. (2022). Patterns of genetic variation and QTLs controlling grain traits in a collection of global wheat germplasm revealed by high-quality SNP markers. BMC Plant Biology, 22(1), 455.
Chung, P. J., Jung, H., Choi, Y. D., & Kim, J.-K. (2018). Genome-wide analyses of direct target genes of four rice NAC-domain transcription factors involved in drought tolerance. BMC genomics, 19, 1-17.
Cobb, J. N., Biswas, P. S., & Platten, J. D. (2019). Back to the future: revisiting MAS as a tool for modern plant breeding. Theoretical and Applied Genetics, 132, 647-667.
Colmer, T. D., & Greenway, H. (2011). Ion transport in seminal and adventitious roots of cereals during O2 deficiency. Journal of Experimental Botany, 62(1), 39-57.
Consortium, I. W. G. S., Appels, R., Eversole, K., Stein, N., Feuillet, C., Keller, B., Rogers, J., Pozniak, C. J., Choulet, F., & Distelfeld, A. (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 361(6403), eaar7191.
Dehghani, H., Sabaghpour, S. H., & Ebadi, A. (2010). Study of genotype× environment interaction for chickpea yield in Iran. Agronomy journal, 102(1), 1-8.
Duan, Y., Zhang, W., Li, B., Wang, Y., Li, K., Sodmergen, Han, C., Zhang, Y., & Li, X. (2010). An endoplasmic reticulum response pathway mediates programmed cell death of root tip induced by water stress in Arabidopsis. New Phytologist, 186(3), 681-695.
El-Soda, M., Malosetti, M., Zwaan, B. J., Koornneef, M., & Aarts, M. G. (2014). Genotype× environment interaction QTL mapping in plants: lessons from Arabidopsis. Trends in plant science, 19(6), 390-398.
El Hassouni, K., Alahmad, S., Belkadi, B., Filali-Maltouf, A., Hickey, L., & Bassi, F. (2018). Root system architecture and its association with yield under different water regimes in durum wheat. Crop Science, 58(6), 2331-2346.
Endresen, D. T. F., Street, K., Mackay, M., Bari, A., & De Pauw, E. (2011). Predictive association between biotic stress traits and eco‐geographic data for wheat and barley landraces. Crop Science, 51(5), 2036-2055.
Essemine, J., Ammar, S., & Bouzid, S. (2010). Impact of heat stress on germination and growth in higher plants: Physiological, biochemical and molecular repercussions and mechanisms of defence. Journal of Biological Sciences, 10(6), 565-572.
Finlay, K., & Wilkinson, G. (1963). The analysis of adaptation in a plant-breeding programme. Australian Journal of Agricultural Research, 14(6), 742-754.
Fradgley, N., Gardner, K. A., Cockram, J., Elderfield, J., Hickey, J. M., Howell, P., Jackson, R., & Mackay, I. J. (2019). A large-scale pedigree resource of wheat reveals evidence for adaptation and selection by breeders. PLoS Biology, 17(2), e3000071.
Gauch Jr, H. (1992). AMMI analysis on yield trials. CIMMYT Wheat Special Report (CIMMYT).
Gauch Jr, H. G. (1988). Model selection and validation for yield trials with interaction. Biometrics, 705-715.
Gauch Jr, H. G. (2006). Statistical analysis of yield trials by AMMI and GGE. Crop Science, 46(4), 1488-1500.
Gauch Jr, H. G. (2013). A simple protocol for AMMI analysis of yield trials. Crop Science, 53(5), 1860-1869.
Gauch Jr, H. G., Piepho, H. P., & Annicchiarico, P. (2008). Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Science, 48(3), 866-889.
Goh, T., Toyokura, K., Yamaguchi, N., Okamoto, Y., Uehara, T., Kaneko, S., Takebayashi, Y., Kasahara, H., Ikeyama, Y., & Okushima, Y. (2019). Lateral root initiation requires the sequential induction of transcription factors LBD16 and PUCHI in Arabidopsis thaliana. New Phytologist, 224(2), 749-760.
Golan, G., Hendel, E., Méndez Espitia, G. E., Schwartz, N., & Peleg, Z. (2018). Activation of seminal root primordia during wheat domestication reveals underlying mechanisms of plant resilience. Plant, Cell & Environment, 41(4), 755-766.
Goron, T. L., Watts, S., Shearer, C., & Raizada, M. N. (2015). Growth in Turface® clay permits root hair phenotyping along the entire crown root in cereal crops and demonstrates that root hair growth can extend well beyond the root hair zone. BMC Research Notes, 8(1), 1-6.
Guo, H., & Ecker, J. R. (2004). The ethylene signaling pathway: new insights. Current opinion in plant biology, 7(1), 40-49.
Gupta, N., Agarwal, S., Agarwal, V., Nathawat, N., Gupta, S., & Singh, G. (2013). Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings. Acta Physiologiae Plantarum, 35, 1837-1842.
Hall, B. G. (2013). Building phylogenetic trees from molecular data with MEGA. Molecular biology and evolution, 30(5), 1229-1235.
Hassani, M., Heidari, B., Dadkhodaie, A., & Stevanato, P. (2018). Genotype by environment interaction components underlying variations in root, sugar and white sugar yield in sugar beet (Beta vulgaris L.). Euphytica, 214, 1-21.
Hill, W., & Weir, B. (1988). Variances and covariances of squared linkage disequilibria in finite populations. Theoretical population biology, 33(1), 54-78.
Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California agricultural experiment station, 347(2nd edit).
Hua, J., Sakai, H., Nourizadeh, S., Chen, Q. G., Bleecker, A. B., Ecker, J. R., & Meyerowitz, E. M. (1998). EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. The Plant Cell, 10(8), 1321-1332.
Jain, N., Singh, G., Yadav, R., Pandey, R., Ramya, P., Shine, M., Pandey, V., Rai, N., Jha, J., & Prabhu, K. (2014). Root trait characteristics and genotypic response in wheat under different water regimes. Cereal Research Communications, 42(3), 426-438.
Ji, H., Liu, L., Li, K., Xie, Q., Wang, Z., Zhao, X., & Li, X. (2014). PEG-mediated osmotic stress induces premature differentiation of the root apical meristem and outgrowth of lateral roots in wheat. Journal of Experimental Botany, 65(17), 4863-4872.
Jia, L., Zhang, B., Mao, C., Li, J., Wu, Y., Wu, P., & Wu, Z. (2008). OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproductivity in rice (Oryza sativa L.). Planta, 228, 51-59.
Joukhadar, R., Daetwyler, H. D., Bansal, U. K., Gendall, A. R., & Hayden, M. J. (2017). Genetic diversity, population structure and ancestral origin of Australian wheat. Frontiers in Plant Science, 8, 2115.
Kalinowski, S. (2009). How well do evolutionary trees describe genetic relationships among populations? Heredity, 102(5), 506-513.
Kang, M. S. (1993). Simultaneous selection for yield and stability in crop performance trials: Consequences for growers. Agronomy journal, 85(3), 754-757.
Kebede B, A., & Getahun, A. (2017). Adaptability and stability analysis of groundnut genotypes using AMMI model and GGE-biplot. Journal of crop science and biotechnology, 20, 343-349.
Khan, M. I., Kainat, Z., Maqbool, S., Mehwish, A., Ahmad, S., Suleman, H. M., Mahmood, Z., Ali, M., Aziz, A., & Rasheed, A. (2022). Genome-wide association for heat tolerance at seedling stage in historical spring wheat cultivars. Frontiers in Plant Science, 13, 972481.
Kirkegaard, J., Lilley, J., Howe, G., & Graham, J. (2007). Impact of subsoil water use on wheat yield. Australian Journal of Agricultural Research, 58(4), 303-315.
Kuhlmann, H., & Barraclough, P. (1987). Comparison between the seminal and nodal root systems of winter wheat in their activity for N and K uptake. Zeitschrift für Pflanzenernährung und Bodenkunde, 150(1), 24-30.
Kushwaha, H. R., Joshi, R., Pareek, A., & Singla-Pareek, S. L. (2016). MATH-domain family shows response toward abiotic stress in Arabidopsis and rice. Frontiers in Plant Science, 7, 923.
Lee, H. W., Cho, C., Pandey, S. K., Park, Y., Kim, M.-J., & Kim, J. (2019). LBD16 and LBD18 acting downstream of ARF7 and ARF19 are involved in adventitious root formation in Arabidopsis. BMC Plant Biology, 19(1), 1-11.
Li, X., Ingvordsen, C. H., Weiss, M., Rebetzke, G. J., Condon, A. G., James, R. A., & Richards, R. A. (2019). Deeper roots associated with cooler canopies, higher normalized difference vegetation index, and greater yield in three wheat populations grown on stored soil water. Journal of Experimental Botany, 70(18), 4963-4974.
Lin, C., Binns, M., & Janick, J. (2010). Concepts and methods for analyzing regional trial data for cultivar and location selection. Plant Breed Rev, 12, 271-297.
Liu, H., Sun, Z., Hu, L., & Yue, Z. (2021). Genome-wide identification of PIP5K in wheat and its relationship with anther male sterility induced by high temperature. BMC Plant Biology, 21(1), 598.
Liu, P., Jin, Y., Liu, J., Liu, C., Yao, H., Luo, F., Guo, Z., Xia, X., & He, Z. (2019). Genome-wide association mapping of root system architecture traits in common wheat (Triticum aestivum L.). Euphytica, 215, 1-12.
Liu, X., Li, R., Chang, X., & Jing, R. (2013). Mapping QTLs for seedling root traits in a doubled haploid wheat population under different water regimes. Euphytica, 189, 51-66.
Lopes, M. S., & Reynolds, M. P. (2010). Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat. Functional Plant Biology, 37(2), 147-156.
Lou, Y., Gou, J.-Y., & Xue, H.-W. (2007). PIP5K9, an Arabidopsis phosphatidylinositol monophosphate kinase, interacts with a cytosolic invertase to negatively regulate sugar-mediated root growth. The Plant Cell, 19(1), 163-181.
Lu, L., Liu, H., Wu, Y., & Yan, G. (2022). Wheat genotypes tolerant to heat at seedling stage tend to be also tolerant at adult stage: The possibility of early selection for heat tolerance breeding. The Crop Journal, 10(4), 1006-1013.
Lynch, J. P. (2013). Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Annals of botany, 112(2), 347-357.
Ma, B., Yin, C.-C., He, S.-J., Lu, X., Zhang, W.-K., Lu, T.-G., Chen, S.-Y., & Zhang, J.-S. (2014). Ethylene-induced inhibition of root growth requires abscisic acid function in rice (Oryza sativa L.) seedlings. PLoS Genetics, 10(10), e1004701.
Ma, J., Zhao, D., Tang, X., Yuan, M., Zhang, D., Xu, M., Duan, Y., Ren, H., Zeng, Q., & Wu, J. (2022). Genome-wide association study on root system architecture and identification of candidate genes in wheat (Triticum aestivum L.). International journal of molecular sciences, 23(3), 1843.
Maccaferri, M., El-Feki, W., Nazemi, G., Salvi, S., Canè, M. A., Colalongo, M. C., Stefanelli, S., & Tuberosa, R. (2016). Prioritizing quantitative trait loci for root system architecture in tetraploid wheat. Journal of Experimental Botany, 67(4), 1161-1178.
Majer, C., & Hochholdinger, F. (2011). Defining the boundaries: structure and function of LOB domain proteins. Trends in plant science, 16(1), 47-52.
Mehrabi, A. A., Pour-Aboughadareh, A., Mansouri, S., & Hosseini, A. (2020). Genome-wide association analysis of root system architecture features and agronomic traits in durum wheat. Molecular Breeding, 40, 1-17.
Melo, F. V., Oliveira, M. M., Saibo, N. J., & Lourenço, T. F. (2021). Modulation of abiotic stress responses in rice by E3-ubiquitin ligases: a promising way to develop stress-tolerant crops. Frontiers in Plant Science, 368.
Meyer, R. S., & Purugganan, M. D. (2013). Evolution of crop species: genetics of domestication and diversification. Nature reviews genetics, 14(12), 840-852.
Morey, S. R., Hirose, T., Hashida, Y., Miyao, A., Hirochika, H., Ohsugi, R., Yamagishi, J., & Aoki, N. (2018). Genetic evidence for the role of a rice vacuolar invertase as a molecular sink strength determinant. Rice, 11, 1-13.
Nagel, K. A., Lenz, H., Kastenholz, B., Gilmer, F., Averesch, A., Putz, A., Heinz, K., Fischbach, A., Scharr, H., & Fiorani, F. (2020). The platform GrowScreen-Agar enables identification of phenotypic diversity in root and shoot growth traits of agar grown plants. Plant Methods, 16(1), 1-17.
Nahar, K., Ahamed, K. U., & Fujita, M. (2010). Phenological variation and its relation with yield in several wheat (Triticum aestivum L.) cultivars under normal and late sowing mediated heat stress condition. Notulae Scientia Biologicae, 2(3), 51-56.
Nakhforoosh, A., Nagel, K. A., Fiorani, F., & Bodner, G. (2021). Deep soil exploration vs. topsoil exploitation: distinctive rooting strategies between wheat landraces and wild relatives. Plant and Soil, 459, 397-421.
Nawaz, A., Farooq, M., Cheema, S. A., & Wahid, A. (2013). Differential response of wheat cultivars to terminal heat stress. International Journal of Agriculture & Biology, 15(6).
Ngailo, S., Shimelis, H., Sibiya, J., Mtunda, K., & Mashilo, J. (2019). Genotype-by-environment interaction of newly-developed sweet potato genotypes for storage root yield, yield-related traits and resistance to sweet potato virus disease. Heliyon, 5(3).
Nibau, C., Gibbs, D., & Coates, J. (2008). Branching out in new directions: the control of root architecture by lateral root formation. New Phytologist, 179(3), 595-614.
Olivoto, T., & Lúcio, A. D. C. (2020). metan: An R package for multi‐environment trial analysis. Methods in Ecology and Evolution, 11(6), 783-789.
Omrani, A., Omrani, S., Khodarahmi, M., Shojaei, S. H., Illés, Á., Bojtor, C., Mousavi, S. M. N., & Nagy, J. (2022). Evaluation of grain yield stability in some selected wheat genotypes using AMMI and GGE biplot methods. Agronomy, 12(5), 1130.
Pavlopoulos, G. A., Soldatos, T. G., Barbosa-Silva, A., & Schneider, R. (2010). A reference guide for tree analysis and visualization. BioData mining, 3, 1-24.
Pigolev, A., Miroshnichenko, D., Dolgov, S., & Savchenko, T. (2021). Regulation of sixth seminal root formation by jasmonate in Triticum aestivum L. Plants, 10(2), 219.
Pinto, R. S., & Reynolds, M. P. (2015). Common genetic basis for canopy temperature depression under heat and drought stress associated with optimized root distribution in bread wheat. Theoretical and Applied Genetics, 128, 575-585.
Porter, J. R., & Gawith, M. (1999). Temperatures and the growth and development of wheat: a review. European journal of agronomy, 10(1), 23-36.
Postma, J. A., Dathe, A., & Lynch, J. P. (2014). The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability. Plant Physiology, 166(2), 590-602.
Qi, H., Xia, F. N., Xiao, S., & Li, J. (2022). TRAF proteins as key regulators of plant development and stress responses. Journal of Integrative Plant Biology, 64(2), 431-448.
Rahman, M. A., Chikushi, J., Yoshida, S., & Karim, A. (2009). Growth and yield components of wheat genotypes exposed to high temperature stress under control environment. Bangladesh Journal of Agricultural Research, 34(3), 360-372.
Ramírez-González, R., Borrill, P., Lang, D., Harrington, S., Brinton, J., Venturini, L., Davey, M., Jacobs, J., Van Ex, F., & Pasha, A. (2018). The transcriptional landscape of polyploid wheat. Science, 361(6403), eaar6089.
Rebetzke, G., Zhang, H., Ingvordsen, C., Condon, A., Rich, S., & Ellis, M. (2022). Genotypic variation and covariation in wheat seedling seminal root architecture and grain yield under field conditions. Theoretical and Applied Genetics, 135(9), 3247-3264.
Reddy, S. S., Saini, D. K., Singh, G. M., Sharma, S., Mishra, V. K., & Joshi, A. K. (2023). Genome-wide association mapping of genomic regions associated with drought stress tolerance at seedling and reproductive stages in bread wheat. Frontiers in Plant Science, 14, 1166439.
Ren, Y., He, X., Liu, D., Li, J., Zhao, X., Li, B., Tong, Y., Zhang, A., & Li, Z. (2012). Major quantitative trait loci for seminal root morphology of wheat seedlings. Molecular Breeding, 30, 139-148.
Ren, Y., Qian, Y., Xu, Y., Zou, C., Liu, D., Zhao, X., Zhang, A., & Tong, Y. (2017). Characterization of QTLs for root traits of wheat grown under different nitrogen and phosphorus supply levels. Frontiers in Plant Science, 8, 2096.
Reynolds, M., Dreccer, F., & Trethowan, R. (2007). Drought-adaptive traits derived from wheat wild relatives and landraces. Journal of Experimental Botany, 58(2), 177-186.
Roselló, M., Royo, C., Sanchez-Garcia, M., & Soriano, J. M. (2019). Genetic dissection of the seminal root system architecture in mediterranean durum wheat landraces by genome-wide association study. Agronomy, 9(7), 364.
Seethepalli, A., Dhakal, K., Griffiths, M., Guo, H., Freschet, G. T., & York, L. M. (2021). RhizoVision Explorer: Open-source software for root image analysis and measurement standardization. AoB plants, 13(6), plab056.
Sergeeva, L. I., Keurentjes, J. J., Bentsink, L., Vonk, J., van der Plas, L. H., Koornneef, M., & Vreugdenhil, D. (2006). Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis. Proceedings of the National Academy of Sciences, 103(8), 2994-2999.
Shah, L., Yahya, M., Shah, S. M. A., Nadeem, M., Ali, A., Ali, A., Wang, J., Riaz, M. W., Rehman, S., & Wu, W. (2019). Improving lodging resistance: using wheat and rice as classical examples. International journal of molecular sciences, 20(17), 4211.
Shakeel, S. N., Wang, X., Binder, B. M., & Schaller, G. E. (2013). Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. AoB plants, 5.
Škiljaica, A., Lechner, E., Jagić, M., Majsec, K., Malenica, N., Genschik, P., & Bauer, N. (2020). The protein turnover of Arabidopsis BPM1 is involved in regulation of flowering time and abiotic stress response. Plant molecular biology, 102, 359-372.
Somers, D. J., Banks, T., DePauw, R., Fox, S., Clarke, J., Pozniak, C., & McCartney, C. (2007). Genome-wide linkage disequilibrium analysis in bread wheat and durum wheat. Genome, 50(6), 557-567.
Soriano, J. M., & Alvaro, F. (2019). Discovering consensus genomic regions in wheat for root-related traits by QTL meta-analysis. Scientific reports, 9(1), 10537.
Steinemann, S., Zeng, Z., McKay, A., Heuer, S., Langridge, P., & Huang, C. Y. (2015). Dynamic root responses to drought and rewatering in two wheat (Triticum aestivum) genotypes. Plant and Soil, 391, 139-152.
Steinley, D. (2006). K‐means clustering: a half‐century synthesis. British Journal of Mathematical and Statistical Psychology, 59(1), 1-34.
Sumesh, K., Sharma-Natu, P., & Ghildiyal, M. (2008). Starch synthase activity and heat shock protein in relation to thermal tolerance of developing wheat grains. Biologia plantarum, 52, 749-753.
Teodoro, P., Almeida Filho, J., Daher, R., de MENEZES, C., Cardoso, M., GODINHO, V., Torres, F., & Tardin, F. (2016). Identification of sorghum hybrids with high phenotypic stability using GGE biplot methodology.
Thomson, C., Colmer, T., Watkin, E., & Greenway, H. (1992). Tolerance of wheat (Triticum aestivum cvs Gamenya and Kite) and triticale (Triticosecale cv. Muir) to waterlogging. New Phytologist, 120(3), 335-344.
Tibbs Cortes, L., Zhang, Z., & Yu, J. (2021). Status and prospects of genome‐wide association studies in plants. The plant genome, 14(1), e20077.
Tollefson, J. (2021). Top climate scientists are sceptical that nations will rein in global warming. Nature, 599(7883), 22-24.
Trejo, C., Else, M. A., & Atkinson, C. J. (2018). Responses of seminal wheat seedling roots to soil water deficits. Journal of plant physiology, 223, 105-114.
Volkmar, K. (1997). Water stressed nodal roots of wheat: effects on leaf growth. Functional Plant Biology, 24(1), 49-56.
Voss‐Fels, K. P., Qian, L., Parra‐Londono, S., Uptmoor, R., Frisch, M., Keeble‐Gagnère, G., Appels, R., & Snowdon, R. J. (2017). Linkage drag constrains the roots of modern wheat. Plant, Cell & Environment, 40(5), 717-725.
Wang, C., Wang, G., Wen, X., Qu, X., Zhang, Y., Zhang, X., Deng, P., Chen, C., Ji, W., & Zhang, H. (2022). Characteristics and Expression Analysis of Invertase Gene Family in Common Wheat (Triticum aestivum L.). Genes, 14(1), 41.
Wang, L., Li, X.-R., Lian, H., Ni, D.-A., He, Y.-k., Chen, X.-Y., & Ruan, Y.-L. (2010). Evidence that high activity of vacuolar invertase is required for cotton fiber and Arabidopsis root elongation through osmotic dependent and independent pathways, respectively. Plant Physiology, 154(2), 744-756.
Wang, S., Wong, D., Forrest, K., Allen, A., Chao, S., Huang, B. E., Maccaferri, M., Salvi, S., Milner, S. G., & Cattivelli, L. (2014). Characterization of polyploid wheat genomic diversity using a high‐density 90 000 single nucleotide polymorphism array. Plant biotechnology journal, 12(6), 787-796.
Wang, Z., Zhang, R., Cheng, Y., Lei, P., Song, W., Zheng, W., & Nie, X. (2021). Genome-wide identification, evolution, and expression analysis of LBD transcription factor family in bread wheat (Triticum aestivum L.). Frontiers in Plant Science, 12, 721253.
Wasson, A. P., Richards, R., Chatrath, R., Misra, S., Prasad, S. S., Rebetzke, G., Kirkegaard, J., Christopher, J., & Watt, M. (2012). Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. Journal of Experimental Botany, 63(9), 3485-3498.
Watt, M., Magee, L. J., & McCully, M. E. (2008). Types, structure and potential for axial water flow in the deepest roots of field‐grown cereals. New Phytologist, 178(1), 135-146.
Weber, H., Bernhardt, A., Dieterle, M., Hano, P., Mutlu, A., Estelle, M., Genschik, P., & Hellmann, H. (2005). Arabidopsis AtCUL3a and AtCUL3b form complexes with members of the BTB/POZ-MATH protein family. Plant Physiology, 137(1), 83-93.
Wiengweera, A., & Greenway, H. (2004). Performance of seminal and nodal roots of wheat in stagnant solution: K+ and P uptake and effects of increasing O2 partial pressures around the shoot on nodal root elongation. Journal of Experimental Botany, 55(405), 2121-2129.
Wright, S. (1960). Path coefficients and path regressions: alternative or complementary concepts? Biometrics, 16(2), 189-202.
Wuriyanghan, H., Zhang, B., Cao, W.-H., Ma, B., Lei, G., Liu, Y.-F., Wei, W., Wu, H.-J., Chen, L.-J., & Chen, H.-W. (2009). The ethylene receptor ETR2 delays floral transition and affects starch accumulation in rice. The Plant Cell, 21(5), 1473-1494.
Xu, F., Chen, S., Yang, X., Zhou, S., Wang, J., Zhang, Z., Huang, Y., Song, M., Zhang, J., & Zhan, K. (2021). Genome-wide association study on root traits under different growing environments in wheat (Triticum aestivum L.). Frontiers in Genetics, 12, 646712.
Yan, W. (2001). GGEbiplot—A Windows application for graphical analysis of multienvironment trial data and other types of two‐way data. Agronomy journal, 93(5), 1111-1118.
Yan, W. (2002). Singular‐value partitioning in biplot analysis of multienvironment trial data. Agronomy journal, 94(5), 990-996.
Yan, W., Hunt, L. A., Sheng, Q., & Szlavnics, Z. (2000). Cultivar evaluation and mega‐environment investigation based on the GGE biplot. Crop Science, 40(3), 597-605.
Yan, W., Kang, M. S., Ma, B., Woods, S., & Cornelius, P. L. (2007). GGE biplot vs. AMMI analysis of genotype‐by‐environment data. Crop Science, 47(2), 643-653.
Yang, C., Lu, X., Ma, B., Chen, S.-Y., & Zhang, J.-S. (2015). Ethylene signaling in rice and Arabidopsis: conserved and diverged aspects. Molecular plant, 8(4), 495-505.
Yau, C. P., Wang, L., Yu, M., Zee, S. Y., & Yip, W. K. (2004). Differential expression of three genes encoding an ethylene receptor in rice during development, and in response to indole‐3‐acetic acid and silver ions. Journal of Experimental Botany, 55(397), 547-556.
Yu, J., Pressoir, G., Briggs, W. H., Vroh Bi, I., Yamasaki, M., Doebley, J. F., McMullen, M. D., Gaut, B. S., Nielsen, D. M., & Holland, J. B. (2006). A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature genetics, 38(2), 203-208.
Yu, S., Wu, J., Wang, M., Shi, W., Xia, G., Jia, J., Kang, Z., & Han, D. (2020). Haplotype variations in QTL for salt tolerance in Chinese wheat accessions identified by marker-based and pedigree-based kinship analyses. The Crop Journal, 8(6), 1011-1024.
Zargar, S. M., Raatz, B., Sonah, H., MuslimaNazir, Bhat, J. A., Dar, Z. A., Agrawal, G. K., & Rakwal, R. (2015). Recent advances in molecular marker techniques: insight into QTL mapping, GWAS and genomic selection in plants. Journal of crop science and biotechnology, 18, 293-308.
Zeng, D.-D., Yang, C.-C., Qin, R., Alamin, M., Yue, E.-K., Jin, X.-L., & Shi, C.-H. (2018). A guanine insert in OsBBS1 leads to early leaf senescence and salt stress sensitivity in rice (Oryza sativa L.). Plant cell reports, 37, 933-946.
Zhu, T., Wang, L., Rimbert, H., Rodriguez, J. C., Deal, K. R., De Oliveira, R., Choulet, F., Keeble‐Gagnère, G., Tibbits, J., & Rogers, J. (2021). Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. The Plant Journal, 107(1), 303-314.
林訓仕. (2021). 臺灣小麥產業現況及多樣化品種介紹. 臺中區農業專訊(113), 10-12.
林訓仕, 郭建志, & 郭雅紋. (2018). 小麥新品種台中 35 號之育成. 臺中區農業改良場研究彙報(138), 53-61
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91225-
dc.description.abstract小麥是世界上重要的糧食作物之一,主要種植在溫帶環境,最適生長溫度約為15至25℃。受到極端氣候的影響,小麥生長可能面臨高溫逆境的傷害。目前小麥耐熱的研究以地上部性狀為主,根系對於高溫的反應及植株耐熱的貢獻程度仍不是很清楚。本研究首先調查小麥自然種源的根系性狀變異程度,透過238個小麥品系的苗期最大根長與57,398個SNPs的全基因體關聯性分析結果,我們在染色體6A、6B及6D各偵測到一個顯著區間。藉由探勘同源基因與小麥根系組織表現量的資訊,這3個區間內共發現10個基因在其他物種具有調控根系發育的功能。接著,我們挑選53個根長差異懸殊的小麥品系,在16度生長箱環境下,每3天調查品系的根長與總根長性狀,並繪製生長速率曲線。利用人為判斷與K-means方式對53個品系的生長速率分群,結果顯示K-means方式較人為判斷準確且有效率。小麥幼苗期的總根長是由5個根系結構所組成,這53個品系的根系結構具明顯不同的生長速度,此特性是否會影響小麥水分、養分的吸收及利用,將需要更多的實驗證明。最後,為了分析根系結構對溫度變化的反應,我們挑選20個根長差異極大的品系,以Turface作為栽培介質,在2022年的4月、6月及7月 (月均溫分別為25.7℃、33.1 ℃與36.6℃) 的溫室環境下種植。利用GGE biplot及AMMI兩種方法分析20個品系的根系性狀與溫度的交感程度,結果顯示7個品系的根系具有較佳的穩定性與較高的性狀值。總結本論文的研究成果,除了提供種源及遺傳資訊可應用在分子輔助選種,生長箱與溫室試驗則呈現不同遺傳背景的小麥品系,在控溫及多個溫度下的根系結構變化過程。期望未來能結合田間試驗,評估在高溫逆境下根系結構變化與產量的關係。zh_TW
dc.description.abstractWheat is primarily grown in temperate environments, with an optimal temperature range between 15 and 25°C. However, extreme weather conditions, particularly high-temperature stress, can negatively impact wheat cultivation. While current research on wheat heat tolerance mainly focuses on above-ground traits, the contribution of root traits to plants heat tolerance is unclear and should not be overlooked. This study utilized 238 wheat accessions and 57,398 SNPs for a genome-wide association analysis of maximum root length (MRL). Significant regions were identified on chromosomes 6A, 6B, and 6D. Candidate genes within these regions were further investigated for their orthologous gene function and expression profiles in root tissue. Ten candidate genes were identified across the three regions, showing relevance to root tissue expression, and their orthologous genes were related to root development and growth. 53 wheat accessions showing extreme long and short root length were selected for further investigation. Plants were grown at 16°C, MRL and total root lengths was phenotyped every three days. The growth rate was calculated and plotted for each trait, and classification of the 53 accessions based on a similar growth pattern was performed using both manual judgment and K-means clustering method, the results showed K-means method generated superior classification. Wheat root system architecture (RSA) could be categorized into five components, significant growth differences in each composition was observed among the 53 accessions, providing valuable information to study the variation of RSA and water and nutrient uptake efficiency in the future. To analyze how wheat RSA variation responds to various temperatures, 20 accessions with substantial differences in root length were grown in a greenhouse in April, June, and July of 2022, the average daily temperatures were 25.7℃, 33.1℃, and 36.6℃, respectively. Most accessions exhibited the highest trait values in June, with the lowest in April. GGE biplot and AMMI analysis results showed seven varieties had better stability and higher trait values across three growing conditions. In summary, this study identified wheat germplasm and candidate genes associated with regulating maximum root length, these genetic information can be utilized in marker-assisted breeding. The growth chamber and greenhouse experiments detailed the root growth variation among diverse cultivars and their responses to different temperatures. We look forward to conduct experiments in the field to reveal the relationship between RSA variation and wheat yield.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-12T16:17:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-12-12T16:17:45Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 x
表目錄 xiii
簡寫對照表 xv
第一章、前言 1
高溫環境對小麥發育的影響 1
根系對小麥高溫耐受性的貢獻 2
小麥根系特性 3
根系性狀的基因型與外表型關聯性分析 3
基因型與環境交感分析 4
第二章、最大根長關聯性分析 8
材料方法 8
植物材料 8
試驗與生長環境條件 8
最大根長性狀調查 8
SNP基因型資料來源 9
主成分 (Principal components) 分析及親緣關係 (kinship) 分析 9
全基因體關聯性分析 (GWAS) 9
定義顯著候選區間範圍 10
候選基因探勘 10
候選基因表現量查詢 11
結果 11
238個小麥種源最大根長性狀分布 11
全基因體關聯性分析 11
GLM 模型 11
GLM+PC 模型 11
MLM 模型 12
MLM+PC 模型 12
定義候選區間範圍 13
染色體6A 13
染色體6B 13
染色體6D 13
同源基因查詢 14
染色體6A 14
染色體6B 14
染色體6D 15
候選基因表現量查詢 16
染色體6A 17
染色體6B 17
染色體6D 18
第三章、品系間根系型態的差異 (生長箱試驗) 20
材料方法 20
植物材料 20
生長箱環境條件 20
親緣關係樹建立 20
根部性狀調查 21
性狀值熱圖分析 (Heat map) 21
統計分析 22
生長速率計算及分群 22
相關性分析及路徑分析 (path analysis) 23
結果 23
建立53個品系的親緣關係樹 23
Neighbor-Joining方法 23
UPGMA方法 24
外表型調查結果 24
53個品系的根系生長速率變化與趨勢 25
最大根長生長速率 25
總根長生長速率 26
53個品系根系結構組成差異 27
各個根系結構組成發育差異 27
根系性狀間的相關係數 27
各個根系結構組成對總根長的貢獻程度 28
第四章、溫度對根系型態變化的影響 (溫室試驗) 29
材料方法 29
植物材料 29
生長環境 29
根部性狀調查 29
統計分析 30
變方分析 (Analysis of variance, ANOVA) 30
路徑分析 (path analysis) 30
主成分分析 (Principal components analysis) 30
GGE Biplot (Genotype effect and genotype by environment interaction biplot ) 31
AMMI (Additive main effect and multiplicative interaction) 31
結果 32
外表型調查結果 32
最大根長 32
根重 32
總根長 33
不同溫度環境下根系結構組成差異 33
溫度對根系結構組成發育影響 33
根系結構組成PCA圖 34
TRL與根系結構組成路徑分析 35
溫室試驗的基因型與環境交感效應分析 35
最大根長 35
根重 36
總根長 37
第五章、討論 39
最大根長性狀GWAS 39
最大根長外表型調查方式及多樣性 39
前人研究根長性狀關聯性分析結果與本研究差異 39
顯著位點的判定 40
候選基因功能探勘 40
生長箱試驗 42
比較兩種水耕系統的優缺點 42
53個品系間根系性狀差異 42
比較使用人為判斷與K-means方法分類53個品系生長速率效果 43
53個品系的根系結構組成差異 44
溫室試驗 45
溫度對於小麥根系性狀發育的影響 45
根系生長速率差異與高溫耐性間的關聯性 46
溫度對於小麥根系結構組成發育的影響 46
根系性狀基因型與環境交感分析 47
第六章、結論 48
參考文獻 50
圖 61
表 101
附錄表 120
-
dc.language.isozh_TW-
dc.title小麥根系性狀關聯性定位與環境基因型交感分析zh_TW
dc.titleGenome-Wide Association Mapping and Analysis of Genotype-by-Environment Interaction of Wheat Root Traitsen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡育彰;劉力瑜;曾怡潔zh_TW
dc.contributor.oralexamcommitteeYu-Chang Tsai;Li-Yu Liu;I-Chieh Tsengen
dc.subject.keyword小麥,根系,根長,根乾重,總根長,全基因體關聯性分析,生長速率,基因型與環境交感效應,zh_TW
dc.subject.keywordwheat,root system architecture,maximum root length,root dry weight,total root length,genome-wide association study,root growth pattern,genotype-by-environment interaction,en
dc.relation.page124-
dc.identifier.doi10.6342/NTU202304390-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-11-10-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農藝學系-
dc.date.embargo-lift2028-11-07-
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  此日期後於網路公開 2028-11-07
7.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved