Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91219
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂育道zh_TW
dc.contributor.advisorYuh-Dauh Lyuuen
dc.contributor.author胡祖望zh_TW
dc.contributor.authorTSU-WANG HUen
dc.date.accessioned2023-12-12T16:16:09Z-
dc.date.available2023-12-13-
dc.date.copyright2023-12-12-
dc.date.issued2023-
dc.date.submitted2023-11-13-
dc.identifier.citationPeter Carr and Dilip Madan. Option valuation using the fast Fourier transform. Journal of Computational Finance, 2(4):61–73, 1999.

Pavel Čížek, Wolfgang Härdle, Rafał Weron, and Wolfgang Härdle. Statistical tools for finance and insurance. Berlin: Springer, 2011.

Jim Gatheral. Jump-diffusion models. Encyclopedia of Quantitative Finance, 2010.

Steve G Kou. Jump-diffusion models for asset pricing in financial engineering. Handbooks in Operations Research and Management Science, 15:73–116, 2007.

Steven G Kou and Hui Wang. Option pricing under a double exponential jump diffusion model. Management Science, 2004.

Kazuhisa Matsuda. Introduction to Merton jump-diffusion model. Department of Economics, The Graduate Center, City University of New York, New York City, 2004.

Nicolas Privault. Stochastic finance: An introduction with market examples. New York City: CRC Press, 2013.

Martin Schmelzle. Option pricing formulae using Fourier transform: Theory and 45 application. https://pfadintegral.com/docs/Schmelzle2010%20Fourier%20Pricing.pdf, 2010.

Peter Tankov and Ekaterina Voltchkova. Jump-diffusion models: A practitioner’s guide. Banque et Marchés, 99(1):24, 2009.

Matthias Thul and Ally Zhang. Analytical option pricing under an asymmetrically displaced double gamma jump-diffusion model. Swiss Finance Institute Research Paper Series 17-78, Swiss Finance Institute, December 2017.

Jari Toivanen. Numerical valuation of European and American options under Kou’s jump-diffusion model. SIAM Journal on Scientific Computing, 30(4):1949–1970, 2008.

Wikipedia contributors. Gamma distribution — Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Gamma_distribution&oldid=1165564801, 2023.

Wikipedia contributors. Wald’s equation — Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Wald%27s_equation&oldid=1152633682,2023.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91219-
dc.description.abstract本論文主要在研究在將Kou 的雙指數跳躍擴展成雙伽瑪跳躍擴散模型。我們採用快速傅立葉轉換方法來獲取兩個模型的選擇權價格。通過將模型擴展為雙伽瑪分佈不僅能夠再現Kou 模型的結果,還能夠提供更大的靈活性來模擬市場,允許對模型進行微調。數值結果顯示雙伽瑪分佈變數如何影響分配的動差,從而導致選權權價值的變化。zh_TW
dc.description.abstractThis paper aims to extend Kou’s double exponential jump-diffusion model to the double gamma jump-diffusion model. We employ the Fast Fourier Transform method to obtain option prices for both models. By extending the model to the double gamma distribution not only reproduces the results of Kou’s model but also provides enhanced flexibility in simulating the market, allowing for fine-tuning of the model. The numerical results show how the double gamma distribution variables affect the moments leading to changes in the call value.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-12T16:16:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-12-12T16:16:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements iii
Abstract v
摘要 vii
Contents ix
List of Figures xi
List of Tables xiii
Chapter 1 Introduction 1
Chapter 2 Motivation and Literature Review 3
2.1 Literature Review 3
2.1.1 Option pricing models 3
2.1.2 Numerical methods for option pricing 4
2.2 Motivation 5
Chapter 3 Our Proposed Model and Numerical Methods 9
3.1 The jump-diffusion model 9
3.1.1 Stochastic differential equation for the jump-diffusion model 9
3.1.2 Martingale condition of jump-diffusion model 12
3.2 The Fast Fourier Transform (FFT) 14
3.2.1 Methodology 14
3.2.2 The CF of the DGJD model 16
3.3 Moments of the jump-size distribution 18
Chapter 4 Numerical Analysis Results 19
4.1 Sanity test 19
4.2 Influences of the variables on the double gamma distribution 20
4.3 Influences of the DG distribution on call prices 23
4.3.1 Results with fixed moments as variables are varied 23
4.3.2 Results with fixed θ1, θ2 and p but varying ρ1 and ρ2 33
4.3.3 Results with fixed ρ1, ρ2 and p but varying θ1 and θ2 36
4.3.4 Results with fixed θ1, θ2, ρ1 and ρ2 but varying p 38
Chapter 5 Conclusions 41
Chapter 6 Future Works 43
References 45
-
dc.language.isoen-
dc.subject指數分佈zh_TW
dc.subject伽馬分佈zh_TW
dc.subject快速傅立葉轉換zh_TW
dc.subject選擇權定價zh_TW
dc.subject指數分佈zh_TW
dc.subject跳躍擴散模型zh_TW
dc.subject選擇權定價zh_TW
dc.subject快速傅立葉轉換zh_TW
dc.subject伽馬分佈zh_TW
dc.subject跳躍擴散模型zh_TW
dc.subjectOption valueen
dc.subjectJump-diffusion modelen
dc.subjectExponential distributionen
dc.subjectGamma distributionen
dc.subjectFast Fourier Transformen
dc.subjectOption valueen
dc.subjectJump-diffusion modelen
dc.subjectExponential distributionen
dc.subjectGamma distributionen
dc.subjectFast Fourier Transformen
dc.titleKou 的跳躍擴散模型擴展:納入雙伽瑪分佈的跳躍幅度zh_TW
dc.titleAn Extension of Kou's Jump-Diffusion Model to Incorporate Double-Gamma Distributed Jump Sizesen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.coadvisor繆維中zh_TW
dc.contributor.coadvisorWei-Jhong Miaoen
dc.contributor.oralexamcommittee莊文議;張琬喻zh_TW
dc.contributor.oralexamcommitteeWen-I Chuang;Woan-Yuh Jangen
dc.subject.keyword跳躍擴散模型,指數分佈,伽馬分佈,快速傅立葉轉換,選擇權定價,zh_TW
dc.subject.keywordJump-diffusion model,Exponential distribution,Gamma distribution,Fast Fourier Transform,Option value,en
dc.relation.page46-
dc.identifier.doi10.6342/NTU202301443-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-11-14-
dc.contributor.author-college管理學院-
dc.contributor.author-dept財務金融學系-
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf8.62 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved